1
|
Thirunavukarasu AJ, Morales-Wong F, Halim NSH, Han E, Koh SK, Zhou L, Kocaba V, Venkatraman S, Mehta JS, Riau AK. Nanohydroxyapatite Coating Attenuates Fibrotic and Immune Responses to Promote Keratoprosthesis Biointegration in Advanced Ocular Surface Disorders. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25892-25908. [PMID: 38740379 PMCID: PMC11129699 DOI: 10.1021/acsami.4c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Keratoprosthesis (KPro) implantation is frequently the only recourse for patients with severe corneal disease. However, problems arise due to inadequate biointegration of the KPro, particularly the PMMA optical cylinder, such as tissue detachment, tissue melting, or eye-threatening infection in the interface. Here, using the AuroKPro as a model prosthesis, a surface functionalization approach─coating the optical cylinder with nanohydroxyapatite (nHAp)─was trialed in rabbit eyes with and without a proceeding chemical injury. In chemically injured eyes, which simulated total limbal epithelial stem cell deficiency, clear benefits were conferred by the coating. The total modified Hackett-McDonald score and area of tissue apposition differences 12 weeks after implantation were 5.0 and 22.5%, respectively. Mechanical push-in tests revealed that 31.8% greater work was required to detach the tissues. These differences were less marked in uninjured eyes, which showed total score and tissue apposition differences of 2.5 and 11.5%, respectively, and a work difference of 23.5%. The improved biointegration could be contributed by the attenuated expression of fibronectin (p = 0.036), collagen 3A1 (p = 0.033), and α-smooth muscle actin (p = 0.045)─proteins typically upregulated during nonadherent fibrous capsule envelopment of bioinert material─adjacent to the optical cylinders. The coating also appeared to induce a less immunogenic milieu in the ocular surface tissue, evidenced by the markedly lower expression of tear proteins associated with immune and stimulus responses. Collectively, the level of these tear proteins in eyes with coated prostheses was 1.1 ± 13.0% of naïve eyes: substantially lower than with noncoated KPros (246.5 ± 79.3% of naïve, p = 0.038). Together, our results indicated that nHAp coating may reduce the risk of prosthesis failure in severely injured eyes, which are representative of the cohort of KPro patients.
Collapse
Affiliation(s)
- Arun J. Thirunavukarasu
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
- Oxford
University Clinical Academic Graduate School, University of Oxford, Oxford OX3 9DU, United
Kingdom
| | - Fernando Morales-Wong
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
- Singapore
National Eye Centre, Singapore 168751, Singapore
- Autonomous
University of Nuevo Leon, San Nicolas
de los Garza, Nuevo Leon 66455, Mexico
| | | | - Evelina Han
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
| | - Siew Kwan Koh
- Ocular
Proteomics Group, Singapore Eye Research
Institute, Singapore 169856, Singapore
| | - Lei Zhou
- Department
of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Centre
for Eye and Vision Research, Shatin, Hong Kong
| | - Viridiana Kocaba
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
| | - Subramanian Venkatraman
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore 117575, Singapore
- iHealthTech, National University of Singapore, Singapore 117599, Singapore
| | - Jodhbir S. Mehta
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
- Singapore
National Eye Centre, Singapore 168751, Singapore
- Ophthalmology
and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Andri K. Riau
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology
and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
2
|
Peng R, Chi M, Xiao G, Qu H, Shen Z, Zhao Y, Hong J. The outcomes of corneal sight rehabilitating surgery in Stevens-Johnson syndrome: case series. BMC Ophthalmol 2024; 24:205. [PMID: 38711013 DOI: 10.1186/s12886-024-03461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
PURPOSE To summarize the outcomes of corneal sight rehabilitating surgery in Stevens-Johnson syndrome (SJS). METHODS This is a retrospective analysis of a consecutive case series. Twenty-four eyes of 18 SJS patients were included in this study. The ocular parameters, surgical procedures, postoperative complications, and additional treatments of the cases were reviewed. RESULTS A total of 29 corneal sight rehabilitating surgeries, which consists of 9 keratoplasties, 8 Keratolimbal allograft (KLAL) and 12 combined surgeries (keratoplasty and KLAL simultaneously) were performed on the 24 eyes. All patients were treated with glucocorticoid eyedrops and tacrolimus eyedrops for anti-rejection treatment without combining systemic immunosuppression, except two patients who were prescribed prednisone tablets for the management of systemic conditions. The mean follow-up period was 50.6 ± 28.1 months. The optimal visual acuity (VA) (0.74 ± 0.60 logarithm of the minimum angle of resolution [logMAR]) and endpoint VA (1.06 ± 0.82 logMAR) were both significantly better than the preoperative VA (1.96 ± 0.43 logMAR) (95% CI, p = 0.000). 57.1% patients (8/14) were no longer in the low vision spectrum, and 88.9% patients (8/9) were no longer blind. The mean epithelialization time was 7.1 ± 7.6 weeks. The success rate was 86.7%. Additional treatments for improving epithelialization included administration of serum eyedrops (n = 10), contact lens (n = 15), amniotic membrane transplantation (n = 6), and tarsorrhaphy (n = 8). Complications included delayed epithelialization (n = 4, over 12 weeks), glaucoma (n = 11), and severe allograft opacity (n = 4). Only one graft rejection was observed. CONCLUSIONS Keratoplasty and KLAL can remarkably enhance VA and improve low vision or even eliminate blindness for ocular complications of SJS. The outcome of the surgeries was correlated with the preoperative ocular situation and choice of operative methods.
Collapse
Affiliation(s)
- Rongmei Peng
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Miaomiao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Gege Xiao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Hongqiang Qu
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Zhan Shen
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Yinghan Zhao
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing, China.
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, China.
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW The Boston Keratoprosthesis Type 1 was pioneered by Claes Dohlman several decades ago. Since its inception, the device has undergone multiple revisions to address challenges associated with retroprosthetic membrane formation, retention, extrusion, stromal melt and endophthalmitis. Although visual outcomes and retention rates have improved, challenges, especially glaucoma, remain. RECENT FINDINGS The Boston Keratoprosthesis Type I device has seen an increase in popularity because of the improvement in rates of retention and visual rehabilitation. Recent outcome studies have allowed clinicians to identify diagnoses and indications that can lead to more favorable results with the Boston Keratoprosthesis Type I device. SUMMARY The Boston Keratoprosthesis Type I device continues to play a vital role in visual rehabilitation for eyes with very low chance of realistic allograft survival -- such as in eyes where corneal grafting is considered high-risk: eyes with corneal limbal stem cell failure, extensive deep corneal stromal neovascularization, and multiple allograft failures. This review article summarizes the perioperative and postoperative challenges, as well as other considerations associated with the device.
Collapse
|