1
|
Deng L, Liu Y, Chen B, Hou J, Liu A, Yuan X. Impact of Altitude Training on Athletes' Aerobic Capacity: A Systematic Review and Meta-Analysis. Life (Basel) 2025; 15:305. [PMID: 40003714 PMCID: PMC11857729 DOI: 10.3390/life15020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose: This study systematically evaluated the effects of altitude training on athletes' aerobic capacity, focusing on optimal training modalities and intervention durations. Methods: Eight databases (CNKI, CSPD, PubMed, Ovid Medline, ProQuest, Cochrane Library, Embase, and Scopus) were searched for randomized controlled trials on altitude training and aerobic capacity following PRISMA guidelines, covering publications up to 15 October 2024. The risk of bias was assessed using Cochrane tools, and a meta-analysis was conducted using Review Manager 5.4 with a random-effects model. Sensitivity and subgroup analyses were performed to identify heterogeneity and influencing factors. Results: Thirteen studies involving 276 participants (aged 18-35) were included. Meta-analysis revealed that compared to low-altitude training, altitude training significantly increased hemoglobin (SMD = 0.7, 95% CI: 0.27-1.13, p = 0.03) and hemoglobin mass (SMD = 0.49, 95% CI: 0.1-0.89, p = 0.16) but had no significant effect on maximal oxygen uptake (SMD = -0.13, 95% CI: -1.21-0.96, p = 0.68). Altitude training also improved performance in trial tests (SMD = -28.73, 95% CI: -58.69-1.23, p = 0.002). Sensitivity analysis confirmed the robustness of hemoglobin and trial test results. Subgroup analysis showed that the "live high, train high" (LHTH) approach and interventions lasting longer than three weeks were most effective in enhancing aerobic capacity. Conclusions: Altitude training improves athletes' aerobic capacity by enhancing hematological indicators and trial test performance, though its impact on maximal oxygen uptake is minimal. LHTH and interventions exceeding three weeks yield superior outcomes. However, the findings are limited by the number and quality of the available studies.
Collapse
Affiliation(s)
- Lin Deng
- College of Education, Beijing Sports University, Beijing 100084, China; (L.D.); (Y.L.); (B.C.); (J.H.); (A.L.)
| | - Yuhang Liu
- College of Education, Beijing Sports University, Beijing 100084, China; (L.D.); (Y.L.); (B.C.); (J.H.); (A.L.)
| | - Baili Chen
- College of Education, Beijing Sports University, Beijing 100084, China; (L.D.); (Y.L.); (B.C.); (J.H.); (A.L.)
| | - Jiawan Hou
- College of Education, Beijing Sports University, Beijing 100084, China; (L.D.); (Y.L.); (B.C.); (J.H.); (A.L.)
| | - Ao Liu
- College of Education, Beijing Sports University, Beijing 100084, China; (L.D.); (Y.L.); (B.C.); (J.H.); (A.L.)
| | - Xiaoyi Yuan
- College of Education, Beijing Sports University, Beijing 100084, China; (L.D.); (Y.L.); (B.C.); (J.H.); (A.L.)
- State General Administration of Sport Key Laboratory of Sports Training, Beijing 100084, China
| |
Collapse
|
2
|
Maciejczyk M, Palka T, Wiecek M, Szygula Z. Effects of concurrent heat and hypoxic training on cycling anaerobic capacity in men. Sci Rep 2024; 14:22879. [PMID: 39358452 PMCID: PMC11447210 DOI: 10.1038/s41598-024-74686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Physical training in heat or hypoxia can improve physical performance. The purpose of this parallel group study was to investigate the concurrent effect of training performed simultaneously in heat (31 °C) and hypoxia (FIO2 = 14.4%) on anaerobic capacity in young men. For the study, 80 non-trained men were recruited and divided into 5 groups (16 participants per group): control, non-training (CTRL); training in normoxia and thermoneutral conditions (NT: 21 °C, FIO2 = 20.95%); training in normoxia and heat (H: 31 °C, FIO2 = 20.95%); training in hypoxia and thermoneutral conditions (IHT: 21 °C, FIO2 = 14.4%), and training in hypoxia and heat (IHT + H: 31 °C, FIO2 = 14.4%). Before and after physical training, the participants performed the Wingate Test, in which peak power and mean power were measured. Physical training lasted 4 weeks and the participants exercised 3 times a week for 60 min, performing interval training. Only the IHT and IHT + H groups showed significant increases in absolute peak power (p < 0.001, ES = 0.36 and p = 0.02, ES = 0.26, respectively). There were no significant changes (p = 0.18) after training in mean power. Hypoxia appeared to be an environmental factor that significantly improved peak power, but not mean power. Heat, added to hypoxia, did not increase cycling anaerobic power. Also, training only in heat did not significantly affect anaerobic power. The inclusion of heat and/or hypoxia in training did not induce negative effects, i.e., a reduction in peak and mean power as measured in the Wingate Test.
Collapse
Affiliation(s)
- Marcin Maciejczyk
- Department of Physiology and Biochemistry, University of Physical Education, Kraków, Poland.
| | - Tomasz Palka
- Department of Physiology and Biochemistry, University of Physical Education, Kraków, Poland
| | - Magdalena Wiecek
- Department of Physiology and Biochemistry, University of Physical Education, Kraków, Poland
| | - Zbigniew Szygula
- Department of Sport Medicine and Nutrition, University of Physical Education, Kraków, Poland
| |
Collapse
|
3
|
Girard O, Peeling P, Racinais S, Périard JD. Combining Heat and Altitude Training to Enhance Temperate, Sea-Level Performance. Int J Sports Physiol Perform 2024; 19:322-327. [PMID: 38237571 DOI: 10.1123/ijspp.2023-0250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Repeated exposure to heat (ie, plasma volume expansion) or altitude (ie, increase in total hemoglobin mass), in conjunction with exercise, induces hematological adaptations that enhance endurance performance in each respective environment. Recently, combining heat and altitude training has become increasingly common for athletes preparing to compete in temperate, sea-level conditions. PURPOSE To review the physiological adaptations to training interventions combining thermal and hypoxic stimuli and summarize the implications for temperate, sea-level performance. Current Evidence: To date, research on combining heat and hypoxia has employed 2 main approaches: simultaneously combining the stressors during training or concurrently training in the heat and sleeping at altitude, sometimes with additional training in hypoxia. When environmental stimuli are combined in a training session, improvements in aerobic fitness and time-trial performance in temperate, sea-level conditions are generally similar in magnitude to those observed with heat, or altitude, training alone. Similarly, training in the heat and sleeping at altitude does not appear to provide any additional hematological or nonhematological benefits for temperate; sea-level performance relative to training in hot, hypoxic, or control conditions. CONCLUSIONS Current research regarding combined heat and altitude interventions does not seem to indicate that it enhances temperate, sea-level performance to a greater extent than "traditional" (heat or hypoxia alone) training approaches. A major challenge in implementing combined-stressor approaches lies in the uncertainty surrounding the prescription of dosing regimens (ie, exercise and environmental stress). The potential benefits of conducting heat and altitude exposure sequentially (ie, one after the other) warrants further investigation.
Collapse
Affiliation(s)
- Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
| | - Peter Peeling
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA, Australia
- Western Australian Institute of Sport, Mt Claremont, WA, Australia
| | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier-Font Romeu, Montpellier, France
| | - Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
4
|
Brown HA, Topham TH, Clark B, Ioannou LG, Flouris AD, Smallcombe JW, Telford RD, Jay O, Périard JD. Quantifying Exercise Heat Acclimatisation in Athletes and Military Personnel: A Systematic Review and Meta-analysis. Sports Med 2024; 54:727-741. [PMID: 38051495 DOI: 10.1007/s40279-023-01972-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Athletes and military personnel are often expected to compete and work in hot and/or humid environments, where decrements in performance and an increased risk of exertional heat illness are prevalent. A physiological strategy for reducing the adverse effects of heat stress is to acclimatise to the heat. OBJECTIVE The aim of this systematic review was to quantify the effects of relocating to a hotter climate to undergo heat acclimatisation in athletes and military personnel. ELIGIBILITY CRITERIA Studies investigating the effects of heat acclimatisation in non-acclimatised athletes and military personnel via relocation to a hot climate for < 6 weeks were included. DATA SOURCES MEDLINE, SPORTDiscus, CINAHL Plus with Full Text and Scopus were searched from inception to June 2022. RISK OF BIAS A modified version of the McMaster critical review form was utilised independently by two authors to assess the risk of bias. DATA SYNTHESIS A Bayesian multi-level meta-analysis was conducted on five outcome measures, including resting core temperature and heart rate, the change in core temperature and heart rate during a heat response test and sweat rate. Wet-bulb globe temperature (WBGT), daily training duration and protocol length were used as predictor variables. Along with posterior means and 90% credible intervals (CrI), the probability of direction (Pd) was calculated. RESULTS Eighteen articles from twelve independent studies were included. Fourteen articles (nine studies) provided data for the meta-analyses. Whilst accounting for WBGT, daily training duration and protocol length, population estimates indicated a reduction in resting core temperature and heart rate of - 0.19 °C [90% CrI: - 0.41 to 0.05, Pd = 91%] and - 6 beats·min-1 [90% CrI: - 16 to 5, Pd = 83%], respectively. Furthermore, the rise in core temperature and heart rate during a heat response test were attenuated by - 0.24 °C [90% CrI: - 0.67 to 0.20, Pd = 85%] and - 7 beats·min-1 [90% CrI: - 18 to 4, Pd = 87%]. Changes in sweat rate were conflicting (0.01 L·h-1 [90% CrI: - 0.38 to 0.40, Pd = 53%]), primarily due to two studies demonstrating a reduction in sweat rate following heat acclimatisation. CONCLUSIONS Data from athletes and military personnel relocating to a hotter climate were consistent with a reduction in resting core temperature and heart rate, in addition to an attenuated rise in core temperature and heart rate during an exercise-based heat response test. An increase in sweat rate is also attainable, with the extent of these adaptations dependent on WBGT, daily training duration and protocol length. PROSPERO REGISTRATION CRD42022337761.
Collapse
Affiliation(s)
- Harry A Brown
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Thomas H Topham
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Brad Clark
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Leonidas G Ioannou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Andreas D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - James W Smallcombe
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, NSW, Australia
| | - Richard D Telford
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia
| | - Ollie Jay
- Faculty of Medicine and Health, Heat and Health Research Incubator, The University of Sydney, Sydney, NSW, Australia
| | - Julien D Périard
- Research Institute for Sport and Exercise (UCRISE), University of Canberra, Bruce, ACT, Australia.
| |
Collapse
|
5
|
Willmott AGB, Diment AG, Chung HC, James CA, Maxwell NS, Roberts JD, Gibson OR. Cross-adaptation from heat stress to hypoxia: A systematic review and exploratory meta-analysis. J Therm Biol 2024; 120:103793. [PMID: 38471285 DOI: 10.1016/j.jtherbio.2024.103793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 03/14/2024]
Abstract
Cross-adaptation (CA) refers to the successful induction of physiological adaptation under one environmental stressor (e.g., heat), to enable subsequent benefit in another (e.g., hypoxia). This systematic review and exploratory meta-analysis investigated the effect of heat acclimation (HA) on physiological, perceptual and physical performance outcome measures during rest, and submaximal and maximal intensity exercise in hypoxia. Database searches in Scopus and MEDLINE were performed. Studies were included when they met the Population, Intervention, Comparison, and Outcome criteria, were of English-language, peer-reviewed, full-text original articles, using human participants. Risk of bias and study quality were assessed using the COnsensus based Standards for the selection of health status Measurement INstruments checklist. Nine studies were included, totalling 79 participants (100 % recreationally trained males). The most common method of HA included fixed-intensity exercise comprising 9 ± 3 sessions, 89 ± 24-min in duration and occurred within 39 ± 2 °C and 32 ± 13 % relative humidity. CA induced a moderate, beneficial effect on physiological measures at rest (oxygen saturation: g = 0.60) and during submaximal exercise (heart rate: g = -0.65, core temperature: g = -0.68 and skin temperature: g = -0.72). A small effect was found for ventilation (g = 0.24) and performance measures (peak power: g = 0.32 and time trial time: g = -0.43) during maximal intensity exercise. No effect was observed for perceptual outcome measures. CA may be appropriate for individuals, such as occupational or military workers, whose access to altitude exposure prior to undertaking submaximal activity in hypoxic conditions is restricted. Methodological variances exist within the current literature, and females and well-trained individuals have yet to be investigated. Future research should focus on these cohorts and explore the mechanistic underpinnings of CA.
Collapse
Affiliation(s)
- Ashley G B Willmott
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom; Environmental Extremes Laboratory, University of Brighton, Eastbourne, East Sussex, United Kingdom; Para-Monte Altitude Awareness Charity, Eastbourne, East Sussex, United Kingdom.
| | - Alicia G Diment
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom; Pulmonary Function Laboratory, Norfolk and Norwich University Hospital, Colney Lane, Norwich, Norfolk, United Kingdom.
| | - Henry C Chung
- School of Sport, Rehabilitation and Exercise Sciences (SRES), University of Essex, Colchester, Essex, United Kingdom.
| | - Carl A James
- Hong Kong Sports Institute, Sha Tin, Hong Kong, China; Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Neil S Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, East Sussex, United Kingdom; Para-Monte Altitude Awareness Charity, Eastbourne, East Sussex, United Kingdom.
| | - Justin D Roberts
- The Cambridge Centre for Sport and Exercise Sciences (CCSES), Anglia Ruskin University, East Road, Cambridge, United Kingdom.
| | - Oliver R Gibson
- Centre for Physical Activity in Health and Disease (CPAHD), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, United Kingdom.
| |
Collapse
|
6
|
Périard JD, Girard O, Townsend N, Bourdon P, Cocking S, Ihsan M, Lacome M, Nichols D, Travers G, Wilson MG, Piscione J, Racinais S. Hematological Adaptations Following a Training Camp in Hot and/or Hypoxic Conditions in Elite Rugby Union Players. Int J Sports Physiol Perform 2023; 18:1053-1061. [PMID: 37553108 DOI: 10.1123/ijspp.2023-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023]
Abstract
PURPOSE To investigate the effects of a training camp with heat and/or hypoxia sessions on hematological and thermoregulatory adaptations. METHODS Fifty-six elite male rugby players completed a 2-week training camp with 5 endurance and 5 repeated-sprint sessions, rugby practice, and resistance training. Players were separated into 4 groups: CAMP trained in temperate conditions at sea level, HEAT performed the endurance sessions in the heat, ALTI slept and performed the repeated sprints at altitude, and H + A was a combination of the heat and altitude groups. RESULTS Blood volume across all groups increased by 140 mL (95%CI, 42-237; P = .006) and plasma volume by 97 mL (95%CI 28-167; P = .007) following the training camp. Plasma volume was 6.3% (0.3% to 12.4%) higher in HEAT than ALTI (P = .034) and slightly higher in HEAT than H + A (5.6% [-0.3% to 11.7%]; P = .076). Changes in hemoglobin mass were not significant (P = .176), despite a ∼1.2% increase in ALTI and H + A and a ∼0.7% decrease in CAMP and HEAT. Peak rectal temperature was lower during a postcamp heat-response test in HEAT (0.3 °C [0.1-0.5]; P = .010) and H + A (0.3 °C [0.1-0.6]; P = .005). Oxygen saturation upon waking was lower in ALTI (3% [2% to 5%]; P < .001) and H + A (4% [3% to 6%]; P < .001) than CAMP and HEAT. CONCLUSION Although blood and plasma volume increased following the camp, sleeping at altitude impeded the increase when training in the heat and only marginally increased hemoglobin mass. Heat training induced adaptations commensurate with partial heat acclimation; however, combining heat training and altitude training and confinement during a training camp did not confer concomitant hematological adaptations.
Collapse
Affiliation(s)
- Julien D Périard
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT,Australia
- Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha,Qatar
| | - Olivier Girard
- Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha,Qatar
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Crawley, WA,Australia
| | - Nathan Townsend
- Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha,Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha,Qatar
| | - Pitre Bourdon
- Department of Sport Science, ASPIRE, Academy for Sports Excellence, Doha,Qatar
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), University of South Australia, Adelaide, SA,Australia
| | - Scott Cocking
- Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha,Qatar
- Department of Sport Science, ASPIRE, Academy for Sports Excellence, Doha,Qatar
| | - Mohammed Ihsan
- Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha,Qatar
| | - Mathieu Lacome
- Department of Research, Sport Laboratory, Expertise and Performance, French Institute of Sports (INSEP), Paris,France
- Department of Performance and Analytics, Parma Calcio, Parma,Italy
| | - David Nichols
- Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha,Qatar
| | - Gavin Travers
- Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha,Qatar
- Space Medicine Team, European Astronaut Center, Köln,Germany
| | - Mathew G Wilson
- Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha,Qatar
- Institute of Sport, Exercise and Health, University College London, London,United Kingdom
| | - Julien Piscione
- Department of Research, Sport Laboratory, Expertise and Performance, French Institute of Sports (INSEP), Paris,France
| | - Sebastien Racinais
- Department of Research and Scientific Support, Aspetar Orthopedic and Sports Medicine Hospital, Doha,Qatar
- Department of Research, Sport Laboratory, Expertise and Performance, French Institute of Sports (INSEP), Paris,France
| |
Collapse
|
7
|
Girard O, Levine BD, Chapman RF, Wilber R. "Living High-Training Low" for Olympic Medal Performance: What Have We Learned 25 Years After Implementation? Int J Sports Physiol Perform 2023; 18:563-572. [PMID: 37116895 DOI: 10.1123/ijspp.2022-0501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 03/28/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Altitude training is often regarded as an indispensable tool for the success of elite endurance athletes. Historically, altitude training emerged as a key strategy to prepare for the 1968 Olympics, held at 2300 m in Mexico City, and was limited to the "Live High-Train High" method for endurance athletes aiming for performance gains through improved oxygen transport. This "classical" intervention was modified in 1997 by the "Live High-Train Low" (LHTL) model wherein athletes supplemented acclimatization to chronic hypoxia with high-intensity training at low altitude. PURPOSE This review discusses important considerations for successful implementation of LHTL camps in elite athletes based on experiences, both published and unpublished, of the authors. APPROACH The originality of our approach is to discuss 10 key "lessons learned," since the seminal work by Levine and Stray-Gundersen was published in 1997, and focusing on (1) optimal dose, (2) individual responses, (3) iron status, (4) training-load monitoring, (5) wellness and well-being monitoring, (6) timing of the intervention, (7) use of natural versus simulated hypoxia, (8) robustness of adaptative mechanisms versus performance benefits, (9) application for a broad range of athletes, and (10) combination of methods. Successful LHTL strategies implemented by Team USA athletes for podium performance at Olympic Games and/or World Championships are presented. CONCLUSIONS The evolution of the LHTL model represents an essential framework for sport science, in which field-driven questions about performance led to critical scientific investigation and subsequent practical implementation of a unique approach to altitude training.
Collapse
Affiliation(s)
- Olivier Girard
- School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, WA,Australia
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX,USA
- University of Texas Southwestern Medical Center, Dallas, TX,USA
| | - Robert F Chapman
- Human Performance Laboratory, Department of Kinesiology, Indiana University Bloomington, Bloomington, IN,USA
| | - Randall Wilber
- United States Olympic Committee, Colorado Springs, CO,USA
| |
Collapse
|
8
|
Draper G, Wright MD, Ishida A, Chesterton P, Portas M, Atkinson G. Do environmental temperatures and altitudes affect physical outputs of elite football athletes in match conditions? A systematic review of the 'real world' studies. SCI MED FOOTBALL 2023; 7:81-92. [PMID: 35068376 DOI: 10.1080/24733938.2022.2033823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Players involved in the various football codes compete throughout the calendar year around the world. Therefore, environmental stressors such as temperature and altitude should be considered in preparation for, and during, matches. We aimed to systematically review the observational and quasi-experimental studies that have been specifically designed to quantify the effects of temperature (hot or cold) high altitude on in-match physical performance indicators. A search of electronic databases (Web of Science, Scopus, SPORTDiscus, PubMed/MEDLINE) was conducted, with 19,424 papers identified as relevant. Following sifting in relation to the eligibility criteria, 12 papers were deemed directly relevant. The reviewed studies scored 6-9 (on a 0-9 scale) for quality assessment using a previously used scale. The major outcome variables relevant to the current review were total distance (m), high-speed running (m) and high-speed runs (count) measured during matches. Standardized effect sizes (ES) were heterogeneous across studies for total distance (ES: -0.96 to -0.14) and high-speed running (ES: -0.69 to 0.12) for >1000 m vs sea-level, time spent at the given altitude being a putative factor for this heterogeneity. Heat had mainly detrimental effects on performance, but ES were, again, heterogeneous across studies (ES: -1.25 to 0.26), dependent on temperature. Given the small number of studies that involved mostly male athletes, and large heterogeneity across studies, more research needs be conducted on physical performance in these environmental conditions, with attention paid to standardizing outcomes and broadening the approaches of studies to guide future decision-making in professional sporting environments.
Collapse
Affiliation(s)
- Garrison Draper
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.,Philadelphia Union, Major League Soccer (MLS), Philadelphia, Pennsylvania, USA
| | - Matthew D Wright
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Ai Ishida
- Philadelphia Union, Major League Soccer (MLS), Philadelphia, Pennsylvania, USA.,College of Health Sciences and Professions, Ohio University, Athens, Ohio, USA
| | - Paul Chesterton
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Matthew Portas
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Greg Atkinson
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
9
|
Li SN, Peeling P, Scott BR, Peiffer JJ, Shaykevich A, Girard O. Automatic heart rate clamp: A practical tool to control internal and external training loads during aerobic exercise. Front Physiol 2023; 14:1170105. [PMID: 37089418 PMCID: PMC10119421 DOI: 10.3389/fphys.2023.1170105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Affiliation(s)
- Siu Nam Li
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, WA, Australia
- *Correspondence: Siu Nam Li, ; Olivier Girard,
| | - Peter Peeling
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, WA, Australia
- Department of Sport Science, Western Australian Institute of Sport, Mount Claremont, WA, Australia
| | - Brendan R. Scott
- Murdoch Applied Sport Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA, Australia
- Centre for Healthy Ageing, Murdoch University, Perth, WA, Australia
| | - Jeremiah J. Peiffer
- Murdoch Applied Sport Science Laboratory, Discipline of Exercise Science, Murdoch University, Perth, WA, Australia
- Centre for Healthy Ageing, Murdoch University, Perth, WA, Australia
| | - Alex Shaykevich
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sports Science), The University of Western Australia, Perth, WA, Australia
- *Correspondence: Siu Nam Li, ; Olivier Girard,
| |
Collapse
|
10
|
Sitkowski D, Cisoń T, Szygula Z, Surała O, Starczewski M, Sadowska D, Malczewska-Lenczowska J. Hematological Adaptations to Post-Exercise Sauna Bathing With No Fluid Intake: A Randomized Cross-Over Study. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2022; 93:795-803. [PMID: 34727008 DOI: 10.1080/02701367.2021.1921684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Purpose: Sauna bathing is recommended to improve the sports training process, yet empirical evidence confirming its effectiveness is still inconclusive. We examined the effects of post-exercise sauna bathing on hematological adaptations and exercise capacity in healthy men. Methods: Thirteen physical education students participated in randomized cross-over study: two, 4-week interventions, with 10-week washout. The interventions involved 3 times per week 60-min stationary cycling either with 30-min of post-exercise sauna bathing (89 ± 3°C, 10 ± 2% RH) or without; no fluid was ingested during both exercise and sauna sessions. Before and after both interventions, participants were tested for total hemoglobin mass (tHb-mass), intravascular volumes, erythropoietin, ferritin, red blood cell parameters with reticulocyte fractions, along with maximal/peak and submaximal variables in a graded exercise test (GXT). Results: Regardless of intervention type, tHb-mass increased (p = .014) whereas ferritin concentration decreased (p = .027); however, changes in tHb-mass were within the range of typical error (<1.8%). Absolute and relative values of maximal power and power at gas exchange threshold, as well as peak oxygen uptake (all p < .010), also increased irrespective of intervention type. Conclusions: The use of post-exercise sauna bathing with fluid intake restrictions does not provide any additional benefits in tested variables over endurance training alone. Thus, further evidence is required before recommendations to utilize this post-exercise conditioning strategy are deemed valid.
Collapse
Affiliation(s)
| | - Tomasz Cisoń
- State University of Applied Sciences in Nowy Sącz
| | | | - Olga Surała
- Institute of Sport - National Research Institute
| | | | | | | |
Collapse
|
11
|
Stone BL, Ashley JD, Skinner RM, Polanco JP, Walters MT, Schilling BK, Kellawan JM. Effects of a Short-Term Heat Acclimation Protocol in Elite Amateur Boxers. J Strength Cond Res 2022; 36:1966-1971. [PMID: 35510889 DOI: 10.1519/jsc.0000000000004233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Stone, BL, Ashley, JD, Skinner, RM, Polanco, JP, Walters, MT, Schilling, BK, and Kellawan, JM. Effects of a short-term heat acclimation protocol in elite amateur boxers. J Strength Cond Res XX(X): 000-000, 2022-Boxing requires proficient technical and tactical skills coupled with high levels of physiological capacity. Although heat and humidity negatively affect acute exercise performance, short-term exercise training in hot and humid environments can lead to physiological adaptations that enhance exercise performance in both hot and thermoneutral conditions. In highly trained endurance athletes, exercise-induced acclimation can occur in as little as 5 days (known as short-term heat acclimation [STHA]). However, the impact of a 5-day heat acclimation (5-DayHA) in combat athletes, such as elite amateur boxers, is unknown. The aim of the present investigation was to determine whether a 5-DayHA improves aerobic performance in a thermoneutral environment and causes positive physiological adaptations in elite boxers. Seven elite amateur boxers underwent a 5-DayHA protocol, consisting of 60-minute exercise sessions in an environmental chamber at 32 °C and 70% relative humidity. Repeat sprint test (RST) evaluated aerobic performance in a thermoneutral environment 24 hours before and after the 5-DayHA. Presession and postsession hydration status (urine specific gravity) and body mass were assessed. After a 5-DayHA period, boxers significantly improved RST performance (13 ± 7 to 19 ± 7 sprints, d = 0.92, p = 0.03) but not pre-exercise hydration status (1.02 ± 0.01 to 1.01 ± 0.01, d = 0.82, p = 0.07). Therefore, these findings suggest 5-DayHA enhances aerobic performance in elite-level amateur boxers and may provide a viable training option for elite combat athletes.
Collapse
Affiliation(s)
- Brandon L Stone
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma.,Sport Sciences, U.S. Olympic Committee, Colorado Springs, Colorado.,Applied Research, Toronto Blue Jays Baseball Club, Dunedin, Florida
| | - John D Ashley
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Robert M Skinner
- Sport Sciences, U.S. Olympic Committee, Colorado Springs, Colorado
| | - Jose P Polanco
- Sport Sciences, U.S. Olympic Committee, Colorado Springs, Colorado
| | - Mason T Walters
- Sport Sciences, U.S. Olympic Committee, Colorado Springs, Colorado.,Department of Health Sciences, University of Colorado at Colorado Springs, Colorado Springs, Colorado; and
| | - Brian K Schilling
- Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, Nevada
| | - J M Kellawan
- Human Circulation Research Laboratory, Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
12
|
Heat Acclimation with or without Normobaric Hypoxia Exposure Leads to Similar Improvements in Endurance Performance in the Heat. Sports (Basel) 2022; 10:sports10050069. [PMID: 35622478 PMCID: PMC9147627 DOI: 10.3390/sports10050069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/19/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Combining the key adaptation of plasma volume (PV) expansion with synergistic physiological effects of other acclimation interventions to maximise endurance performance in the heat has potential. The current study investigated the effects of heat acclimation alone (H), combined with normobaric hypoxia exposure (H+NH), on endurance athletic performance. Methods: Well-trained participants completed a heat-stress trial (30 °C, 80% relative humidity (RH), 20.8% fraction of inspired oxygen (FiO2)) of a 75 min steady-state cycling (fixed workload) and a subsequent 15 min cycling time trial for distance before and after intervention. Participants completed 12 consecutive indoor training days with either heat acclimation (H; 60 min·day−1, 30 °C, 80% RH; 20.8% FiO2) or heat acclimation and overnight hypoxic environment (H+NH; ~12 h, 60% RH; 16% FiO2 simulating altitude of ~2500 m). Control (CON) group trained outdoors with average maximum daily temperature of 16.5 °C and 60% RH. Results: Both H and H+NH significantly improved time trial cycling distance by ~5.5% compared to CON, with no difference between environmental exposures. PV increased (+3.8%) and decreased (−4.1%) following H and H+NH, respectively, whereas haemoglobin concentration decreased (−2%) and increased (+3%) in H and H+NH, respectively. Conclusion: Our results show that despite contrasting physiological adaptations to different environmental acclimation protocols, heat acclimation with or without hypoxic exposure demonstrated similar improvements in short-duration exercise performance in a hot environment.
Collapse
|
13
|
Ishida A, Travis SK, Draper G, White JB, Stone MH. Player Position Affects Relationship Between Internal and External Training Loads During Division I Collegiate Female Soccer Season. J Strength Cond Res 2021; 36:513-517. [DOI: 10.1519/jsc.0000000000004188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Meylan CMP, Bowman K, Stellingwerff T, Pethick WA, Trewin J, Koehle MS. The Efficacy of Heat Acclimatization Pre-World Cup in Female Soccer Players. Front Sports Act Living 2021; 3:614370. [PMID: 34113844 PMCID: PMC8185056 DOI: 10.3389/fspor.2021.614370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
The efficacy of a 14-day field-based heat acclimatization (HA) training camp in 16 international female soccer players was investigated over three phases: phase 1: 8 days moderate HA (22. 1°C); phase 2: 6 days high HA (34.5°C); and phase 3: 11 days of post-HA (18.2°C), with heart rate (HR), training load, core temp (Tc), and perceptual ratings recorded throughout. The changes from baseline (day−16) in (i) plasma volume (PV), (ii) HR during a submaximal running test (HRex) and HR recovery (HRR), and (iii) pre-to-post phase 2 (days 8–13) in a 4v4 small-sided soccer game (4V4SSG) performance were assessed. Due to high variability, PV non-significantly increased by 7.4% ± 3.6% [standardized effect (SE) = 0.63; p = 0.130] from the start of phase 1 to the end of phase 2. Resting Tc dropped significantly [p < 0.001 by −0.47 ± 0.29°C (SE = −2.45)], from day 1 to day 14. Submaximal running HRR increased over phase 2 (HRR; SE = 0.53) after having decreased significantly from baseline (p = 0.03). While not significant (p > 0.05), the greatest HR improvements from baseline were delayed, occurring 11 days into phase 3 (HRex, SE = −0.42; HRR, SE = 0.37). The 4v4SSG revealed a moderate reduction in HRex (SE = −0.32; p = 0.007) and a large increase in HRR (SE = 1.27; p < 0.001) from pre-to-post phase 2. Field-based HA can induce physiological changes beneficial to soccer performance in temperate and hot conditions in elite females, and the submaximal running test appears to show HRex responses induced by HA up to 2 weeks following heat exposure.
Collapse
Affiliation(s)
- César M P Meylan
- Physical Performance Department, Canada Soccer, Ottawa, ON, Canada.,Division of Sports Medicine and School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Canadian Sport Institute Pacific, Victoria, BC, Canada
| | - Kimberly Bowman
- Division of Sports Medicine and School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Trent Stellingwerff
- Division of Sports Medicine and School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Canadian Sport Institute Pacific, Victoria, BC, Canada
| | | | - Joshua Trewin
- Physical Performance Department, Canada Soccer, Ottawa, ON, Canada.,Sports Performance Research Institute New Zealand, Auckland University of Technology, Auckland, New Zealand
| | - Michael S Koehle
- Division of Sports Medicine and School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Camacho-Cardenosa M, Camacho-Cardenosa A, Kemp J, Brazo-Sayavera J, Timon R, Olcina G. Haematological responses to repeated sprints in hypoxia across different sporting modalities. Res Sports Med 2021; 30:529-539. [PMID: 33870812 DOI: 10.1080/15438627.2021.1917403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim was to determine the effects of repeated-sprint training in hypoxia on haematocrit and haemoglobin in different sporting modalities. Seventy-two participants were randomly allocated to Active-Repeated sprint in hypoxia (A-RSH, n= 8); Active-Repeated sprint in normoxia (A-RSN, n= 8); Active-Control (A-CON, n= 8); Team Sports-RSH (T-RSH, n= 8); Team Sports-RSN (T-RSN, n= 8); Team Sports-Control (T-CON, n= 8); Endurance-RSH (E-RSH, n= 8); Endurance-RSN (E-RSN, n= 8); Endurance-Control (E-CON, n= 8). Sessions consisted of two sets of five sprints of 10 swith recovery of 20 sbetween sprints and 10 min between sets. Blood samples for haematocrit and haemoglobin concentrations were obtained before and after, and 2 weeks after cessation. Haematocrit and haemoglobin were lower for the E-RSN group following 2 weeks of cessation of protocol compared with E-RSH (p = 0.035) and E-CON (p = 0.045). Haematocrit of the A-RSH group was higher compared with baseline (p = 0.05) and Post (p = 0.05). Similarly, the T-RSH group demonstrated increases in haematocrit following 2 weeks of cessation compared with Post (p = 0.04). Repeated Sprint Training in Hypoxia had different haematological effects depending on sporting modality.
Collapse
Affiliation(s)
| | | | - Justin Kemp
- School of Exercise Science, Australian Catholic University, Melbourne, Australia
| | - Javier Brazo-Sayavera
- Instituto Superior de Educación Física, Universidad de la República, Rivera, Uruguay.,Laboratorio de Análisis del Rendimiento Humano, Centro Universitario de Rivera, Rivera, Uruguay
| | - Rafael Timon
- Faculty of Sport Science, University of Extremadura, Cáceres, Spain
| | - Guillermo Olcina
- Faculty of Sport Science, University of Extremadura, Cáceres, Spain
| |
Collapse
|
16
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Intensified Training Supersedes the Impact of Heat and/or Altitude for Increasing Performance in Elite Rugby Union Players. Int J Sports Physiol Perform 2021; 16:1416-1423. [PMID: 33668015 DOI: 10.1123/ijspp.2020-0630] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE To investigate whether including heat and altitude exposures during an elite team-sport training camp induces similar or greater performance benefits. METHODS The study assessed 56 elite male rugby players for maximal oxygen uptake, repeated-sprint cycling, and Yo-Yo intermittent recovery level 2 (Yo-Yo) before and after a 2-week training camp, which included 5 endurance and 5 repeated-sprint cycling sessions in addition to daily rugby training. Players were separated into 4 groups: (1) control (all sessions in temperate conditions at sea level), (2) heat training (endurance sessions in the heat), (3) altitude (repeated-sprint sessions and sleeping in hypoxia), and (4) combined heat and altitude (endurance in the heat, repeated sprints, and sleeping in hypoxia). RESULTS Training increased maximal oxygen uptake (4% [10%], P = .017), maximal aerobic power (9% [8%], P < .001), and repeated-sprint peak (5% [10%], P = .004) and average power (12% [14%], P < .001) independent of training conditions. Yo-Yo distance increased (16% [17%], P < .001) but not in the altitude group (P = .562). Training in heat lowered core temperature and increased sweat rate during a heat-response test (P < .05). CONCLUSION A 2-week intensified training camp improved maximal oxygen uptake, repeated-sprint ability, and aerobic performance in elite rugby players. Adding heat and/or altitude did not further enhance physical performance, and altitude appears to have been detrimental to improving Yo-Yo.
Collapse
|
18
|
McCleave EL, Slattery KM, Duffield R, Crowcroft S, Abbiss CR, Wallace LK, Coutts AJ. Concurrent Heat and Intermittent Hypoxic Training: No Additional Performance Benefit Over Temperate Training. Int J Sports Physiol Perform 2020; 15:1260-1271. [PMID: 32937599 DOI: 10.1123/ijspp.2019-0277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/08/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE To examine whether concurrent heat and intermittent hypoxic training can improve endurance performance and physiological responses relative to independent heat or temperate interval training. METHODS Well-trained male cyclists (N = 29) completed 3 weeks of moderate- to high-intensity interval training (4 × 60 min·wk-1) in 1 of 3 conditions: (1) heat (HOT: 32°C, 50% relative humidity, 20.8% fraction of inspired oxygen, (2) heat + hypoxia (H+H: 32°C, 50% relative humidity, 16.2% fraction of inspired oxygen), or (3) temperate environment (CONT: 22°C, 50% relative humidity, 20.8% fraction of inspired oxygen). Performance 20-km time trials (TTs) were conducted in both temperate (TTtemperate) and assigned condition (TTenvironment) before (base), immediately after (mid), and after a 3-week taper (end). Measures of hemoglobin mass, plasma volume, and blood volume were also assessed. RESULTS There was improved 20-km TT performance to a similar extent across all groups in both TTtemperate (mean ±90% confidence interval HOT, -2.8% ±1.8%; H+H, -2.0% ±1.5%; CONT, -2.0% ±1.8%) and TTenvironment (HOT, -3.3% ±1.7%; H+H, -3.1% ±1.6%; CONT, -3.2% ±1.1%). Plasma volume (HOT, 3.8% ±4.7%; H+H, 3.3% ±4.7%) and blood volume (HOT, 3.0% ±4.1%; H+H, 4.6% ±3.9%) were both increased at mid in HOT and H+H over CONT. Increased hemoglobin mass was observed in H+H only (3.0% ±1.8%). CONCLUSION Three weeks of interval training in heat, concurrent heat and hypoxia, or temperate environments improve 20-km TT performance to the same extent. Despite indications of physiological adaptations, the addition of independent heat or concurrent heat and hypoxia provided no greater performance benefits in a temperate environment than temperate training alone.
Collapse
|
19
|
McLean BD, White K, Gore CJ, Kemp J. Blood Volumes Following Preseason Heat Versus Altitude: A Case Study of Australian Footballers. Int J Sports Physiol Perform 2020; 15:590-594. [PMID: 31621644 DOI: 10.1123/ijspp.2019-0350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE There is debate as to which environmental intervention produces the most benefit for team sport athletes, particularly comparing heat and altitude. This quasi-experimental study aimed to compare blood volume (BV) responses with heat and altitude training camps in Australian footballers. METHODS The BV of 7 professional Australian footballers (91.8 [10.5] kg, 191.8 [10.1] cm) was measured throughout 3 consecutive spring/summer preseasons. During each preseason, players participated in altitude (year 1 and year 2) and heat (year 3) environmental training camps. Year 1 and year 2 altitude camps were in November/December in the United States, whereas the year 3 heat camp was in February/March in Australia after a full exposure to summer heat. BV, red cell volume, and plasma volume (PV) were measured at least 3 times during each preseason. RESULTS Red cell volume increased substantially following altitude in both year 1 (d = 0.67) and year 2 (d = 1.03), before returning to baseline 4 weeks postaltitude. Immediately following altitude, concurrent decreases in PV were observed during year 1 (d = -0.40) and year 2 (d = -0.98). With spring/summer training in year 3, BV and PV were substantially higher in January than temporally matched postaltitude measurements during year 1 (BV: d = -0.93, PV: d = -1.07) and year 2 (BV: d = -1.99, PV: d = -2.25), with year 3 total BV, red cell volume, and PV not changing further despite the 6-day heat intervention. CONCLUSIONS We found greater BV after training throughout spring/summer conditions, compared with interrupting spring/summer exposure to train at altitude in the cold, with no additional benefits observed from a heat camp following spring/summer training.
Collapse
|
20
|
Hematological status and endurance performance predictors after low altitude training supported by normobaric hypoxia: a double-blind, placebo controlled study. Biol Sport 2020; 36:341-349. [PMID: 31938005 PMCID: PMC6945048 DOI: 10.5114/biolsport.2019.88760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/04/2019] [Accepted: 09/25/2019] [Indexed: 11/20/2022] Open
Abstract
The benefits of altitude/hypoxic training for sea level performance are still under debate. This study examined the effects of low altitude training supported by normobaric hypoxia on hematological status and endurance performance predictors in elite female cyclists. Twenty-two female cyclists trained for 3 weeks at low altitude (<1100 m) and 2 weeks near sea level. During the first 3 weeks, 15 subjects stayed in hypoxic rooms simulating an altitude of 2200 m (+NH group, n = 8) or 1000 m (placebo group, n = 7), and 7 (control group) stayed in regular rooms. Significant increases in total hemoglobin mass (tHb-mass: p = 0.008, p = 0.025), power at 4 mmol·l-1 lactate (PAT4: p = 0.004, p = 0.005) (in absolute and relative values, respectively) and maximal power (PF: p = 0.034) (in absolute values) were observed. However, these effects were not associated with normobaric hypoxia. Changes in tHb-mass were not associated with initial concentrations of ferritin or transferrin receptor, whereas changes in relative tHb-mass (r = -0.53, p = 0.012), PF (r = -0.53, p = 0.01) and PAT4 (r = -0.65, p = 0.001) were inversely correlated with initial values. Changes in tHb-mass and PAT4 were positively correlated (r = 0.50, p = 0.017; r = 0.47, p = 0.028). Regardless of normobaric hypoxia application, low altitude training followed by sea-level training might improve hematological status in elite female cyclists, especially with relatively low initial values of tHb-mass, which could translate into enhanced endurance performance.
Collapse
|
21
|
Mikkelsen CJ, Junge N, Piil JF, Morris NB, Oberholzer L, Siebenmann C, Lundby C, Nybo L. Prolonged Heat Acclimation and Aerobic Performance in Endurance Trained Athletes. Front Physiol 2019; 10:1372. [PMID: 31749712 PMCID: PMC6843002 DOI: 10.3389/fphys.2019.01372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/16/2019] [Indexed: 11/17/2022] Open
Abstract
Heat acclimation (HA) involves physiological adaptations that directly promote exercise performance in hot environments. However, for endurance-athletes it is unclear if adaptations also improve aerobic capacity and performance in cool conditions, partly because previous randomized controlled trial (RCT) studies have been restricted to short intervention periods. Prolonged HA was therefore deployed in the present RCT study including 21 cyclists [38 ± 2 years, 184 ± 1 cm, 80.4 ± 1.7 kg, and maximal oxygen uptake (VO2max) of 58.1 ± 1.2 mL/min/kg; mean ± SE] allocated to either 5½ weeks of training in the heat [HEAT (n = 12)] or cool control [CON (n = 9)]. Training registration, familiarization to test procedures, determination of VO2max, blood volume and 15 km time trial (TT) performance were assessed in cool conditions (14°C) during a 2-week lead-in period, as well as immediately pre and post the intervention. Participants were instructed to maintain total training volume and complete habitual high intensity intervals in normal settings; but HEAT substituted part of cool training with 28 ± 2 sessions in the heat (1 h at 60% VO2max in 40°C; eliciting core temperatures above 39°C in all sessions), while CON completed all training in cool conditions. Acclimation for HEAT was verified by lower sweat sodium [Na+], reduced steady-state heart rate and improved submaximal exercise endurance in the heat. However, when tested in cool conditions both peak power output and VO2max remained unchanged for HEAT (pre 60.0 ± 1.5 vs. 59.8 ± 1.3 mL O2/min/kg). TT performance tested in 14°C was improved for HEAT and average power output increased from 298 ± 6 to 315 ± 6 W (P < 0.05), but a similar improvement was observed for CON (from 294 ± 11 to 311 ± 10 W). Based on the present findings, we conclude that training in the heat was not superior compared to normal (control) training for improving aerobic power or TT performance in cool conditions.
Collapse
Affiliation(s)
- C. Jacob Mikkelsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Nicklas Junge
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jacob F. Piil
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Nathan B. Morris
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Laura Oberholzer
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christoph Siebenmann
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| | - Carsten Lundby
- Centre for Physical Activity Research, Copenhagen University Hospital, Copenhagen, Denmark
- Innland Norway University of Applied Sciences, Lillehammer, Norway
| | - Lars Nybo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Gibson OR, James CA, Mee JA, Willmott AG, Turner G, Hayes M, Maxwell NS. Heat alleviation strategies for athletic performance: A review and practitioner guidelines. Temperature (Austin) 2019; 7:3-36. [PMID: 32166103 PMCID: PMC7053966 DOI: 10.1080/23328940.2019.1666624] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/19/2022] Open
Abstract
International competition inevitably presents logistical challenges for athletes. Events such as the Tokyo 2020 Olympic Games require further consideration given historical climate data suggest athletes will experience significant heat stress. Given the expected climate, athletes face major challenges to health and performance. With this in mind, heat alleviation strategies should be a fundamental consideration. This review provides a focused perspective of the relevant literature describing how practitioners can structure male and female athlete preparations for performance in hot, humid conditions. Whilst scientific literature commonly describes experimental work, with a primary focus on maximizing magnitudes of adaptive responses, this may sacrifice ecological validity, particularly for athletes whom must balance logistical considerations aligned with integrating environmental preparation around training, tapering and travel plans. Additionally, opportunities for sophisticated interventions may not be possible in the constrained environment of the athlete village or event arenas. This review therefore takes knowledge gained from robust experimental work, interprets it and provides direction on how practitioners/coaches can optimize their athletes' heat alleviation strategies. This review identifies two distinct heat alleviation themes that should be considered to form an individualized strategy for the athlete to enhance thermoregulatory/performance physiology. First, chronic heat alleviation techniques are outlined, these describe interventions such as heat acclimation, which are implemented pre, during and post-training to prepare for the increased heat stress. Second, acute heat alleviation techniques that are implemented immediately prior to, and sometimes during the event are discussed. Abbreviations: CWI: Cold water immersion; HA: Heat acclimation; HR: Heart rate; HSP: Heat shock protein; HWI: Hot water immersion; LTHA: Long-term heat acclimation; MTHA: Medium-term heat acclimation; ODHA: Once-daily heat acclimation; RH: Relative humidity; RPE: Rating of perceived exertion; STHA: Short-term heat acclimation; TCORE: Core temperature; TDHA: Twice-daily heat acclimation; TS: Thermal sensation; TSKIN: Skin temperature; V̇O2max: Maximal oxygen uptake; WGBT: Wet bulb globe temperature.
Collapse
Affiliation(s)
- Oliver R. Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Division of Sport, Health and Exercise Sciences, Brunel University London, Uxbridge, UK
| | - Carl A. James
- Institut Sukan Negara (National Sports Institute), Kuala Lumpur, Malaysia
| | - Jessica A. Mee
- School of Sport and Exercise Sciences, University of Worcester, Worcester, UK
| | - Ashley G.B. Willmott
- Cambridge Centre for Sport and Exercise Sciences, Anglia Ruskin University, Cambridge, UK
| | - Gareth Turner
- Bisham Abbey National High-Performance Centre, English Institute of Sport, EIS Performance Centre, Marlow, UK
| | - Mark Hayes
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| | - Neil S. Maxwell
- Environmental Extremes Laboratory, School of Sport and Service Management, University of Brighton, Eastbourne, UK
| |
Collapse
|
23
|
No ergogenic effects of a 10-day combined heat and hypoxic acclimation on aerobic performance in normoxic thermoneutral or hot conditions. Eur J Appl Physiol 2019; 119:2513-2527. [PMID: 31555926 DOI: 10.1007/s00421-019-04215-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/21/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE Hypoxic acclimation enhances convective oxygen delivery to the muscles. Heat acclimation-elicited thermoregulatory benefits have been suggested not to be negated by adding daily exposure to hypoxia. Whether concomitant acclimation to both heat and hypoxia offers a synergistic enhancement of aerobic performance in thermoneutral or hot conditions remains unresolved. METHODS Eight young males ([Formula: see text]: 51.6 ± 4.6 mL min-1 kg-1) underwent a 10-day normobaric hypoxic confinement (FiO2 = 0.14) interspersed with daily 90-min normoxic controlled hyperthermia (target rectal temperature: 38.5 °C) exercise sessions. Prior to, and following the confinement, the participants conducted a 30-min steady-state exercise followed by incremental exercise to exhaustion on a cycle ergometer in thermoneutral normoxic (NOR), thermoneutral hypoxic (FiO2 = 0.14; HYP) and hot (35 °C, 50% relative humidity; HE) conditions in a randomized and counterbalanced order. The steady-state exercise was performed at 40% NOR peak power output (Wpeak) to evaluate thermoregulatory function. Blood samples were obtained from an antecubital vein before, on days 1 and 10, and the first day post-acclimation. RESULTS [Formula: see text] and ventilatory thresholds were not modified in any environment following acclimation. Wpeak increased by 6.3 ± 3.4% in NOR and 4.0 ± 4.9% in HE, respectively. The magnitude and gain of the forehead sweating response were augmented in HE post-acclimation. EPO increased from baseline (17.8 ± 7.0 mIU mL-1) by 10.7 ± 8.8 mIU mL-1 on day 1 but returned to baseline levels by day 10 (15.7 ± 5.9 mIU mL-1). DISCUSSION A 10-day combined heat and hypoxic acclimation conferred only minor benefits in aerobic performance and thermoregulation in thermoneutral or hot conditions. Thus, adoption of such a protocol does not seem warranted.
Collapse
|
24
|
Impaired Heat Adaptation From Combined Heat Training and "Live High, Train Low" Hypoxia. Int J Sports Physiol Perform 2019; 14:635-643. [PMID: 30427243 DOI: 10.1123/ijspp.2018-0399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose: To determine whether combining training in heat with "Live High, Train Low" hypoxia (LHTL) further improves thermoregulatory and cardiovascular responses to a heat-tolerance test compared with independent heat training. Methods: A total of 25 trained runners (peak oxygen uptake = 64.1 [8.0] mL·min-1·kg-1) completed 3-wk training in 1 of 3 conditions: (1) heat training combined with "LHTL" hypoxia (H+H; FiO2 = 14.4% [3000 m], 13 h·d-1; train at <600 m, 33°C, 55% relative humidity [RH]), (2) heat training (HOT; live and train <600 m, 33°C, 55% RH), and (3) temperate training (CONT; live and train <600 m, 13°C, 55% RH). Heat adaptations were determined from a 45-min heat-response test (33°C, 55% RH, 65% velocity corresponding to the peak oxygen uptake) at baseline and immediately and 1 and 3 wk postexposure (baseline, post, 1 wkP, and 3 wkP, respectively). Core temperature, heart rate, sweat rate, sodium concentration, plasma volume, and perceptual responses were analyzed using magnitude-based inferences. Results: Submaximal heart rate (effect size [ES] = -0.60 [-0.89; -0.32]) and core temperature (ES = -0.55 [-0.99; -0.10]) were reduced in HOT until 1 wkP. Sweat rate (ES = 0.36 [0.12; 0.59]) and sweat sodium concentration (ES = -0.82 [-1.48; -0.16]) were, respectively, increased and decreased until 3 wkP in HOT. Submaximal heart rate (ES = -0.38 [-0.85; 0.08]) was likely reduced in H+H at 3 wkP, whereas CONT had unclear physiological changes. Perceived exertion and thermal sensation were reduced across all groups. Conclusions: Despite greater physiological stress from combined heat training and "LHTL" hypoxia, thermoregulatory adaptations are limited in comparison with independent heat training. The combined stimuli provide no additional physiological benefit during exercise in hot environments.
Collapse
|
25
|
Hamlin MJ, Lizamore CA, Hopkins WG. The Effect of Natural or Simulated Altitude Training on High-Intensity Intermittent Running Performance in Team-Sport Athletes: A Meta-Analysis. Sports Med 2018; 48:431-446. [PMID: 29129021 DOI: 10.1007/s40279-017-0809-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND While adaptation to hypoxia at natural or simulated altitude has long been used with endurance athletes, it has only recently gained popularity for team-sport athletes. OBJECTIVE To analyse the effect of hypoxic interventions on high-intensity intermittent running performance in team-sport athletes. METHODS A systematic literature search of five journal databases was performed. Percent change in performance (distance covered) in the Yo-Yo intermittent recovery test (level 1 and level 2 were used without differentiation) in hypoxic (natural or simulated altitude) and control (sea level or normoxic placebo) groups was meta-analyzed with a mixed model. The modifying effects of study characteristics (type and dose of hypoxic exposure, training duration, post-altitude duration) were estimated with fixed effects, random effects allowed for repeated measurement within studies and residual real differences between studies, and the standard-error weighting factors were derived or imputed via standard deviations of change scores. Effects and their uncertainty were assessed with magnitude-based inference, with a smallest important improvement of 4% estimated via between-athlete standard deviations of performance at baseline. RESULTS Ten studies qualified for inclusion, but two were excluded owing to small sample size and risk of publication bias. Hypoxic interventions occurred over a period of 7-28 days, and the range of total hypoxic exposure (in effective altitude-hours) was 4.5-33 km h in the intermittent-hypoxia studies and 180-710 km h in the live-high studies. There were 11 control and 15 experimental study-estimates in the final meta-analysis. Training effects were moderate and very likely beneficial in the control groups at 1 week (20 ± 14%, percent estimate, ± 90% confidence limits) and 4-week post-intervention (25 ± 23%). The intermittent and live-high hypoxic groups experienced additional likely beneficial gains at 1 week (13 ± 16%; 13 ± 15%) and 4-week post-intervention (19 ± 20%; 18 ± 19%). The difference in performance between intermittent and live-high interventions was unclear, as were the dose of hypoxia and inclusion of training in hypoxia. CONCLUSIONS Hypoxic intervention appears to be a worthwhile training strategy for improvement in high-intensity running performance in team-sport athletes, with enhanced performance over control groups persisting for at least 4 weeks post-intervention. Pending further research on the type of hypoxia, dose of hypoxia and training in hypoxia, coaches have considerable scope for customising hypoxic training methods to best suit their team's training schedule.
Collapse
Affiliation(s)
- Michael J Hamlin
- Department of Tourism, Sport and Society, Lincoln University, PO Box 85084, Christchurch, 7647, New Zealand.
| | - Catherine A Lizamore
- Department of Tourism, Sport and Society, Lincoln University, PO Box 85084, Christchurch, 7647, New Zealand
| | - Will G Hopkins
- Institute of Sport, Exercise, and Active Living, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Abstract
Background Although the acquisition of heat acclimation (HA) is well-documented, less is known about HA decay (HAD) and heat re-acclimation (HRA). The available literature suggests 1 day of HA is lost following 2 days of HAD. Understanding this relationship has the potential to impact upon the manner in which athletes prepare for major competitions, as a HA regimen may be disruptive during final preparations (i.e., taper). Objective The aim of this systematic review and meta-analysis was to determine the rate of HAD and HRA in three of the main physiological adaptations occurring during HA: heart rate (HR), core temperature (Tc), and sweat rate (SR). Data Sources Data for this systematic review were retrieved from Scopus and critical review of the cited references. Study Selection Studies were included when they met the following criteria: HA, HAD, and HRA (when available) were quantified in terms of exposure and duration. HA had to be for at least 5 days and HAD for at least 7 days for longitudinal studies. HR, Tc, or SR had to be monitored in human participants. Study Appraisal The level of bias in each study was assessed using the McMaster critical review form. Multiple linear regression techniques were used to determine the dependency of HAD in HR, Tc, and SR from the number of HA and HAD days, daily HA exposure duration, and intensity. Results Twelve studies met the criteria and were systematically reviewed. HAD was quantified as a percentage change relative to HA (0% = HA, 100% = unacclimated state). Adaptations in end-exercise HR decreased by 2.3% (P < 0.001) for every day of HAD. For end-exercise Tc, the daily decrease was 2.6% (P < 0.01). The adaptations in Tc during the HA period were more sustainable when the daily heat exposure duration was increased and heat exposure intensity decreased. The decay in SR was not related to the number of decay days. However, protracted HA-regimens seem to induce longer-lasting adaptations in SR. High heat exposure intensities during HA seem to evoke more sustained adaptations in SR than lower heat stress. Only eight studies investigated HRA. HRA was 8–12 times faster than HAD at inducing adaptations in HR and Tc, but no differences could be established for SR. Limitations The available studies lacked standardization in the protocols for HA and HAD. Conclusions HAD and HRA differ considerably between physiological systems. Five or more HA days are sufficient to cause adaptations in HR and Tc; however, extending the daily heat exposure duration enhances Tc adaptations. For every decay day, ~ 2.5% of the adaptations in HR and Tc are lost. For SR, longer HA periods are related to better adaptations. High heat exposure intensities seem beneficial for adaptations in SR, but not in Tc. HRA induces adaptations in HR and Tc at a faster rate than HA. HRA may thus provide a practical and less disruptive means of maintaining and optimizing HA prior to competition.
Collapse
Affiliation(s)
- Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081BT, Amsterdam, The Netherlands.
| | - Sebastien Racinais
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Julien D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
- Research Institute for Sport and Exercise, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
27
|
Schmitz B, Pfeifer C, Kreitz K, Borowski M, Faldum A, Brand SM. The Yo-Yo Intermittent Tests: A Systematic Review and Structured Compendium of Test Results. Front Physiol 2018; 9:870. [PMID: 30026706 PMCID: PMC6041409 DOI: 10.3389/fphys.2018.00870] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/18/2018] [Indexed: 11/16/2022] Open
Abstract
Background: Although Yo-Yo intermittent tests are frequently used in a variety of sports and research studies to determine physical fitness, no structured reference exists for comparison and rating of test results. This systematic review of the most common Yo-Yo tests aimed to provide reference values for test results by statistical aggregation of published data. Methods: A systematic literature search for articles published until August 2017 was performed in MEDLINE, Web of Science, SPORTDiscus and Google Scholar. Original reports on healthy females and males ≥16 years were eligible for the analysis. Sub-maximal test versions and the Yo-Yo Intermittent Recovery Level 1 Children's test (YYIR1C) were not included. Results: 248 studies with 9,440 participants were included in the structured analysis. The Yo-Yo test types most frequently used were the Yo-Yo Intermittent Recovery Level 1 (YYIR1, 57.7%), the Yo-Yo Intermittent Recovery Level 2 (YYIR2, 28.0%), the Yo-Yo Intermittent Endurance Level 2 (YYIE2, 11.4%), and the Yo-Yo Intermittent Endurance Level 1 (YYIE1, 2.9%) test. For each separate test, reference values (global means and percentiles) for sports at different levels and both genders were calculated. Conclusions: Our analysis provides evidence that Yo-Yo intermittent tests reference values differ with respect to the type and level of sport performed.The presented results may be used by practitioners, trainers and athletes to rate Yo-Yo intermittent test performance levels and monitor training effects.
Collapse
Affiliation(s)
- Boris Schmitz
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Carina Pfeifer
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| | - Kiana Kreitz
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | - Matthias Borowski
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | - Andreas Faldum
- Institute of Biostatistics and Clinical Research, University of Muenster, Muenster, Germany
| | - Stefan-Martin Brand
- Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
28
|
Johnston RD, Black GM, Harrison PW, Murray NB, Austin DJ. Applied Sport Science of Australian Football: A Systematic Review. Sports Med 2018; 48:1673-1694. [DOI: 10.1007/s40279-018-0919-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Lobigs LM, Sharpe K, Garvican-Lewis LA, Gore CJ, Peeling P, Dawson B, Schumacher YO. The athlete's hematological response to hypoxia: A meta-analysis on the influence of altitude exposure on key biomarkers of erythropoiesis. Am J Hematol 2018; 93:74-83. [PMID: 29027252 DOI: 10.1002/ajh.24941] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 11/11/2022]
Abstract
Altitude training is associated with changes in blood markers, which can confound results of the Athlete?s Biological Passport (ABP). This meta-analysis aims to describe the fluctuations during- and post-altitude in key ABP variables; hemoglobin concentration ([Hb]), square-root transformed reticulocyte percentage (sqrt(retic%)) and the OFF-score. Individual de-identified raw data were provided from 17 studies. Separate linear mixed effects analyses were performed for delta values from baseline for [Hb], sqrt(retic%) and OFF-score, by altitude phase (during and post). Mixed models were fitted with the hierarchical structure: study and subject within study as random effects. Delta values as response variables and altitude dose (in kilometer hours; km.hr = altitude (m) / 1000 x hours), sex, age, protocol and baseline values as fixed effects. Allowances were made for potential autocorrelation. Within two days at natural altitude [Hb] rapidly increased. Subsequent delta [Hb] values increased with altitude dose, reaching a plateau of 0.94 g/dL [95%CI (0.69, 1.20)] at ~1000 km.hr. Delta sqrt(retic%) and OFF-score were the first to identify an erythrocyte response, with respective increases and decreases observed within 100 to 200 km.hr. Post-altitude, [Hb] remained elevated for two weeks. Delta sqrt(retic%) declined below baseline, the magnitude of change was dependent on altitude dose. Baseline values were a significant covariate (p<0.05). The response to altitude is complex resulting in a wide range of individual responses, influenced primarily by altitude dose and baseline values. Improved knowledge of the plausible hematological variations during- and post-altitude provides fundamental information for both the ABP expert and sports physician.
Collapse
Affiliation(s)
- Louisa M. Lobigs
- School of Human Sciences (Exercise and Sports Science); University of Western Australia; Perth WA 6009 Australia
- Aspetar Sports Medicine Hospital, PO Box 29222; Doha Qatar
| | - Ken Sharpe
- Statistical Consulting Centre, School of Mathematics and Statistics; University of Melbourne; Vic 3010 Australia
| | - Laura A. Garvican-Lewis
- Australian Institute of Sport; Canberra 2617 Australia
- Mary Mackillop Institute for Health Research, Australian Catholic University; Melbourne Australia
| | | | - Peter Peeling
- School of Human Sciences (Exercise and Sports Science); University of Western Australia; Perth WA 6009 Australia
- Western Australian Institute of Sport, Mt Claremont; WA 6010 Australia
| | - Brian Dawson
- School of Human Sciences (Exercise and Sports Science); University of Western Australia; Perth WA 6009 Australia
| | | |
Collapse
|
30
|
Haycraft JAZ, Kovalchik S, Pyne DB, Robertson S. Physical characteristics of players within the Australian Football League participation pathways: a systematic review. SPORTS MEDICINE-OPEN 2017; 3:46. [PMID: 29260420 PMCID: PMC5736505 DOI: 10.1186/s40798-017-0109-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/05/2017] [Indexed: 11/12/2022]
Abstract
Background Australian football (AF) players require endurance, strength, speed, and agility to be successful. Tests assessing physical characteristics are commonly used for talent identification; however, their ability to differentiate between players across the Australian Football League’s (AFL) participation pathway remains unclear. The objective of this review was to quantify the physical characteristics of male AF players across the AFL participation pathway. Methods A search of databases was undertaken. Studies examining tests of physical performance were included, with 27 meeting the inclusion/exclusion criteria. Study appraisal was conducted using a checklist of selection criteria. Results The 20-m sprint time was the most reported test, followed by vertical jump (VJ), AFL planned agility, and 20-m multi-stage fitness test (MSFT). The fastest times for 20-m sprint were for Elite AFL players (range 2.94–3.13 s), with local-level players the slowest (3.22–4.06 s). State Junior Under (U) 18s (58–66 cm) had higher jumps than senior players, with the lowest jumps reported for Local U10s (mean 31 cm). No elite-level data were reported for the AFL planned agility or 20-m MSFT. AFL planned agility times were only reported for talent pathway levels, with large performance variability evident across all levels (8.17–9.12 s). Only mean 20-m MSFT scores were reported from Local U10s to National Draft Camp (6.10–13.50 shuttles). Conclusions Talent pathway players exhibit similar mean test scores irrespective of the physical test, with the exception of 20-m sprint and VJ. Physical tests can discriminate between local participation level players but are less useful within the AFL talent pathway.
Collapse
Affiliation(s)
- Jade A Z Haycraft
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, P.O. Box 14428, Melbourne, VIC, 8001, Australia.
| | - Stephanie Kovalchik
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, P.O. Box 14428, Melbourne, VIC, 8001, Australia
| | - David B Pyne
- Australian Institute of Sport, Canberra, Australia.,Research Institute for Sport and Exercise (UCRISE), University of Canberra, Canberra, Australia
| | - Sam Robertson
- Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, P.O. Box 14428, Melbourne, VIC, 8001, Australia
| |
Collapse
|
31
|
McCleave EL, Slattery KM, Duffield R, Saunders PU, Sharma AP, Crowcroft SJ, Coutts AJ. Temperate Performance Benefits after Heat, but Not Combined Heat and Hypoxic Training. Med Sci Sports Exerc 2017; 49:509-517. [PMID: 27787334 DOI: 10.1249/mss.0000000000001138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Independent heat and hypoxic exposure can enhance temperate endurance performance in trained athletes, although their combined effects remain unknown. This study examined whether the addition of heat interval training during "live high, train low" (LHTL) hypoxic exposure would result in enhanced performance and physiological adaptations as compared with heat or temperate training. METHODS Twenty-six well-trained runners completed 3 wk of interval training assigned to one of three conditions: 1) LHTL hypoxic exposure plus heat training (H + H; 3000 m for 13 h·d, train at 33°C, 60% relative humidity [RH]), 2) heat training with no hypoxic exposure (HOT, live at <600 m and train at 33°C, 60% RH), or 3) temperate training with no hypoxic exposure (CONT; live at <600 m and train at 14°C, 55% RH). Performance 3-km time-trials (3-km TT), running economy, hemoglobin mass, and plasma volume were assessed using magnitude-based inferences statistical approach before (Baseline), after (Post), and 3 wk (3wkP) after exposure. RESULTS Compared with Baseline, 3-km TT performance was likely increased in HOT at 3wkP (-3.3% ± 1.3%; mean ± 90% confidence interval), with no performance improvement in either H + H or CONT. Hemoglobin mass increased by 3.8% ± 1.8% at Post in H + H only. Plasma volume in HOT was possibly elevated above H + H and CONT at Post but not at 3wkP. Correlations between changes in 3-km TT performance and physiological adaptations were unclear. CONCLUSION Incorporating heat-based training into a 3-wk training block can improve temperate performance at 3 wk after exposure, with athlete psychology, physiology, and environmental dose all important considerations. Despite hematological adaptations, the addition of LHTL to heat interval training has no greater 3-km TT performance benefit than temperate training alone.
Collapse
Affiliation(s)
- Erin L McCleave
- 1Sport and Exercise Science Discipline Group, Faculty of Health, University of Technology Sydney (UTS), Moore Park, AUSTRALIA; 2New South Wales Institute of Sport (NSWIS), Sydney Olympic Park, AUSTRALIA; 3Department of Physiology, Australian Institute of Sport (AIS), Canberra, AUSTRALIA; and 4University of Canberra Research Institute for Sport and Exercise (UCRISE), Canberra, AUSTRALIA
| | | | | | | | | | | | | |
Collapse
|
32
|
Rendell RA, Prout J, Costello JT, Massey HC, Tipton MJ, Young JS, Corbett J. Effects of 10 days of separate heat and hypoxic exposure on heat acclimation and temperate exercise performance. Am J Physiol Regul Integr Comp Physiol 2017; 313:R191-R201. [DOI: 10.1152/ajpregu.00103.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 11/22/2022]
Abstract
Adaptations to heat and hypoxia are typically studied in isolation but are often encountered in combination. Whether the adaptive response to multiple stressors affords the same response as when examined in isolation is unclear. We examined 1) the influence of overnight moderate normobaric hypoxia on the time course and magnitude of adaptation to daily heat exposure and 2) whether heat acclimation (HA) was ergogenic and whether this was influenced by an additional hypoxic stimulus. Eight males [V̇o2max = 58.5 (8.3) ml·kg−1·min−1] undertook two 11-day HA programs (balanced-crossover design), once with overnight normobaric hypoxia (HAHyp): 8 (1) h per night for 10 nights [[Formula: see text] = 0.156; SpO2 = 91 (2)%] and once without (HACon). Days 1, 6, and 11 were exercise-heat stress tests [HST (40°C, 50% relative humidity, RH)]; days 2–5 and 7–10 were isothermal strain [target rectal temperature (Tre) ~38.5°C], exercise-heat sessions. A graded exercise test and 30-min cycle trial were undertaken pre-, post-, and 14 days after HA in temperate normoxia (22°C, 55% RH; FIO2 = 0.209). HA was evident on day 6 (e.g., reduced Tre, mean skin temperature (T̄sk), heart rate, and sweat [Na+], P < 0.05) with additional adaptations on day 11 (further reduced T̄sk and heart rate). HA increased plasma volume [+5.9 (7.3)%] and erythropoietin concentration [+1.8 (2.4) mIU/ml]; total hemoglobin mass was unchanged. Peak power output [+12 (20) W], lactate threshold [+15 (18) W] and work done [+12 (20) kJ] increased following HA. The additional hypoxic stressor did not affect these adaptations. In conclusion, a separate moderate overnight normobaric hypoxic stimulus does not affect the time course or magnitude of HA. Performance may be improved in temperate normoxia following HA, but this is unaffected by an additional hypoxic stressor.
Collapse
Affiliation(s)
- Rebecca A. Rendell
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Jamie Prout
- School of Physical Education, Sport and Exercise Science, Division of Sciences, University of Otago, Dunedin, New Zealand; and
| | - Joseph T. Costello
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Heather C. Massey
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Michael J. Tipton
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - John S. Young
- School of Pharmacy and Biomedical Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Jo Corbett
- Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
33
|
Racinais S, Cocking S, Périard JD. Sports and environmental temperature: From warming-up to heating-up. Temperature (Austin) 2017; 4:227-257. [PMID: 28944269 DOI: 10.1080/23328940.2017.1356427] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 01/22/2023] Open
Abstract
Most professional and recreational athletes perform pre-conditioning exercises, often collectively termed a 'warm-up' to prepare for a competitive task. The main objective of warming-up is to induce both temperature and non-temperature related responses to optimize performance. These responses include increasing muscle temperature, initiating metabolic and circulatory adjustments, and preparing psychologically for the upcoming task. However, warming-up in hot and/or humid ambient conditions increases thermal and circulatory strain. As a result, this may precipitate neuromuscular and cardiovascular impairments limiting endurance capacity. Preparations for competing in the heat should include an acclimatization regimen. Athletes should also consider cooling interventions to curtail heat gain during the warm-up and minimize dehydration. Indeed, although it forms an important part of the pre-competition preparation in all environmental conditions, the rise in whole-body temperature should be limited in hot environments. This review provides recommendations on how to build an effective warm-up following a 3 stage RAMP model (Raise, Activate and Mobilize, Potentiate), including general and context specific exercises, along with dynamic flexibility work. In addition, this review provides suggestion to manipulate the warm-up to suit the demands of competition in hot environments, along with other strategies to avoid heating-up.
Collapse
Affiliation(s)
- Sébastien Racinais
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Scott Cocking
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,Research Institute for Sport and Exercise Science, Liverpool John Moores University, United Kingdom
| | - Julien D Périard
- Aspetar Orthopaedic and Sports Medicine Hospital, Athlete Health and Performance Research Centre, Doha, Qatar.,University of Canberra, Research Institute for Sport and Exercise, Canberra, Australia
| |
Collapse
|
34
|
Constantini K, Wilhite DP, Chapman RF. A Clinician Guide to Altitude Training for Optimal Endurance Exercise Performance at Sea Level. High Alt Med Biol 2017; 18:93-101. [PMID: 28453305 DOI: 10.1089/ham.2017.0020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Constantini, Keren, Daniel P. Wilhite, and Robert F. Chapman. A clinician guide to altitude training for optimal endurance exercise performance at sea level. High Alt Med Biol. 18:93-101, 2017.-For well over 50 years, endurance athletes have been utilizing altitude training in an effort to enhance performance in sea level competition. This brief review will offer the clinician a series of evidence-based best-practice guidelines on prealtitude and altitude training considerations, which can ultimately maximize performance improvement outcomes.
Collapse
Affiliation(s)
- Keren Constantini
- HH Morris Human Performance Laboratory, Department of Kinesiology, Indiana University , Bloomington, Indiana
| | - Daniel P Wilhite
- HH Morris Human Performance Laboratory, Department of Kinesiology, Indiana University , Bloomington, Indiana
| | - Robert F Chapman
- HH Morris Human Performance Laboratory, Department of Kinesiology, Indiana University , Bloomington, Indiana
| |
Collapse
|
35
|
Akerman AP, Tipton M, Minson CT, Cotter JD. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither? Temperature (Austin) 2016; 3:412-436. [PMID: 28349082 PMCID: PMC5356617 DOI: 10.1080/23328940.2016.1216255] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023] Open
Abstract
Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask whether dehydration is a valuable stressor in stimulating adaptation per se. While hypoxia has had long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional stressors have had little interest until the past decade. Heat and dehydration are highly interlinked in their causation and the physiological strain they induce, so their individual roles in adaptation are difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for team sport and endurance athletes despite several recent studies on this topic. Very few studies have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by thirst), as with most forms of stress, might have a time and a place in physiological or behavioral adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed without the appropriate evidence. The present review did not identify such evidence. Future research should identify how the magnitude and timing of dehydration might augment or interfere with the adaptive processes in behaviorally constrained versus unconstrained humans.
Collapse
Affiliation(s)
- Ashley Paul Akerman
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago , New Zealand
| | - Michael Tipton
- Extreme Environments Laboratory, Department of Sport & Exercise Science, University of Portsmouth , UK
| | | | - James David Cotter
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago , New Zealand
| |
Collapse
|
36
|
McLean BD, Tofari PJ, Gore CJ, Kemp JG. Changes in Running Performance After Four Weeks of Interval Hypoxic Training in Australian Footballers: A Single-Blind Placebo-Controlled Study. J Strength Cond Res 2016; 29:3206-15. [PMID: 25944456 DOI: 10.1519/jsc.0000000000000984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a paucity of data examining the impact of high-intensity interval hypoxic training (IHT) on intermittent running performance. This study assessed the effects of IHT on 17 amateur Australian Footballers, who completed 8 interval treadmill running sessions (IHT [FIO2 = 15.1%] or PLACEBO) over 4 weeks, in addition to normoxic football (2 per week) and resistance (2 per week) training sessions. To match relative training intensity, absolute IHT intensity reduced by 6% of normoxic vV[Combining Dot Above]O2peak compared with PLACEBO. Before and after the intervention, performance was assessed by Yo-Yo intermittent recovery test level 2 (Yo-Yo IR2) and a self-paced team sport running protocol. Standardized effect size statistics were calculated using Cohen's d to compare between the interventions. Compared with PLACEBO, IHT subjects experienced (a) smaller improvements in Yo-Yo IR2 performance (Cohen's d = -0.42 [-0.82 to -0.02; 90% confidence interval]); (b) similar increases in high-intensity running distance during the team sport protocol (d = 0.17 [-0.50 to 0.84]); and (c) greater improvements in total distance (d = 0.72 [0.33-1.10]) and distance covered during low-intensity activity (d = 0.59 [-0.07 to 1.11]) during the team sport protocol. The lower absolute training intensity of IHT may explain the smaller improvements in Yo-Yo IR2 performance in the hypoxic group. Conversely, the data from the self-paced protocol suggest that IHT may positively influence pacing strategies in team sport athletes. In conclusion, IHT alters pacing strategies in team sport athletes (i.e., increased distance covered during low-intensity activity). However, IHT leads to smaller improvements in externally paced high-intensity intermittent running performance (i.e., Yo-Yo IR2), which may be related to a reduced absolute training intensity during IHT sessions.
Collapse
Affiliation(s)
- Blake D McLean
- 1School of Exercise Science, Australian Catholic University, Melbourne, Australia; 2Department of Physiology, Australian Institute of Sport, Canberra, Australia; and 3Exercise Physiology Laboratory, Flinders University of South Australia, Bedford Park, Australia
| | | | | | | |
Collapse
|
37
|
Abstract
In elite soccer, players are frequently exposed to various situations and conditions that can interfere with sleep, potentially leading to sleep deprivation. This article provides a comprehensive and critical review of the current available literature regarding the potential acute and chronic stressors (i.e., psychological, sociological and physiological stressors) placed on elite soccer players that may result in compromised sleep quantity and/or quality. Sleep is an essential part of the recovery process as it provides a number of important psychological and physiological functions. The effects of sleep disturbance on post-soccer match fatigue mechanisms and recovery time course are also described. Physiological and cognitive changes that occur when competing at night are often not conducive to sleep induction. Although the influence of high-intensity exercise performed during the night on subsequent sleep is still debated, environmental conditions (e.g., bright light in the stadium, light emanated from the screens) and behaviours related to evening soccer matches (e.g., napping, caffeine consumption, alcohol consumption) as well as engagement and arousal induced by the match may all potentially affect subsequent sleep. Apart from night soccer matches, soccer players are subjected to inconsistency in match schedules, unique team schedules and travel fatigue that may also contribute to the sleep debt. Sleep deprivation may be detrimental to the outcome of the recovery process after a match, resulting in impaired muscle glycogen repletion, impaired muscle damage repair, alterations in cognitive function and an increase in mental fatigue. The role of sleep in recovery is a complex issue, reinforcing the need for future research to estimate the quantitative and qualitative importance of sleep and to identify influencing factors. Efficient and individualised solutions are likely needed.
Collapse
|
38
|
Cardiovascular adaptations supporting human exercise-heat acclimation. Auton Neurosci 2016; 196:52-62. [DOI: 10.1016/j.autneu.2016.02.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 11/22/2022]
|
39
|
Abstract
Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimize performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimize performance is to heat acclimatize. Heat acclimatization should comprise repeated exercise–heat exposures over 1–2 weeks. In addition, athletes should initiate competition and training in an euhydrated state and minimize dehydration during exercise. Following the development of commercial cooling systems (e.g., cooling vests), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organizers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimizing the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events for hydration and body cooling opportunities when competitions are held in the heat.
Collapse
|
40
|
Live-high train-low improves repeated time-trial and Yo-Yo IR2 performance in sub-elite team-sport athletes. J Sci Med Sport 2016; 20:190-195. [PMID: 27142233 DOI: 10.1016/j.jsams.2015.12.518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To determine the efficacy of live-high train-low on team-sport athlete physical capacity and the time-course for adaptation. DESIGN Pre-post parallel-groups. METHODS Fifteen Australian footballers were matched for Yo-Yo Intermittent recovery test level 2 (Yo-YoIR2) performance and assigned to LHTL (n=7) or control (Con; n=8). LHTL spent 19 nights (3×5 nights, 1×4 nights, each block separated by 2 nights at sea level) at 3000-m simulated altitude (FIO2: 0.142). Yo-Yo IR2 was performed pre and post 5, 15, and 19 nights. A 2- and 1-km time-trial (TT) was performed pre and post intervention. Haemoglobin mass (Hbmass) was measured in LHTL after 5, 10, 15, and 19 nights. A contemporary statistical approach using effect size, confidence limits, and magnitude-based inferences was used to measure changes between groups. RESULTS Compared to pre, Hbmass was possibly higher after 15 (3.8%, effect size (ES) 0.19, 90% confidence limits 0.05-0.33) and very likely higher after 19 nights (6.7%, 0.35, 0.10; 0.52). For Yo-Yo IR2, LHTL group change was not meaningfully different to Con after 5 nights, possibly greater after 15 (10.2%, 0.37, -0.29; 1.04), and likely greater after 19 nights (13.5%, 0.49, -0.16; 1.14). Both groups improved 2-km TT, with LHTL improvement possibly higher than CON (1.9%, 0.22, -0.18; 0.62). Only LHTL improved 1-km TT, with LHTL improvement likely greater than CON (4.6%, 0.56, -0.08; 1.04). CONCLUSIONS Fifteen nights of LHTL was possibly effective, while 19 nights was effective at increasing Hbmass, Yo-Yo IR2 and repeated TT performance more than sea-level training.
Collapse
|
41
|
Périard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports. Scand J Med Sci Sports 2016; 25 Suppl 1:20-38. [PMID: 25943654 DOI: 10.1111/sms.12408] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2014] [Indexed: 11/29/2022]
Abstract
Exercise heat acclimation induces physiological adaptations that improve thermoregulation, attenuate physiological strain, reduce the risk of serious heat illness, and improve aerobic performance in warm-hot environments and potentially in temperate environments. The adaptations include improved sweating, improved skin blood flow, lowered body temperatures, reduced cardiovascular strain, improved fluid balance, altered metabolism, and enhanced cellular protection. The magnitudes of adaptations are determined by the intensity, duration, frequency, and number of heat exposures, as well as the environmental conditions (i.e., dry or humid heat). Evidence is emerging that controlled hyperthermia regimens where a target core temperature is maintained, enable more rapid and complete adaptations relative to the traditional constant work rate exercise heat acclimation regimens. Furthermore, inducing heat acclimation outdoors in a natural field setting may provide more specific adaptations based on direct exposure to the exact environmental and exercise conditions to be encountered during competition. This review initially examines the physiological adaptations associated with heat acclimation induction regimens, and subsequently emphasizes their application to competitive athletes and sports.
Collapse
Affiliation(s)
- J D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | | | | |
Collapse
|
42
|
Minson CT, Cotter JD. CrossTalk proposal: Heat acclimatization does improve performance in a cool condition. J Physiol 2015; 594:241-3. [PMID: 26668072 DOI: 10.1113/jp270879] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/22/2015] [Indexed: 11/08/2022] Open
Abstract
We believe available data support the thesis that HA can improve performance in cool conditions, and perhaps with less expense and fewer side-effects than hypoxia (Dempsey & Morgan, 2015), but its utility is unresolved and may be modest or absent in some settings and individuals. A few key issues are becoming clear, however. First, HA must be of sufficient stimulus and duration, with key evidence indicating longer is better. Second, individual variability in response to HA as an ergogenic aid needs to be considered. Third, key training aspects such as speed and intensity may need to be maintained, and ideally performed in a cooler environment to maximize gains and minimize fatigue (including the effects of matched absolute versus relative work rates on adaptations). Alternatively, passive heating should be considered (e.g. immediately after training). Fourth, there is no evidence that HA impairs cool weather performance, and thus HA is a useful strategy when the competitive environmental conditions are potentially hot or unknown. Fifth, much remains unknown about ideal timing for competition following HA and its decay. Lastly, an ergogenic effect of HA has yet to be studied in truly elite athletes.
Collapse
Affiliation(s)
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
43
|
Goods PSR, Dawson B, Landers GJ, Gore CJ, Peeling P. No Additional Benefit of Repeat-Sprint Training in Hypoxia than in Normoxia on Sea-Level Repeat-Sprint Ability. J Sports Sci Med 2015; 14:681-688. [PMID: 26336357 PMCID: PMC4541135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/16/2015] [Indexed: 06/05/2023]
Abstract
To assess the impact of 'top-up' normoxic or hypoxic repeat-sprint training on sea-level repeat-sprint ability, thirty team sport athletes were randomly split into three groups, which were matched in running repeat-sprint ability (RSA), cycling RSA and 20 m shuttle run performance. Two groups then performed 15 maximal cycling repeat-sprint training sessions over 5 weeks, in either normoxia (NORM) or hypoxia (HYP), while a third group acted as a control (CON). In the post-training cycling RSA test, both NORM (13.6%; p = 0.0001, and 8.6%; p = 0.001) and HYP (10.3%; p = 0.007, and 4.7%; p = 0.046) significantly improved overall mean and peak power output, respectively, whereas CON did not change (1.4%; p = 0.528, and -1.1%; p = 0.571, respectively); with only NORM demonstrating a moderate effect for improved mean and peak power output compared to CON. Running RSA demonstrated no significant between group differences; however, the mean sprint times improved significantly from pre- to post-training for CON (1.1%), NORM (1.8%), and HYP (2.3%). Finally, there were no group differences in 20 m shuttle run performance. In conclusion, 'top-up' training improved performance in a task-specific activity (i.e. cycling); however, there was no additional benefit of conducting this 'top-up' training in hypoxia, since cycle RSA improved similarly in both HYP and NORM conditions. Regardless, the 'top-up' training had no significant impact on running RSA, therefore the use of cycle repeat-sprint training should be discouraged for team sport athletes due to limitations in specificity. Key points'Top-up' repeat-sprint training performed on a cycle ergometer enhances cycle repeat-sprint ability compared to team sport training only in football players.The addition of moderate hypoxia to repeat-sprint training provides no additional performance benefits to sea-level repeat-sprint ability or endurance performance than normoxic repeat-sprint training.'Top-up' cycling repeat-sprint training provides no significant additional benefit to running RSA or endurance performance than team sport training only, and therefore running based repeat-sprint interventions are recommended for team sport athletes.
Collapse
Affiliation(s)
- Paul S R Goods
- School of Sport Science, Exercise and Health, The University of Western Australia , Canberra, Australia
| | - Brian Dawson
- School of Sport Science, Exercise and Health, The University of Western Australia , Canberra, Australia
| | - Grant J Landers
- School of Sport Science, Exercise and Health, The University of Western Australia , Canberra, Australia
| | - Christopher J Gore
- Australian Institute of Sport , South Australia, Australia ; Exercise Physiology Laboratory, Flinders University , South Australia, Australia
| | - Peter Peeling
- School of Sport Science, Exercise and Health, The University of Western Australia , Canberra, Australia
| |
Collapse
|
44
|
Neal RA, Corbett J, Massey HC, Tipton MJ. Effect of short-term heat acclimation with permissive dehydration on thermoregulation and temperate exercise performance. Scand J Med Sci Sports 2015. [DOI: 10.1111/sms.12526] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- R. A. Neal
- Department of Sport and Exercise Sciences; University of Portsmouth; Portsmouth UK
| | - J. Corbett
- Department of Sport and Exercise Sciences; University of Portsmouth; Portsmouth UK
| | - H. C. Massey
- Department of Sport and Exercise Sciences; University of Portsmouth; Portsmouth UK
| | - M. J. Tipton
- Department of Sport and Exercise Sciences; University of Portsmouth; Portsmouth UK
| |
Collapse
|
45
|
Racinais S, Alonso JM, Coutts AJ, Flouris AD, Girard O, González-Alonso J, Hausswirth C, Jay O, Lee JKW, Mitchell N, Nassis GP, Nybo L, Pluim BM, Roelands B, Sawka MN, Wingo J, Périard JD. Consensus recommendations on training and competing in the heat. Br J Sports Med 2015; 49:1164-73. [PMID: 26069301 PMCID: PMC4602249 DOI: 10.1136/bjsports-2015-094915] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 11/05/2022]
Abstract
Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimise performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimise performance is to heat acclimatise. Heat acclimatisation should comprise repeated exercise-heat exposures over 1–2 weeks. In addition, athletes should initiate competition and training in a euhydrated state and minimise dehydration during exercise. Following the development of commercial cooling systems (eg, cooling-vest), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organisers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimising the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events, for hydration and body cooling opportunities, when competitions are held in the heat.
Collapse
Affiliation(s)
- S Racinais
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - J M Alonso
- Sports Medicine Department, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar Medical and Anti-doping Commission, International Association of Athletics Federations (IAAF), Montecarlo, Monaco
| | - A J Coutts
- Sport and Exercise Discipline Group, University of Technology Sydney (UTS), Australia
| | - A D Flouris
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - O Girard
- Department of Physiology, Faculty of Biology and Medicine, ISSUL, Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - J González-Alonso
- Department of Life Sciences, Centre for Sports Medicine and Human Performance, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - C Hausswirth
- Research Department, Laboratory of Sport, Expertise and Performance, French National Institute of Sport (INSEP), Paris, France
| | - O Jay
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, Australia
| | - J K W Lee
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - N Mitchell
- British Cycling and 'Sky Pro Cycling', National Cycling Centre, Manchester, UK
| | - G P Nassis
- National Sports Medicine Programme, Excellence in Football Project, Aspetar, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - L Nybo
- Department of Nutrition, Exercise and Sport, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - B M Pluim
- Medical Department, Royal Netherlands Lawn Tennis Association (KNLTB), Amersfoort, The Netherlands
| | - B Roelands
- Department of Human Physiology, Vrije Universiteit Brussel, Brussels, Belgium
| | - M N Sawka
- School of Applied Physiology, College of Science, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - J Wingo
- Department of Kinesiology, University of Alabama, Tuscaloosa, USA
| | - J D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
46
|
Racinais S, Alonso JM, Coutts AJ, Flouris AD, Girard O, González-Alonso J, Hausswirth C, Jay O, Lee JKW, Mitchell N, Nassis GP, Nybo L, Pluim BM, Roelands B, Sawka MN, Wingo JE, Périard JD. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports 2015; 25 Suppl 1:6-19. [DOI: 10.1111/sms.12467] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 11/26/2022]
Affiliation(s)
- S. Racinais
- Athlete Health and Performance Research Centre; Aspetar; Qatar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| | - J. M. Alonso
- Sports Medicine Department; Aspetar Orthopaedic and Sports Medicine Hospital; Doha Qatar
- Medical and Anti-doping Commission; International Association of Athletics Federations (IAAF); Montecarlo Monaco
| | - A. J. Coutts
- Sport and Exercise Discipline Group; University of Technology Sydney (UTS); Lindfield New South Wales Australia
| | - A. D. Flouris
- FAME Laboratory; Department of Physical Education and Sport Science; University of Thessaly; Trikala Greece
| | - O. Girard
- ISSUL; Institute of Sport Sciences; Department of Physiology; Faculty of Biology and Medicine; University of Lausanne; Lausanne Switzerland
| | - J. González-Alonso
- Centre for Sports Medicine and Human Performance; Department of Life Sciences; College of Health and Life Sciences; Brunel University London; Uxbridge UK
| | - C. Hausswirth
- French National Institute of Sport (INSEP); Research Department; Laboratory of Sport, Expertise and Performance; Paris France
| | - O. Jay
- Discipline of Exercise and Sport Science; Faculty of Health Sciences; University of Sydney; Lidcombe New South Wales Australia
| | - J. K. W. Lee
- Defence Medical and Environmental Research Institute; DSO National Laboratories; Singapore
- Yong Loo Lin School of Medicine; National University of Singapore; Singapore
- Lee Kong Chian School of Medicine; Nanyang Technological University; Singapore
| | - N. Mitchell
- British Cycling and “Sky Pro Cycling”; National Cycling Centre; Manchester UK
| | - G. P. Nassis
- National Sports Medicine Programme; Excellence in Football Project; Aspetar; Qatar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| | - L. Nybo
- Department of Nutrition, Exercise and Sport; Section of Human Physiology; University of Copenhagen; Copenhagen Denmark
| | - B. M. Pluim
- Medical Department; Royal Netherlands Lawn Tennis Association (KNLTB); Amersfoort The Netherlands
| | - B. Roelands
- Department of Human Physiology; Vrije Universiteit Brussel; Brussels Belgium
| | - M. N. Sawka
- School of Applied Physiology; College of Science; Georgia Institute of Technology; Atlanta Georgia USA
| | - J. E. Wingo
- Department of Kinesiology; University of Alabama; Tuscaloosa Alabama USA
| | - J. D. Périard
- Athlete Health and Performance Research Centre; Aspetar; Qatar Orthopaedic and Sports Medicine Hospital; Doha Qatar
| |
Collapse
|
47
|
Crowcroft S, Duffield R, McCleave E, Slattery K, Wallace LK, Coutts AJ. Monitoring training to assess changes in fitness and fatigue: The effects of training in heat and hypoxia. Scand J Med Sci Sports 2015; 25 Suppl 1:287-95. [DOI: 10.1111/sms.12364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 11/29/2022]
Affiliation(s)
- S. Crowcroft
- Faculty of Health; University of Technology; Sydney New South Wales Australia
| | - R. Duffield
- Faculty of Health; University of Technology; Sydney New South Wales Australia
| | - E. McCleave
- Faculty of Health; University of Technology; Sydney New South Wales Australia
- The New South Wales Institute of Sport; Sydney New South Wales Australia
| | - K. Slattery
- The New South Wales Institute of Sport; Sydney New South Wales Australia
| | - L. K. Wallace
- Faculty of Health; University of Technology; Sydney New South Wales Australia
| | - A. J. Coutts
- Faculty of Health; University of Technology; Sydney New South Wales Australia
| |
Collapse
|
48
|
Chalmers S, Esterman A, Eston R, Bowering KJ, Norton K. Short-term heat acclimation training improves physical performance: a systematic review, and exploration of physiological adaptations and application for team sports. Sports Med 2015; 44:971-88. [PMID: 24817609 DOI: 10.1007/s40279-014-0178-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Studies have demonstrated that longer-term heat acclimation training (≥8 heat exposures) improves physical performance. The physiological adaptations gained through short-term heat acclimation (STHA) training suggest that physical performance can be enhanced within a brief timeframe. OBJECTIVE The aim of this systematic review was to determine if STHA training (≤7 heat exposures) can improve physical performance in healthy adults. DATA SOURCES MEDLINE, PubMed, and SPORTDiscus™ databases were searched for available literature. STUDY SELECTION Studies were included if they met the following criteria: STHA intervention, performance measure outcome, apparently healthy participants, adult participants (≥18 years of age), primary data, and human participants. STUDY APPRAISAL A modified McMaster critical appraisal tool determined the level of bias in each included study. RESULTS Eight papers met the inclusion criteria. Studies varied from having a low to a high risk of bias. The review identified aerobic-based tests of performance benefit from STHA training. Peak anaerobic power efforts have not been demonstrated to improve. LIMITATIONS At the review level, this systematic review did not include tolerance time exercise tests; however, certain professions may be interested in this type of exercise (e.g. fire-fighters). At the outcome level, the review was limited by the moderate level of bias that exists in the field. Only two randomized controlled trials were included. Furthermore, a limited number of studies could be identified (eight), and only one of these articles focused on women participants. CONCLUSIONS The review identified that aerobic-based tests of performance benefit from STHA training. This is possibly through a number of cardiovascular, thermoregulatory, and metabolic adaptations improving the perception of effort and fatigue through a reduction in anaerobic energy release and elevation of the anaerobic threshold. These results should be viewed with caution due to the level of available evidence, and the limited number of papers that met the inclusion criteria of the review. STHA training can be applied in the team-sport environment during a range of instances within the competitive season. A mixed high-intensity protocol may only require five sessions with a duration of 60 min to potentially improve aerobic-based performance in trained athletes.
Collapse
Affiliation(s)
- Samuel Chalmers
- Exercise for Health and Human Performance Research Group, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia,
| | | | | | | | | |
Collapse
|
49
|
Corbett J, Neal RA, Lunt HC, Tipton MJ. Adaptation to Heat and Exercise Performance Under Cooler Conditions: A New Hot Topic. Sports Med 2014; 44:1323-31. [DOI: 10.1007/s40279-014-0212-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Girard O, Pluim BM. Improving team-sport player's physical performance with altitude training: from beliefs to scientific evidence. Br J Sports Med 2013; 47 Suppl 1:i2-3. [PMID: 24282201 PMCID: PMC3903311 DOI: 10.1136/bjsports-2013-093119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Olivier Girard
- Research and Education Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, , Doha, Qatar
| | | |
Collapse
|