1
|
Li Y, Li G, Feng J, Li S, Liu N. Advances in Research on Marine Natural Products for Modulating the Inflammatory Microenvironment. Phytother Res 2025; 39:1238-1258. [PMID: 39844461 DOI: 10.1002/ptr.8418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 11/14/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
In recent years, marine natural products (MNPs) have emerged as crucial sources of lead compounds for the advancement of anti-inflammatory drugs due to their abundant diversity, complexity, and distinctiveness. Inflammatory microenvironments (IMEs) are pervasive pathological features in the etiology of various chronic diseases, referring to the localized milieu or ecosystem where inflammatory responses occur, and they play a pivotal role in the onset and progression of inflammatory diseases. Uncontrolled IMEs can lead to dysregulation of inflammatory mediators within signaling pathways, thereby exerting detrimental effects on human health and even contributing to the development of inflammatory diseases such as cancer. Currently, inflammation treatment predominantly relies on chemical drugs. Nevertheless, these existing therapies are constrained by their numerous side effects and slow remission of symptoms. Consequently, there is an urgent need for the discovery and development of new drugs that exhibit minimal side effects while exerting potent anti-inflammatory effects. This article extensively explored the activities and mechanisms of MNPs (covering studies from 2010 to 2024) regulating key signaling pathways and inflammatory mediators in the IME, which establishes a theoretical basis for the further development of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Yuru Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Guangjie Li
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jingwen Feng
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Ning Liu
- International Research Centre for Food and Health, College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China
| |
Collapse
|
2
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
3
|
Shin J, Choi LS, Jeon HJ, Lee HM, Kim SH, Kim KW, Ko W, Oh H, Park HS. Synthetic Glabridin Derivatives Inhibit LPS-Induced Inflammation via MAPKs and NF-κB Pathways in RAW264.7 Macrophages. Molecules 2023; 28:molecules28052135. [PMID: 36903379 PMCID: PMC10004008 DOI: 10.3390/molecules28052135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Glabridin is a polyphenolic compound with reported anti-inflammatory and anti-oxidative effects. In the previous study, we synthesized glabridin derivatives-HSG4112, (S)-HSG4112, and HGR4113-based on the structure-activity relationship study of glabridin to improve its biological efficacy and chemical stability. In the present study, we investigated the anti-inflammatory effects of the glabridin derivatives in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We found that the synthetic glabridin derivatives significantly and dose-dependently suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2), and decreased the level of inducible nitric oxygen synthase (iNOS) and cyclooxygenase-2 (COX-2) and the expression of pro-inflammatory cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α). The synthetic glabridin derivatives inhibited the nuclear translocation of the NF-κB by inhibiting phosphorylation of the inhibitor of κB alpha (IκB-α), and distinctively inhibited the phosphorylation of ERK, JNK, and p38 MAPKs. In addition, the compounds increased the expression of antioxidant protein heme oxygenase (HO-1) by inducing nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) through ERK and p38 MAPKs. Taken together, these results indicate that the synthetic glabridin derivatives exert strong anti-inflammatory effects in LPS-stimulated macrophages through MAPKs and NF-κB pathways, and support their development as potential therapeutics against inflammatory diseases.
Collapse
Affiliation(s)
- Jaejin Shin
- Glaceum Inc., Suwon 16675, Republic of Korea
| | | | | | - Hyeong Min Lee
- Glaceum Inc., Suwon 16675, Republic of Korea
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin 17104, Republic of Korea
| | | | - Kwan-Woo Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Wonmin Ko
- Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Hyuncheol Oh
- College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea
| | | |
Collapse
|
4
|
Investigating Key Targets of Dajianzhong Decoction for Treating Crohn’s Disease Using Weighted Gene Co-Expression Network. Processes (Basel) 2022. [DOI: 10.3390/pr11010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Crohn’s disease (CD) is an inflammatory bowel disease, cases of which have substantially increased in recent years. The classical formula Dajianzhong decoction (DD, Japanese: Daikenchuto) is often used to treat CD, but few studies have evaluated related therapeutic mechanisms. In this study, we investigated the potential targets and mechanisms of DD used for treating CD at the molecular level through the weighted gene co-expression network. Methods: The main chemical components of the three DD herbs (Zanthoxylum bungeanum Maxim., Zingiber officinale (Willd.) Rosc., and Ginseng Radix et Rhizoma) were searched for using the HERB database. The targets for each component were identified using the SwissTargetPrediction and HERB databases, whereas the disease targets for CD were retrieved from the GeneCards and DisGeNET databases. The functional enrichment analysis was performed on the common targets of DD and CD. High-throughput sequencing data for CD patients were retrieved from the Gene Expression Omnibus database, and WGCNA was performed to identify the key targets. The association between the key targets and DD ingredients was verified using molecular docking. Results: By analyzing the interaction targets between DD and CD, 196 overlapping genes were identified. The enrichment results indicated that the PI3K-AKT, TNF, MAPK, and IL-17 signaling pathways influenced the mechanism of action of DD in counteracting CD. Combined with WGCNA, four differentially expressed genes (SLC6A4, NOS2, SHBG, and ABCB1) and their corresponding 24 compounds were closely related to the occurrence of CD. Conclusions: By integrating gene co-expression network analysis, this study preliminarily reveals the internal molecular mechanism of DD in treating CD from a systematic perspective, validated by molecular docking. However, these findings require further validation.
Collapse
|
5
|
Chen G, Yang Z, Wen D, Guo J, Xiong Q, Li P, Zhao L, Wang J, Wu C, Dong L. Polydatin has anti-inflammatory and antioxidant effects in LPS-induced macrophages and improves DSS-induced mice colitis. Immun Inflamm Dis 2021; 9:959-970. [PMID: 34010516 PMCID: PMC8342204 DOI: 10.1002/iid3.455] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Polydatin (PD), a monocrystalline compound isolated from the root and rhizome of Polygonum cuspidatum, is widely used in inhibiting the inflammatory response and oxidative stress. PD has an anti-inflammatory effect on colitis mice; however, information regulating the mechanism by which maintains the intestinal epithelium barrier is currently scarce. Here, we assessed the anti-inflammatory and antioxidant of PD in lipopolysaccharide (LPS)-induced macrophages in vitro, and explored its effects on inhibiting intestinal inflammation and maintaining the intestinal epithelium barrier in dextran sodium sulfate (DSS)-induced colitis mice. Results showed that PD reduced the level of proinflammatory cytokines and enzymes, including tumor necrosis factor-α, interleukin-4 (IL-4), IL-6, cyclooxygenase-2, and inducible nitric oxide synthase, in LPS-induced macrophages, and improved the expression level of IL-10. PD maintained the expression of tight junction proteins in medium (LPS-induced macrophages medium)-induced MCEC cells. Additionally, PD inhibited the phosphorylation of nuclear factor-κB (NF-κB), p65, extracellular signal-regulated kinase-1/2, c-Jun N-terminal kinase, and p38 signaling pathways in LPS-induced macrophages and facilitated the phosphorylation of AKT and the nuclear translocation of Nrf2, improving the expression of HO-1 and NQO1. Furthermore, PD ameliorated the intestinal inflammatory response and improved the dysfunction of the colon epithelium barrier in DSS-induced colitis mice. Taken together, our results indicated that PD inhibited inflammation and oxidative stress, maintained the intestinal epithelium barrier, and the protective role of PD was associated with the NF-κB p65, itogen-activated protein kinases, and AKT/Nrf2/HO-1/NQO1 signaling pathway.
Collapse
Affiliation(s)
- Guangxin Chen
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Ziyue Yang
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Da Wen
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Jian Guo
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
- Department of General Surgery, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Qiuhong Xiong
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Ping Li
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Liping Zhao
- Department of Pathology, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Junping Wang
- Department of Gastroenterology, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Changxin Wu
- Institute of Biomedical SciencesShanxi UniversityTaiyuanChina
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanShanxiChina
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's HospitalAffiliate of Shanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
6
|
Zhang D, Zhu P, Liu Y, Shu Y, Zhou JY, Jiang F, Chen T, Yang BL, Chen YG. Total flavone of Abelmoschus manihot ameliorates Crohn's disease by regulating the NF‑κB and MAPK signaling pathways. Int J Mol Med 2019; 44:324-334. [PMID: 31059072 DOI: 10.3892/ijmm.2019.4180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/19/2019] [Indexed: 11/06/2022] Open
Abstract
Crohn's disease (CD) is a chronic relapsing form of inflammatory bowel disease, and its pathogenesis remains unknown. Total flavone of Abelmoschus manihot L. Medic (TFA), has been used as anti‑inflammatory and myocardial ischemia protective drug. The present study aimed to explore the effects of TFA on CD and its underlying mechanism. We reported that TFA comprises eight flavone glycosides, including quercetin‑3‑O‑robinobioside, gossypetin‑3‑O‑glucoside, quercetin‑3'‑O‑glucoside, isoquercetin, hyperoside, myricetin, gossypetin and quercetin. In vivo, TFA promoted the survival of 2,4,6‑trinitrobenzene sulfonic acid (TNBS)‑induced colitis in mice, decreased weight loss and increased colon length in a dose‑dependent manner. Additionally, TFA notably ameliorated the inflammatory response in mice with TNBS‑induced colitis as determined by histopathological analysis. In addition, the administration of TFA in mice with TNBS‑induced colitis led to a significant decrease in the levels of cytokines in the sera and colon tissues; a significant decrease myeloperoxidase activity in the colon tissues was also observed. These findings may be associated with the suppression of the nuclear factor‑κB (NF‑κB) and mitogen‑activated protein kinase (MAPK) signaling pathways. In vitro, TFA significantly downregulated the expression of cytokines in lipopolysaccharide (LPS)‑induced RAW264.7 cells. In addition, TFA suppressed LPS‑induced activation of the NF‑κB and MAPK signaling pathways in RAW264.7 cells. Our findings indicated that TFA could suppress the inflammatory response in mice with TNBS‑induced colitis via inhibition of the NF‑κB and MAPK signaling pathways. The results of the present study may improve understanding of the function of TFA and provide a novel theoretical basis for the treatment of CD.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ping Zhu
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Liu
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yi Shu
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Jin-Yong Zhou
- Department of Central Laboratory, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Feng Jiang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Tuo Chen
- No. 1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Bo-Lin Yang
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yu-Gen Chen
- Department of Colorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
7
|
Jiménez-Castro MB, Cornide-Petronio ME, Gracia-Sancho J, Casillas-Ramírez A, Peralta C. Mitogen Activated Protein Kinases in Steatotic and Non-Steatotic Livers Submitted to Ischemia-Reperfusion. Int J Mol Sci 2019; 20:1785. [PMID: 30974915 PMCID: PMC6479363 DOI: 10.3390/ijms20071785] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
: We analyzed the participation of mitogen-activated protein kinases (MAPKs), namely p38, JNK and ERK 1/2 in steatotic and non-steatotic livers undergoing ischemia-reperfusion (I-R), an unresolved problem in clinical practice. Hepatic steatosis is a major risk factor in liver surgery because these types of liver tolerate poorly to I-R injury. Also, a further increase in the prevalence of steatosis in liver surgery is to be expected. The possible therapies based on MAPK regulation aimed at reducing hepatic I-R injury will be discussed. Moreover, we reviewed the relevance of MAPK in ischemic preconditioning (PC) and evaluated whether MAPK regulators could mimic its benefits. Clinical studies indicated that this surgical strategy could be appropriate for liver surgery in both steatotic and non-steatotic livers undergoing I-R. The data presented herein suggest that further investigations are required to elucidate more extensively the mechanisms by which these kinases work in hepatic I-R. Also, further researchers based in the development of drugs that regulate MAPKs selectively are required before such approaches can be translated into clinical liver surgery.
Collapse
Affiliation(s)
| | | | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory IDIBAPS, 08036 Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| | - Araní Casillas-Ramírez
- Hospital Regional de Alta Especialidad de Ciudad Vitoria, Ciudad Victoria 87087, Mexico.
- Facultad de Medicina e ingeniería en Sistemas Computacionales de Matamoros, Universidad Autónoma de Tamaulipas, Matamoros 87300, México.
| | - Carmen Peralta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona 08036, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 08036 Barcelona, Spain.
| |
Collapse
|
8
|
Zhou X, Chu X, Xin D, Li T, Bai X, Qiu J, Yuan H, Liu D, Wang D, Wang Z. L-Cysteine-Derived H 2S Promotes Microglia M2 Polarization via Activation of the AMPK Pathway in Hypoxia-Ischemic Neonatal Mice. Front Mol Neurosci 2019; 12:58. [PMID: 30914921 PMCID: PMC6421291 DOI: 10.3389/fnmol.2019.00058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022] Open
Abstract
We have reported previously that L-cysteine-derived hydrogen sulfide (H2S) demonstrates a remarkable neuroprotective effect against hypoxia-ischemic (HI) insult in neonatal animals. Here, we assessed some of the mechanisms of this protection as exerted by L-cysteine. Specifically, we examined the capacity for L-cysteine to stimulate microglial polarization of the M2 phenotype and its modulation of complement expression in response to HI in neonatal mice. L-cysteine treatment suppressed the production of inflammatory cytokines, while dramatically up-regulating levels of anti-inflammatory cytokines in the damaged cortex. This L-cysteine administration promoted the conversion of microglia from an inflammatory M1 to an anti-inflammatory M2 phenotype, an effect which was associated with inhibiting the p38 and/or JNK pro-inflammatory pathways, nuclear factor-κB activation and a decrease in HI-derived levels of the C1q, C3a and C3a complement receptor proteins. Notably, blockade of H2S-production clearly prevented L-cysteine-mediated M2 polarization and complement expression. L-cysteine also inhibited neuronal apoptosis as induced by conditioned media from activated M1 microglia in vitro. We also show that L-cysteine promoted AMP-activated protein kinase (AMPK) activation and the AMPK inhibitor abolished these anti-apoptotic and anti-inflammatory effects of L-cysteine. Taken together, our findings demonstrate that L-cysteine-derived H2S attenuated neuronal apoptosis after HI and suggest that these effects, in part, result from enhancing microglia M2 polarization and modulating complement expression via AMPK activation.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China.,Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xili Chu
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Danqing Xin
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Tingting Li
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Xuemei Bai
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Jie Qiu
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China.,Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Hongtao Yuan
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China.,Department of Medical Psychology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Dexiang Liu
- Department of Medical Psychology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Dachuan Wang
- Department of Spinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhen Wang
- Department of Physiology, Shandong University School of Basic Medical Sciences, Jinan, China
| |
Collapse
|
9
|
The NF-κB1 is a key regulator of acute but not chronic renal injury. Cell Death Dis 2017; 8:e2883. [PMID: 28617440 PMCID: PMC5584573 DOI: 10.1038/cddis.2017.233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/29/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
Abstract
The NF-κB family of transcription factors is important for many cellular functions, in particular initiation and propagation of inflammatory and immune responses. However, recent data has suggested that different subunits of the NF-κB family can suppress the inflammatory response. NF-κB1, from the locus nfκb1, can inhibit transcription, acting as a brake to the recognised pro-inflammatory activity of other NF-κB subunits. We tested the function of NF-κB1 in an acute (nephrotoxic serum (NTS) nephritis) and a chronic (unilateral ureteric obstruction (UUO)) model of renal injury using NF-κB1 (nfκb1−/−) knockout mice. Deficiency in NF-κB1 increased the severity of glomerular injury in NTS-induced nephritis and was associated with greater proteinuria and persistent pro-inflammatory gene expression. Induction of disease in bone marrow chimeric mice demonstrated that the absence of NF-κB1 in either bone marrow or glomerular cells increased the severity of injury. Early after UUO (day 3) there was more severe histological injury in the nfκb1−/− mice but by day 10, disease severity was equivalent in wild type and nfκb1−/− mice. In conclusion, NF-κB1 modifies acute inflammatory renal injury but does not influence chronic fibrotic injury.
Collapse
|
10
|
Bae EH, Joo SY, Ma SK, Lee J, Kim SW. Resveratrol attenuates 4-hydroxy-2-hexenal-induced oxidative stress in mouse cortical collecting duct cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:229-36. [PMID: 27162476 PMCID: PMC4860364 DOI: 10.4196/kjpp.2016.20.3.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/17/2015] [Accepted: 02/15/2016] [Indexed: 01/02/2023]
Abstract
Resveratrol (RSV) may provide numerous protective eff ects against chronic inflammatory diseases. Due to local hypoxia and hypertonicity, the renal medulla is subject to extreme oxidative stress, and aldehyde products formed during lipid peroxidation, such as 4-hydroxy-2-hexenal (HHE), might be responsible for tubular injury. This study aimed at investigating the eff ects of RSV on renal and its signaling mechanisms. While HHE treatment resulted in decreased expression of Sirt1, AQP2, and nuclear factor erythroid 2-related factor 2 (Nrf2), mouse cortical collecting duct cells (M1) cells treated with HHE exhibited increased activation of p38 MAPK, extracellular signal regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and increased expression of NOX4, p47phox, Kelch ECH associating protein 1 (Keap1) and COX2. HHE treatment also induced NF-κB activation by promoting IκB-α degradation. Meanwhile, the observed increases in nuclear NF-κB, NOX4, p47phox, and COX2 expression were attenuated by treatment with Bay 117082, N-acetyl-l-cysteine (NAC), or RSV. Our findings indicate that RSV inhibits the expression of inflammatory proteins and the production of reactive oxygen species in M1 cells by inhibiting NF-κB activation.
Collapse
Affiliation(s)
- Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Soo Yeon Joo
- Department of Physiology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| | - JongUn Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju 61469, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju 61469, Korea
| |
Collapse
|
11
|
Mousavinezhad-Moghaddam M, Amin AA, Rafatpanah H, Rezaee SAR. A new insight into viral proteins as Immunomodulatory therapeutic agents: KSHV vOX2 a homolog of human CD200 as a potent anti-inflammatory protein. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:2-13. [PMID: 27096058 PMCID: PMC4823611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The physiologic function of the immune system is defense against infectious microbes and internal tumour cells, Therefore, need to have precise modulatory mechanisms to maintain the body homeostasis. The mammalian cellular CD200 (OX2)/CD200R interaction is one of such modulatory mechanisms in which myeloid and lymphoid cells are regulated. CD200 and CD200R molecules are membrane proteins that their immunomodulatory effects are able to suppress inflammatory responses, particularly in the privilege sites such as CNS and eyes. Kaposi's sarcoma-associated herpesvirus (KSHV), encodes a wide variety of immunoregulatory proteins which play central roles in modulating inflammatory and anti-inflammatory responses in favour of virus dissemination. One such protein is a homologue of the, encoded by open reading frame (ORF) K14 and therefore called vOX2. Based on its gene expression profile during the KSHV life cycle, it is hypothesised that vOX2 modulates host inflammatory responses. Moreover, it seems that vOX2 involves in cell adhesion and modulates innate immunity and promotes Th2 immune responses. In this review the activities of mammalian CD200 and KSHV CD200 in cell adhesion and immune system modulation are reviewed in the context of potential therapeutic agents.
Collapse
Affiliation(s)
| | - Abbas Ali Amin
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Houshang Rafatpanah
- Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdol Rahim Rezaee
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran,Corresponding author: Seyed Abodol Rahim Rezaee. Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38012768; Fax: +98-51-38436626;
| |
Collapse
|
12
|
Ko W, Sohn JH, Jang JH, Ahn JS, Kang DG, Lee HS, Kim JS, Kim YC, Oh H. Inhibitory effects of alternaramide on inflammatory mediator expression through TLR4-MyD88-mediated inhibition of NF-кB and MAPK pathway signaling in lipopolysaccharide-stimulated RAW264.7 and BV2 cells. Chem Biol Interact 2016; 244:16-26. [DOI: 10.1016/j.cbi.2015.11.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 01/06/2023]
|
13
|
Insight into the Structural Determinants of Imidazole Scaffold-Based Derivatives as TNF-α Release Inhibitors by in Silico Explorations. Int J Mol Sci 2015; 16:20118-38. [PMID: 26307982 PMCID: PMC4613192 DOI: 10.3390/ijms160920118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/10/2015] [Accepted: 07/30/2015] [Indexed: 01/29/2023] Open
Abstract
Presently, 151 widely-diverse pyridinylimidazole-based compounds that show inhibitory activities at the TNF-α release were investigated. By using the distance comparison technique (DISCOtech), comparative molecular field analysis (CoMFA), and comparative molecular similarity index analysis (CoMSIA) methods, the pharmacophore models and the three-dimensional quantitative structure-activity relationships (3D-QSAR) of the compounds were explored. The proposed pharmacophore model, including two hydrophobic sites, two aromatic centers, two H-bond donor atoms, two H-bond acceptor atoms, and two H-bond donor sites characterizes the necessary structural features of TNF-α release inhibitors. Both the resultant CoMFA and CoMSIA models exhibited satisfactory predictability (with Q2 (cross-validated correlation coefficient) = 0.557, R2ncv (non-cross-validated correlation coefficient) = 0.740, R2pre (predicted correlation coefficient) = 0.749 and Q2 = 0.598, R2ncv = 0.767, R2pre = 0.860, respectively). Good consistency was observed between the 3D-QSAR models and the pharmacophore model that the hydrophobic interaction and hydrogen bonds play crucial roles in the mechanism of actions. The corresponding contour maps generated by these models provide more diverse information about the key intermolecular interactions of inhibitors with the surrounding environment. All these models have extended the understanding of imidazole-based compounds in the structure-activity relationship, and are useful for rational design and screening of novel 2-thioimidazole-based TNF-α release inhibitors.
Collapse
|
14
|
Song MY, Jung HW, Kang SY, Kim KH, Park YK. Anti-inflammatory effect of Lycii radicis in LPS-stimulated RAW 264.7 macrophages. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2015; 42:891-904. [PMID: 25004881 DOI: 10.1142/s0192415x14500566] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The root bark of Lycium barbarum (Lycii radicis cortex, LRC) is used as a cooling agent for fever and night sweats in East Asian traditional medicine. The inhibitory effect of LRC water extract on inflammation is unknown. In this study, the anti-inflammatory effect of LRC was investigated in lipopolysaccharide (LPS)-stimulated mouse macrophage, RAW 264.7 cells. LRC extract significantly decreased the LPS-induced production of inflammatory mediators, nitric oxide (NO), prostaglandin (PG) E2 and pro-inflammatory cytokines, interleukin (IL)-1β and IL-6 in the cells. In addition, LRC extract inhibited the LPS-induced expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 mRNA and protein, and inflammatory cytokines mRNA in the cells. The action mechanism of LRC underlies the blocking of LPS-mediated p38 and Jun N-terminal kinase (JNK), mitogen-activated protein kinases (MAPKs), and the nuclear factor (NF)-κB signaling pathway. These results indicate that LRC extract inhibits the inflammatory response in activated macrophages by down-regulating the transcription levels of inflammatory mediators and blocking the MAPKs and NF-κB pathway.
Collapse
Affiliation(s)
- Mi Young Song
- Department of Rehabilitation Medicine, Dongguk University, Gyeongju 780-350, Republic of Korea
| | | | | | | | | |
Collapse
|
15
|
Feng J, Wu Y, Yang Y, Jiang W, Hu S, Li Y, Yang Y. Humulus scandens Exhibits Immunosuppressive Effects in Vitro and in Vivo by Suppressing CD4+ T Cell Activation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:921-34. [DOI: 10.1142/s0192415x1450058x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Humulus scandens, rich in flavonoids, is a traditional Chinese medicine. It is widely used in China to treat tuberculosis, dysentery and chronic colitis. In this study, the major active faction of Humulus scandens (H.S) was prepared. Then, its immunosuppressive effects and underlying mechanisms on T cell activation were investigated in vitro and in vivo. Results showed that H.S significantly inhibited the proliferation of splenocytes induced by concanavalin A, lipopolysaccharides, and mixed-lymphocyte reaction in vitro. Additionally, H.S could dramatically suppress the proliferation and interferon-γ (IFN-γ) production from T cells stimulated by anti-CD3 and anti-CD28. Flow cytometric results confirmed that H.S could suppress the differentiation of IFN-γ-producing type 1 helper T cells (Th1). Furthermore, using ovalbumin immunization-induced T cell reaction and CD4+ T-cell-mediated delayed type hypersensitivity reaction, H.S the immunosuppressive effects of H.S was also demonstrated in vivo. Western blot results showed that H.S could impede the activation of both Erk1/2 and P38 in primary T cells triggered by anti-CD3/28. Collectively, the active fraction of H.S showed promising immunosuppressive activities both in vitro and in vivo.
Collapse
Affiliation(s)
- Jinjin Feng
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yingchun Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yang Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Weiqi Jiang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Shaoping Hu
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yifu Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
16
|
Genkwanin inhibits proinflammatory mediators mainly through the regulation of miR-101/MKP-1/MAPK pathway in LPS-activated macrophages. PLoS One 2014; 9:e96741. [PMID: 24800851 PMCID: PMC4011752 DOI: 10.1371/journal.pone.0096741] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/10/2014] [Indexed: 11/25/2022] Open
Abstract
Genkwanin is one of the major non-glycosylated flavonoids in many herbs with anti-inflammatory activities. Although its anti-inflammatory activity in vivo has been reported, the potential molecular mechanisms remain obscure. In this study, by pharmacological and genetic approaches, we explore the anti-inflammatory effects of genkwanin in LPS-activated RAW264.7 macrophages. Genkwanin potently decreases the proinflammatory mediators, such as iNOS, TNF-α, IL-1β and IL-6, at the transcriptional and translational levels without cytotoxicity, indicating the excellent anti-inflammatory potency of genkwanin in vitro. Mechanism study shows that genkwanin significantly suppresses the p38- and JNK-mediated AP-1 signaling pathway and increases the mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) expression at the posttranscriptional level. We also confirmed that microRNA-101 (miR-101) is a negative regulator of MKP-1 expression. Moreover, regardless of miR-101-deficient cells or miR-101-abundant cells, the suppression effects of genkwanin on supernatant proinflammatory mediators' levels are far less than that in respective negative control cells, suggesting that genkwanin exerts anti-inflammatory effect mainly through reducing miR-101 production. However, genkwanin can't affect the level of phospho-Akt (p-Akt), indicating that the phosphorylation of Akt may be not responsible for the effect of genkwanin on miR-101 production. We conclude that genkwanin exerts its anti-inflammatory effect mainly through the regulation of the miR-101/MKP-1/MAPK pathway.
Collapse
|
17
|
Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 2013; 218:1452-67. [DOI: 10.1016/j.imbio.2013.04.019] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/28/2013] [Indexed: 12/13/2022]
|
18
|
Lee KE, Kim EY, Kim CS, Choi JS, Bae EH, Ma SK, Park JS, Jung YD, Kim SH, Lee JU, Kim SW. Macrophage-stimulating protein attenuates hydrogen peroxide-induced apoptosis in human renal HK-2 cells. Eur J Pharmacol 2013; 715:304-11. [PMID: 23726950 DOI: 10.1016/j.ejphar.2013.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/30/2013] [Accepted: 05/11/2013] [Indexed: 01/12/2023]
Abstract
Macrophage-stimulating protein (MSP) and its receptor, recepteur d'origine nantais (RON), play an important role in cell proliferation and migration. We have investigated the role of MSP in hydrogen peroxide (H2O2)-induced renal tubular apoptosis. Human renal proximal tubular (HK-2) cells were incubated with H2O2 for 24h in the presence of different concentrations of MSP, and cell viability was measured by MTT assay. The protein expression of Bax, Bcl-2, caspase-3, mitogen-activated protein kinases (MAPKs), phosphatidylinositol-3-kinase (PI3K)/Akt, and nuclear factor-kappa B (NF-κB) was determined by semiquantitative immunoblotting. Apoptosis was assessed by flow cytometry analysis after HK-2 cells were stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. H2O2 treatment decreased cell viability in HK-2 cells; this was counteracted by MSP pretreatment. H2O2 treatment induced an increased ratio of Bax/Bcl-2, cleaved caspase-3, and the number of condensed nuclei, which was also counteracted by MSP. Flow cytometry analysis showed H2O2-induced apoptosis, and its prevention by MSP treatment. Increased protein expression of phospho-p38 MAPK was attenuated by MSP, while phospho-extracellular signal-regulated kinase and c-Jun-N-terminal kinase were not affected. H2O2 induced NF-κB activation and IκB-α degradation, but the increased nuclear NF-κB activation was counteracted by MSP or by a p38 MAPK inhibitor. H2O2 treatment decreased expression of phospho-PI3K and phospho-Akt, which was reversed by MSP pretreatment. These findings suggest that MSP attenuates H2O2-induced apoptosis in HK-2 cells by modulating the p38 and NF-κB, as well as PI3K/Akt, signaling pathways.
Collapse
Affiliation(s)
- Ko Eun Lee
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim DH, Park MH, Choi YJ, Chung KW, Park CH, Jang EJ, An HJ, Yu BP, Chung HY. Molecular study of dietary heptadecane for the anti-inflammatory modulation of NF-kB in the aged kidney. PLoS One 2013; 8:e59316. [PMID: 23555655 PMCID: PMC3608635 DOI: 10.1371/journal.pone.0059316] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/13/2013] [Indexed: 01/03/2023] Open
Abstract
Heptadecane is a volatile component of Spirulina platensis, and blocks the de novo synthesis of fatty acids and ameliorates several oxidative stress-related diseases. In a redox state disrupted by oxidative stress, pro-inflammatory genes are upregulated by the activation of NF-kB via diverse kinases. Thus, the search and characterization of new substances that modulate NF-kB are lively research topics. In the present study, heptadecane was examined in terms of its ability to suppress inflammatory NF-kB activation via redox-related NIK/IKK and MAPKs pathway in aged rats. In the first part of the study, Fischer 344 rats, aged 9 and 20 months, were administered on average approximately 20 or 40 mg/Kg body weight over 10 days. The potency of heptadecane was investigated by examining its ability to suppress the gene expressions of COX-2 and iNOS (both NF-κB-related genes) and reactive species (RS) production in aged kidney tissue. In the second part of the study, YPEN-1 cells (an endothelial cell line) were used to explore the molecular mechanism underlying the anti-inflammatory effect of heptadecane by examining its modulation of NF-kB and NF-kB signal pathway. Results showed that heptadecane exhibited a potent anti-oxidative effect by protecting YPEN-1 cells from tert-butylhydroperoxide induced oxidative stress. Further molecular investigations revealed that heptadecane attenuated RS-induced NF-kB via the NIK/IKK and MAPKs pathways in YPEN-1 cells and aged kidney tissues. Based on these results, we conclude that heptadecane suppresses age-related increases in pro-inflammatory gene expressions by reducing NF-kB activity by upregulating the NIK/IKK and MAPKs pathways induced by RS. These findings provide molecular insight of the mechanisms by which heptadecane exerts its antiinflammatory effect in aged kidney tissues. We conclude that heptadecane suppresses age-related increases in pro-inflammatory gene expressions then travel upstream set by step by reducing NF-kB activity by downregulating the NIK/IKK and MAPKs pathways induced by RS.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Aging Tissue Bank, Pusan National University, Gumjung-gu, Busan, Republic of Korea
| | - Min Hi Park
- Department of Pharmacy, College of Pharmacy, Aging Tissue Bank, Pusan National University, Gumjung-gu, Busan, Republic of Korea
| | - Yeon Ja Choi
- Department of Pharmacy, College of Pharmacy, Aging Tissue Bank, Pusan National University, Gumjung-gu, Busan, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Aging Tissue Bank, Pusan National University, Gumjung-gu, Busan, Republic of Korea
| | - Chan Hum Park
- Department of Pharmacy, College of Pharmacy, Aging Tissue Bank, Pusan National University, Gumjung-gu, Busan, Republic of Korea
| | - Eun Ji Jang
- Department of Pharmacy, College of Pharmacy, Aging Tissue Bank, Pusan National University, Gumjung-gu, Busan, Republic of Korea
| | - Hye Jin An
- Department of Pharmacy, College of Pharmacy, Aging Tissue Bank, Pusan National University, Gumjung-gu, Busan, Republic of Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Aging Tissue Bank, Pusan National University, Gumjung-gu, Busan, Republic of Korea
| |
Collapse
|
20
|
Eritja N, Mirantes C, Llobet D, Masip G, Matias-Guiu X, Dolcet X. ERα-mediated repression of pro-inflammatory cytokine expression by glucocorticoids reveals a crucial role for TNFα and IL1α in lumen formation and maintenance. J Cell Sci 2012; 125:1929-44. [PMID: 22328525 DOI: 10.1242/jcs.095067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Most glandular tissues comprise polarized epithelial cells organized around a single central lumen. Although there is active research investigating the molecular networks involved in the regulation of lumenogenesis, little is known about the extracellular factors that influence lumen formation and maintenance. Using a three-dimensional culture system of epithelial endometrial cells, we have revealed a new role for pro-inflammatory cytokines such as TNFα and IL1α in the formation and, more importantly, maintenance of a single central lumen. We also studied the mechanism by which glucocorticoids repress TNFα and IL1α expression. Interestingly, regulation of pro-inflammatory cytokine expression and subsequent lumen formation is mediated by estrogen receptor α (ERα) but not by the glucocorticoid receptor. Finally, we investigated the signaling pathways involved in the regulation of lumen formation by pro-inflammatory cytokines. Our results demonstrate that activation of the ERK/MAPK signaling pathway, but not the PI3K/Akt signaling pathway, is important for the formation and maintenance of a single central lumen. In summary, our results suggest a novel role for ERα-regulated pro-inflammatory cytokine expression in lumen formation and maintenance.
Collapse
Affiliation(s)
- Nuria Eritja
- Oncologic Pathology Group, Departamento de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| | | | | | | | | | | |
Collapse
|
21
|
Bae EH, Cho S, Joo SY, Ma SK, Kim SH, Lee J, Kim SW. 4-Hydroxy-2-hexenal-induced apoptosis in human renal proximal tubular epithelial cells. Nephrol Dial Transplant 2011; 26:3866-73. [DOI: 10.1093/ndt/gfr386] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
22
|
Alleva LM, Gualano RC, Clark IA. Current work and future possibilities for the management of severe influenza: using immunomodulatory agents that target the host response. Future Virol 2011. [DOI: 10.2217/fvl.11.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we argue the case that the excessive inflammatory response seen in severe influenza contributes to severe illness and death by disabling oxidative phosphorylation in mitochondria, leading to reduced cellular levels of ATP. When the mitochondrial permeability transition is induced, cells cannot die by apoptosis in the face of reduced ATP levels, because apoptosis depends upon ATP availability, and so cells undergo necrosis. Cellular necrosis causes release of proinflammatory molecules such as high mobility group box 1 protein and mitochondrial DNA, and these could contribute to the prolongation of inflammation during severe influenza. With these concepts in mind, we discuss how immunomodulatory agents that prevent cellular necrosis (by restoring mitochondrial function) and limit inflammation are promising influenza treatments.
Collapse
Affiliation(s)
| | - Rosa C Gualano
- Department of Pharmacology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Ian A Clark
- Division of Biomedical Science & Biochemistry, Research School of Biology, The Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
23
|
Venkatesha SH, Berman BM, Moudgil KD. Herbal medicinal products target defined biochemical and molecular mediators of inflammatory autoimmune arthritis. Bioorg Med Chem 2011; 19:21-9. [PMID: 21115252 PMCID: PMC3020797 DOI: 10.1016/j.bmc.2010.10.053] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/18/2010] [Accepted: 10/25/2010] [Indexed: 11/18/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating disease characterized by synovial inflammation, damage to cartilage and bone, and deformities of the joints. Several drugs possessing anti-inflammatory and immunomodulatory properties are being used in the conventional (allopathic) system of medicine to treat RA. However, the long-term use of these drugs is associated with harmful side effects. Therefore, newer drugs with low or no toxicity for the treatment of RA are actively being sought. Interestingly, several herbs demonstrate anti-inflammatory and anti-arthritic activity. In this review, we describe the role of the major biochemical and molecular mediators in the pathogenesis of RA, and highlight the sites of action of herbal medicinal products that have anti-arthritic activity. With the rapidly increasing use of CAM products by patients with RA and other inflammation-related disorders, our review presents timely information validating the scientific rationale for the use of natural therapeutic products.
Collapse
Affiliation(s)
- Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Brian M. Berman
- Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
24
|
Stuhlmeier KM, Bröll J, Iliev B. NF-kappaB independent activation of a series of proinflammatory genes by hydrogen sulfide. Exp Biol Med (Maywood) 2009; 234:1327-38. [PMID: 19855074 DOI: 10.3181/0904-rm-137] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A stress response has the potential to induce greater resistance to subsequent stress damage. We tested whether hydrogen sulfide (H(2)S), an important signaling molecule, also used therapeutically, and known for detrimental effects, might induce a protective stress response. Therefore, the response of fibroblast-like synoviocytes (FLS) treated with sodium hydrosulfide and mice exposed to H(2)S were examined. In both cases a profound and long lasting induction of the stress-response could be detected. However, despite the sustained presence of large levels of HO-1 and HSP-70, proinflammatory effects of exposure to IL-1beta or H(2)S itself were not ameliorated. On the contrary, at H(2)S concentrations significantly lower than 10 ppm-the current maximal allowable concentration of H(2)S in many countries-COX-2, IL-8, IL-1alpha, IL-1beta and TNFalpha were dose dependently elevated. Importantly, in FLS, short-term exposure to H(2)S resulted in the activation of all three MAPK. In addition, mitochondrial activity was also significantly impaired at relatively low H(2)S concentrations. The transcription factor NF-kappaB is essential for the activation of most proinflammatory genes. However, the data presented imply that H(2)S activates proinflammatory genes in FLS through non-NF-kappaB-dependent pathways. Stress proteins reportedly act by blocking NF-kappaB activation, a mechanism that would explain the inability of stress proteins to prevent H(2)S mediated inflammatory processes. The presented data, showing MAPK activation, NF-kappaB-independent activation of a number of proinflammatory genes and mitochondrial damage, help to provide a better understanding of the biological and pathophysiological effects of exposure to H(2)S.
Collapse
Affiliation(s)
- Karl M Stuhlmeier
- Medical University of Vienna and Ludwig Boltzmann Institute for Rheumatology and Balneology, Kurbadstrasse 10, 1100 Vienna, Austria.
| | | | | |
Collapse
|
25
|
King LA, Toledo AH, Rivera-Chavez FA, Toledo-Pereyra LH. Role of p38 and JNK in liver ischemia and reperfusion. ACTA ACUST UNITED AC 2009; 16:763-70. [PMID: 19680593 DOI: 10.1007/s00534-009-0155-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/01/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND/PURPOSE The signal transduction of mitogen-activated protein kinases (MAPKs) has appeared to be an important mediator of ischemic-related events. Because of this, we analyzed the participation of p38 and JNK in liver ischemia and reperfusion, as two individual members of the MAPK family of proteins. METHODS All papers referred to in PubMed for the past 15 years were analyzed to determine how and when these MAPKs were considered to be an intricate part of the ischemic event. References were cross-studied to ascertain whether other papers could be found in the literature. RESULTS The role of p38 and JNK in liver ischemia was confirmed in the literature. The activation of these mediators was associated with the induction of apoptosis and necrosis. Inhibitors of p38 and JNK reduced the liver ischemia and reperfusion damage, probably through the mechanisms mentioned before. CONCLUSIONS The development of effective inhibitors of p38 and JNK protein mediators is important for minimizing the harmful effects associated with liver ischemia and reperfusion.
Collapse
Affiliation(s)
- LaShonda A King
- Department of Research, Kalamazoo Center for Medical Studies, Michigan State University, 1000 Oakland Drive, Kalamazoo, MI 49008, USA
| | | | | | | |
Collapse
|
26
|
Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets 2009; 8:634-46. [PMID: 18991571 DOI: 10.2174/156800908786241050] [Citation(s) in RCA: 720] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Luteolin, 3',4',5,7-tetrahydroxyflavone, is a common flavonoid that exists in many types of plants including fruits, vegetables, and medicinal herbs. Plants rich in luteolin have been used in Chinese traditional medicine for treating various diseases such as hypertension, inflammatory disorders, and cancer. Having multiple biological effects such as anti-inflammation, anti-allergy and anticancer, luteolin functions as either an antioxidant or a pro-oxidant biochemically. The biological effects of luteolin could be functionally related to each other. For instance, the anti-inflammatory activity may be linked to its anticancer property. Luteolin's anticancer property is associated with the induction of apoptosis, and inhibition of cell proliferation, metastasis and angiogenesis. Furthermore, luteolin sensitizes cancer cells to therapeutic-induced cytotoxicity through suppressing cell survival pathways such as phosphatidylinositol 3'-kinase (PI3K)/Akt, nuclear factor kappa B (NF-kappaB), and X-linked inhibitor of apoptosis protein (XIAP), and stimulating apoptosis pathways including those that induce the tumor suppressor p53. These observations suggest that luteolin could be an anticancer agent for various cancers. Furthermore, recent epidemiological studies have attributed a cancer prevention property to luteolin. In this review, we summarize the progress of recent research on luteolin, with a particular focus on its anticancer role and molecular mechanisms underlying this property of luteolin.
Collapse
Affiliation(s)
- Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Dr., SE, Albuquerque, NM 87108, USA.
| | | | | | | |
Collapse
|
27
|
Vanilloid receptor TRPV1-mediated phosphorylation of ERK in murine adjuvant arthritis. Osteoarthritis Cartilage 2009; 17:244-51. [PMID: 18684647 PMCID: PMC2673950 DOI: 10.1016/j.joca.2008.06.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 06/18/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The vanilloid receptor transient receptor potential vanilloid 1 (TRPV1), expressed by sensory neurons that innervate joints, is implicated in arthritis but the mechanisms are not fully understood. One possibility is that downstream effects of activation of TRPV1 are mediated by the extracellularly-regulated kinase (ERK). ERK is phosphorylated (p-ERK) in sensory neurons in response to noxious stimuli and its inhibition has been found to be antinociceptive in several pain models. We here wanted to ascertain whether TRPV1 may contribute to the pain hypersensitivity and inflammation of arthritis via an ERK-mediated pathway. METHODS We used a model of adjuvant-induced arthritis (AIA) of the ankle and investigated the changes in expression of p-ERK in sensory afferent neurons in dorsal root ganglia (DRG) and spinal dorsal horn of TRPV1-knockout (KO) mice, compared to wild-type (WT) mice of the same genetic background, using multiple immunofluorescence. RESULTS Two to three weeks after inducing AIA in mice, the number of neurons in DRG and spinal cord that expressed p-ERK was significantly higher on the side of AIA than on the contralateral, vehicle-injected side. The fraction of p-ERK-positive neurons in the DRG that also expressed TRPV1 was increased, indicating that activation of ERK occurred preferentially in TRPV1-positive neurons. Moreover, TRPV1-KO mice had reduced activation of ERK in sensory neurons, compared to WT mice. These changes in expression of p-ERK correlated with changes in pain behavior and joint histopathology: TRPV1-KO mice had reduced nociceptive behavior and severity of arthritis, compared to WT mice. CONCLUSION Our results support the idea that activation of ERK in primary afferent neurons is mediated, at least in part, by TRPV1. In the absence of TRPV1, the signs of arthralgia and histopathology in the mouse model of AIA are reduced. We conclude that TRPV1, expressed by neurons in the articular afferent pathway, contributes to the pathogenesis of arthritis via an ERK-mediated pathway.
Collapse
|
28
|
Lasaga M, Debeljuk L, Durand D, Scimonelli TN, Caruso C. Role of alpha-melanocyte stimulating hormone and melanocortin 4 receptor in brain inflammation. Peptides 2008; 29:1825-35. [PMID: 18625277 DOI: 10.1016/j.peptides.2008.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/13/2008] [Accepted: 06/14/2008] [Indexed: 11/20/2022]
Abstract
Inflammatory processes contribute widely to the development of neurodegenerative diseases. The expression of many inflammatory mediators was found to be increased in central nervous system (CNS) disorders suggesting that these molecules are major contributors to neuronal damage. Melanocortins are neuropeptides that have been implicated in a wide range of physiological processes. The melanocortin alpha-melanocyte stimulating hormone (alpha-MSH) has pleiotropic functions and exerts potent anti-inflammatory actions by antagonizing the effects of pro-inflammatory cytokines and by decreasing important inflammatory mediators. Five subtypes of melanocortin receptors (MC1R-MC5R) have been identified. Of these, the MC4 receptor is expressed predominantly throughout the CNS. Evidence of effectiveness of selective MC4R agonists in modulating inflammatory processes and their low toxicity suggest that these molecules may be useful in the treatment of CNS disorders with an inflammatory component. This review describes the involvement of the MC4R in central anti-inflammatory effects of melanocortins and discusses the potential value of MC4R agonists for the treatment of inflammatory-related disorders.
Collapse
Affiliation(s)
- Mercedes Lasaga
- Research Institute for Reproduction, School of Medicine, University of Buenos Aires, Buenos Aires 1121ABG, Argentina.
| | | | | | | | | |
Collapse
|
29
|
Kong X, Wang X, Xu W, Behera S, Hellermann G, Kumar A, Lockey RF, Mohapatra S, Mohapatra SS. Natriuretic peptide receptor a as a novel anticancer target. Cancer Res 2008; 68:249-56. [PMID: 18172317 DOI: 10.1158/0008-5472.can-07-3086] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The receptor for atrial natriuretic peptide (ANP), natriuretic peptide receptor A (NPRA), is expressed in cancer cells, and natriuretic peptides have been implicated in cancers. However, the direct role of NPRA signaling in tumorigenesis remains elusive. Here, we report that NPRA expression and signaling is important for tumor growth. NPRA-deficient mice showed significantly reduced antigen-induced pulmonary inflammation. NPRA deficiency also substantially protected C57BL/6 mice from lung, skin, and ovarian cancers. Furthermore, a nanoparticle-formulated interfering RNA for NPRA attenuated B16 melanoma tumors in mice. Ectopic expression of a plasmid encoding NP73-102, the NH(2)-terminal peptide of the ANP prohormone, which down-regulates NPRA expression, also suppressed lung metastasis of A549 cells in nude mice and tumorigenesis of Line 1 cells in immunocompetent BALB/c mice. The antitumor activity of NP73-102 was in part attributed to apoptosis of tumor cells. Western blot and immunohistochemistry staining indicated that the transcription factor, nuclear factor-kappaB, was inactivated, whereas the level of tumor suppressor retinoblastoma protein was up-regulated in the lungs of NPRA-deficient mice. Furthermore, expression of vascular endothelial growth factor was down-regulated in the lungs of NPRA-deficient mice compared with that in wild-type mice. These results suggest that NPRA is involved in tumor angiogenesis and represents a new target for cancer therapy.
Collapse
Affiliation(s)
- Xiaoyuan Kong
- Joy McCann Culverhouse Airway Disease and Nanomedicine Research Center, Allergy and Immunology Division, Department of Internal Medicine, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Thiel MJ, Schaefer CJ, Lesch ME, Mobley JL, Dudley DT, Tecle H, Barrett SD, Schrier DJ, Flory CM. Central role of the MEK/ERK MAP kinase pathway in a mouse model of rheumatoid arthritis: potential proinflammatory mechanisms. ACTA ACUST UNITED AC 2007; 56:3347-57. [PMID: 17907188 DOI: 10.1002/art.22869] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To evaluate the role of the MEK/ERK MAP kinase pathway in murine collagen-induced arthritis (CIA) using the selective MEK inhibitor PD184352. We examined the effects of the inhibitor in cytokine-stimulated synovial fibroblasts and in cytokine-induced arthritis in rabbits to investigate its antiinflammatory mechanisms. METHODS Murine CIA was used to assess the effects of the selective MEK inhibitor on paw edema, clinical scores, weight loss, histopathologic features, and joint levels of p-ERK. Western blotting and immunohistochemistry techniques were used to assess p-ERK in human and rabbit synovial fibroblasts and synovial tissue from rheumatoid arthritis (RA) patients. Interleukin-1alpha (IL-1alpha)-stimulated stromelysin production in rabbit synovial fibroblasts was assessed by enzyme-linked immunosorbent assay. A rabbit IL-1alpha-induced arthritis model was used to assess the effects of the inhibitor on IL-1alpha-induced MEK activity, stromelysin production, and cartilage degradation. RESULTS In the CIA model, PD184352 inhibited paw edema and clinical arthritis scores in a dose-dependent manner. Disease-induced weight loss and histopathologic changes were also significantly improved by treatment. Inhibition of disease-induced p-ERK levels in the joints was seen with the inhibitor. Levels of p-ERK in the synovium were higher in RA patients than in normal individuals. PD184352 reduced IL-1alpha-induced p-ERK levels in human RA synovial fibroblasts. The production of p-ERK and stromelysin was also inhibited in IL-1alpha-stimulated rabbit synovial fibroblasts. We observed IL-1alpha-induced p-ERK in the synovial lining, subsynovial vasculature, and articular chondrocytes. IL-1alpha-induced stromelysin production and proteoglycan loss from the articular cartilage were reduced by PD184352. CONCLUSION These data demonstrate the inhibition of murine CIA by PD184352, support the hypothesis that antiinflammatory activity contributes to the mechanism of action of the inhibitor, and suggest that a selective inhibitor may effectively treat RA and other inflammatory disorders.
Collapse
Affiliation(s)
- Melissa J Thiel
- Pfizer Global Research and Development, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Fitsialos G, Chassot AA, Turchi L, Dayem MA, LeBrigand K, Moreilhon C, Meneguzzi G, Buscà R, Mari B, Barbry P, Ponzio G. Transcriptional signature of epidermal keratinocytes subjected to in vitro scratch wounding reveals selective roles for ERK1/2, p38, and phosphatidylinositol 3-kinase signaling pathways. J Biol Chem 2007; 282:15090-102. [PMID: 17363378 DOI: 10.1074/jbc.m606094200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Covering denuded dermal surfaces after injury requires migration, proliferation, and differentiation of skin keratinocytes. To clarify the major traits controlling these intermingled biological events, we surveyed the genomic modifications occurring during the course of a scratch wound closure of cultured human keratinocytes. Using a DNA microarray approach, we report the identification of 161 new markers of epidermal repair. Expression data, combined with functional analysis performed with specific inhibitors of ERK, p38(MAPK) and phosphatidylinositol 3-kinase (PI3K), demonstrate that kinase pathways exert very selective functions by precisely controlling the expression of specific genes. Inhibition of the ERK pathway totally blocks the wound closure and inactivates many early transcription factors and EGF-type growth factors. p38(MAPK) inhibition only delays "healing," probably in line with the control of genes involved in the propagation of injury-initiated signaling. In contrast, PI3K inhibition accelerates the scratch closure and potentiates the scratch-dependent stimulation of three genes related to epithelial cell transformation, namely HAS3, HBEGF, and ETS1. Our results define in vitro human keratinocyte wound closure as a repair process resulting from a fine balance between positive signals controlled by ERK and p38(MAPK) and negative ones triggered by PI3K. The perturbation of any of these pathways might lead to dysfunction in the healing process, similar to those observed in pathological wounding phenotypes, such as hypertrophic scars or keloids.
Collapse
|
32
|
Ying Z, Jin L, Palmer T, Webb RC. Angiotensin II up-regulates the leukemia-associated Rho guanine nucleotide exchange factor (RhoGEF), a regulator of G protein signaling domain-containing RhoGEF, in vascular smooth muscle cells. Mol Pharmacol 2006; 69:932-40. [PMID: 16354763 DOI: 10.1124/mol.105.017830] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vascular smooth muscle, stimulation of heterotrimeric G protein-coupled receptors (GPCRs) by various contractile agonists activates intracellular signaling molecules to result in an increase in cytosolic Ca2+ and the subsequent phosphorylation of myosin light chain (MLC) by Ca2+/calmodulin-dependent MLC kinase. In addition, a portion of agonist-induced contraction is partially mediated by the Ca2+-independent activation of the small G protein RhoA and a downstream target, Rho-kinase. The activation of RhoA is controlled by several regulatory proteins, including guanine nucleotide exchange factors (GEFs). GEFs activate RhoA by promoting the release of GDP and then facilitating the binding of GTP. There are three Rho-specific GEFs (RhoGEFs) in vascular smooth muscle that contain a binding domain [regulator of G protein signaling (RGS) domain] capable of linking GPCRs to RhoA activation: PDZ-RhoGEF, leukemia-associated RhoGEF (LARG), and p115RhoGEF. We hypothesized that RGS domain-containing RhoGEFs, especially LARG, participate in linking GPCR to RhoA activation in vascular smooth muscle. We observed that angiotensin II up-regulates LARG via the AT1 receptor, and this up-regulation is signaled via the phosphatidylinositol 3-kinase pathway. Furthermore, angiotensin II treatment caused a small, but significant, increase in the component of contractile responses sensitive to Rho-kinase antagonism. These observations support the hypothesis that RhoGEFs, particularly LARG, participate in linking GPCR to RhoA activation in vascular smooth muscle.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Base Sequence
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Intracellular Signaling Peptides and Proteins
- Molecular Sequence Data
- Muscle Cells/drug effects
- Muscle Cells/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Protein Kinase Inhibitors
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Rats
- Receptor, Angiotensin, Type 1/agonists
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/metabolism
- Rho Guanine Nucleotide Exchange Factors
- Signal Transduction
- Transcription, Genetic/drug effects
- Up-Regulation
- Vasodilation/drug effects
- rho-Associated Kinases
Collapse
Affiliation(s)
- Zhekang Ying
- Department of Physiology, Medical College of Georgia, 1120 Fifteenth St., CA3099, Augusta, GA 30912-3000, USA.
| | | | | | | |
Collapse
|
33
|
Akritopoulou-Zanze I, Darczak D, Sarris K, Phelan KM, Huth JR, Song D, Johnson EF, Jia Y, Djuric SW. Scaffold oriented synthesis. Part 1: Design, preparation, and biological evaluation of thienopyrazoles as kinase inhibitors. Bioorg Med Chem Lett 2006; 16:96-9. [PMID: 16216502 DOI: 10.1016/j.bmcl.2005.09.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 09/12/2005] [Accepted: 09/16/2005] [Indexed: 12/18/2022]
Abstract
We report the synthesis of kinase targeted libraries based on the thienopyrazole scaffold. Several thienopyrazole analogs have been identified as submicromolar inhibitors of KDR.
Collapse
|
34
|
Roger T, Chanson AL, Knaup-Reymond M, Calandra T. Macrophage migration inhibitory factor promotes innate immune responses by suppressing glucocorticoid-induced expression of mitogen-activated protein kinase phosphatase-1. Eur J Immunol 2005; 35:3405-13. [PMID: 16224818 DOI: 10.1002/eji.200535413] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The pro-inflammatory cytokine macrophage migration inhibitory factor (MIF) acts as a physiological counter-regulator of the immuno-suppressive effects of glucocorticoids. However, the mechanisms whereby MIF exerts its counter-balancing effect remain largely unknown. Here we report that MAPK phosphatase 1 (MKP-1), an archetypal member of dual specificity phosphatase that inactivates MAPK activity in response to pro-inflammatory stimuli, is a critical target of MIF-glucocorticoid crosstalk. Recombinant MIF counter-regulated in a dose-dependent fashion dexamethasone inhibition of TNF and IL-8 production by RAW 264.7 macrophages and U-937 promonocytes stimulated with lipopolysaccharides (LPS) or with LPS plus phorbol 12-myristate 13-acetate. Stimulation of RAW 264.7 macrophages with dexamethasone or dexamethasone plus LPS led to a robust up-regulation of MKP-1 mRNA and protein expressions that were counter-regulated by addition of recombinant MIF. Antisense MIF macrophages expressing reduced levels of endogenous MIF produced higher amount of MKP-1 and lower amount of TNF after exposure to dexamethasone and dexamethasone plus LPS, indicating that endogenous MIF acts in an autocrine fashion to override glucocorticoid-induced MKP-1 expression and inhibition of cytokine production. Taken together, these data identify MKP-1 as a molecular target of MIF-glucocorticoid crosstalk and provide a molecular basis for the control of macrophage responses by a pair of physiological regulators of innate immunity.
Collapse
Affiliation(s)
- Thierry Roger
- Infectious Diseases Service, Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
35
|
Dayer JM, Molnarfi N, Burger D. From cellular receptors to transduction–transcription pathways for cytokines: at which level should the inhibition be targeted in inflammation? Expert Opin Biol Ther 2005; 5 Suppl 1:S83-96. [PMID: 16187943 DOI: 10.1517/14712598.5.1.s83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An imbalance in cytokine homeostasis is considered to play a major part in the pathogenesis of immuno-inflammatory diseases. Since the identification and cloning of cytokines and their receptors, therapeutic approaches have been developed with the purpose of impeding the interaction between the ligand (cytokine) and its specific receptor, or interactions that involve the use of anti-inflammatory cytokines to switch off inflammation. Although some diseases have been treated successfully with cytokines or anticytokines (i.e., anti-TNF, and to a lesser extent recombinant IL-1 receptor antagonist, in rheumatoid arthritis; IFN-beta in multiple sclerosis), the fact remains that these therapies do not abrogate the concomitant use of steroids or immunosuppressive drugs, and that a significant percentage of patients do not respond to such therapies; these are important limitations. The identification of signalling pathways preferentially used in inflammatory conditions has boosted approaches that target these intracellular mechanisms. This review examines the different therapeutic approaches that may be considered for the treatment of immuno-inflammatory diseases, and discusses the advantages and disadvantages of targeting extracellular or intracellular mechanisms.
Collapse
Affiliation(s)
- Jean-Michel Dayer
- University Hospital & Faculty of Medicine, 24, Rue Micheli-du-Crest, 1211 Geneva 14, Switzerland.
| | | | | |
Collapse
|
36
|
Yemelyanov A, Gasparian A, Lindholm P, Dang L, Pierce JW, Kisseljov F, Karseladze A, Budunova I. Effects of IKK inhibitor PS1145 on NF-κB function, proliferation, apoptosis and invasion activity in prostate carcinoma cells. Oncogene 2005; 25:387-98. [PMID: 16170348 DOI: 10.1038/sj.onc.1209066] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A key antiapoptotic transcription factor, nuclear factor kappa-B (NF-kappaB), is known to be critically important for tumor cell growth, angiogenesis and development of metastatic lesions. We and others showed previously that NF-kappaB transcription factor was constitutively activated in androgen-independent prostate carcinoma (PC) cell lines due to the upregulated activity of inhibitor of NF-kappaB kinases (IKK). In this work, using luciferase assay, electrophoretic mobility shift assay and Northern blot analysis of expression of endogenous kappaB-responsive genes, we demonstrate that a novel highly specific small-molecule IKK inhibitor, PS1145, efficiently inhibited both basal and induced NF-kappaB activity in PC cells. We found that PS1145 induced caspase 3/7-dependent apoptosis in PC cells and significantly sensitized PC cells to apoptosis induced by tumor necrosis factor alpha. We also showed that PS1145 inhibited PC cell proliferation. Effects of PS1145 on proliferation and apoptosis correlated with inhibition of interleukin (IL)-6, cyclin D1, D2, inhibitor of apoptosis (IAP)-1 and IAP-2 gene expression and decreased IL-6 protein level. In addition, we found that incubation with PS1145 inhibited the invasion activity of highly invasive PC3-S cells in invasion chamber assay in a dose-dependent manner. Overall, this study provides the framework for development of a novel therapeutic approach targeting NF-kappaB transcription factor to treat advanced PC.
Collapse
Affiliation(s)
- A Yemelyanov
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Calzado MA, Lüdi KS, Fiebich B, Ben-Neriah Y, Bacher S, Munoz E, Ballero M, Prosperini S, Appendino G, Schmitz ML. Inhibition of NF-κB activation and expression of inflammatory mediators by polyacetylene spiroketals from Plagius flosculosus. ACTA ACUST UNITED AC 2005; 1729:88-93. [PMID: 15949852 DOI: 10.1016/j.bbaexp.2005.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 04/27/2005] [Indexed: 11/15/2022]
Abstract
Transcription factor NF-kappaB plays a key role for the inducible expression of genes mediating proinflammatory effects and is thus an important target for the development of antiinflammatory drugs. Here, we show that extracts from the plant Plagius flosculosus (L.) Alavi and Heyw. can inhibit the induction of NF-kappaB activity, and we describe the identification of three spiroketal compounds. Of those, only compound 1 could inhibit the phosphorylation and proteasomal degradation of IkappaB, thus preventing the nuclear import and DNA binding of NF-kappaB. Accordingly, compound 1, which is also found in the widely used medicinal herb chamomile, interfered with the LPS-induced production of IL-1, IL-6, TNF, and PGE2 in primary human monocytes.
Collapse
Affiliation(s)
- Marco A Calzado
- Department of Chemistry and Biochemistry, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|