1
|
Shi J, Ho A, Snyder CE, Chaney EJ, Sorrells JE, Alex A, Talaban R, Spillman DR, Marjanovic M, Doan M, Finka G, Hood SR, Boppart SA. Accelerating biopharmaceutical cell line selection with label-free multimodal nonlinear optical microscopy and machine learning. Commun Biol 2025; 8:157. [PMID: 39900674 PMCID: PMC11790971 DOI: 10.1038/s42003-025-07596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
The selection of high-performing cell lines is crucial for biopharmaceutical production but is often time-consuming and labor-intensive. We investigated label-free multimodal nonlinear optical microscopy for non-perturbative profiling of biopharmaceutical cell lines based on their intrinsic molecular contrast. Employing simultaneous label-free autofluorescence multiharmonic (SLAM) microscopy with fluorescence lifetime imaging microscopy (FLIM), we characterized Chinese hamster ovary (CHO) cell lines at early passages (0-2). A machine learning (ML)-assisted analysis pipeline leveraged high-dimensional information to classify single cells into their respective lines. Remarkably, the monoclonal cell line classifiers achieved balanced accuracies exceeding 96.8% as early as passage 2. Correlation features and FLIM modality played pivotal roles in early classification. This integrated optical bioimaging and machine learning approach presents a promising solution to expedite cell line selection process while ensuring identification of high-performing biopharmaceutical cell lines. The techniques have potential for broader single-cell characterization applications in stem cell research, immunology, cancer biology and beyond.
Collapse
Affiliation(s)
- Jindou Shi
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alexander Ho
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Corey E Snyder
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Janet E Sorrells
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Pre-Clinical Sciences, Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Remben Talaban
- Biopharm Process Research, GlaxoSmithKline, Stevenage, UK
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Minh Doan
- Pre-Clinical Sciences, Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Gary Finka
- Biopharm Process Research, GlaxoSmithKline, Stevenage, UK
| | - Steve R Hood
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Pre-Clinical Sciences, Research, GlaxoSmithKline, Collegeville, PA, USA
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Bhardwaj V, Handler MZ, Mao J, Azadegan C, Panda PK, Breunig HG, Wenskus I, Diaz I, König K. A novel professional-use synergistic peel technology to reduce visible hyperpigmentation on face: Clinical evidence and mechanistic understanding by computational biology and optical biopsy. Exp Dermatol 2024; 33:e15069. [PMID: 38568090 DOI: 10.1111/exd.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/03/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
Topicals and chemical peels are the standard of care for management of facial hyperpigmentation. However, traditional therapies have come under recent scrutiny, such as topical hydroquinone (HQ) has some regulatory restrictions, and high concentration trichloroacetic acid (TCA) peel pose a risk in patients with skin of colour. The objective of our research was to identify, investigate and elucidate the mechanism of action of a novel TCA- and HQ-free professional-use chemical peel to manage common types of facial hyperpigmentation. Using computational modelling and in vitro assays on tyrosinase, we identified proprietary multi-acid synergistic technology (MAST). After a single application on human skin explants, MAST peel was found to be more effective than a commercial HQ peel in inhibiting melanin (histochemical imaging and gene expression). All participants completed the case study (N = 9) without any adverse events. After administration of the MAST peel by a dermatologist, the scoring and VISIA photography reported improvements in hyperpigmentation, texture and erythema, which could be linked to underlying pathophysiological changes in skin after peeling, visualized by non-invasive optical biopsy of face. Using reflectance confocal microscopy (VivaScope®) and multiphoton tomography (MPTflex™), we observed reduction in melanin, increase in metabolic activity of keratinocytes, and no signs of inflammatory cells after peeling. Subsequent swabbing of the cheek skin found no microbiota dysbiosis resulting from the chemical peel. The strong efficacy with minimum downtime and no adverse events could be linked to the synergistic action of the ingredients in the novel HQ- and TCA-free professional peel technology.
Collapse
Affiliation(s)
- Vinay Bhardwaj
- Department of Global Personal Care and Skin Health R&D, Colgate-Palmolive Company, Piscataway, New Jersey, USA
| | - Marc Zachary Handler
- Dermal Clinical Research, Colgate-Palmolive Company, Piscataway, New Jersey, USA
| | - Junhong Mao
- Department of Global Personal Care and Skin Health R&D, Colgate-Palmolive Company, Piscataway, New Jersey, USA
| | - Chloe Azadegan
- Department of Global Personal Care and Skin Health R&D, Colgate-Palmolive Company, Piscataway, New Jersey, USA
- Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Pritam K Panda
- Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
- Nerdalytics, Uppsala, Sweden
| | | | | | - Isabel Diaz
- Dermal Clinical Research, Colgate-Palmolive Company, Piscataway, New Jersey, USA
| | - Karsten König
- JenLab GmbH, Berlin, Germany
- Department of Biophotonics and Laser Technology, Saarland University, Saarbrucken, Germany
| |
Collapse
|
3
|
Kim J, Kim S, Choi WJ. Non-Invasive Monitoring of Cutaneous Wound Healing in Non-Diabetic and Diabetic Model of Adult Zebrafish Using OCT Angiography. Bioengineering (Basel) 2023; 10:bioengineering10050538. [PMID: 37237607 DOI: 10.3390/bioengineering10050538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
A diabetic wound presents a severe risk of infections and other complications because of its slow healing. Evaluating the pathophysiology during wound healing is imperative for wound care, necessitating a proper diabetic wound model and assay for monitoring. The adult zebrafish is a rapid and robust model for studying human cutaneous wound healing because of its fecundity and high similarities to human wound repair. OCTA as an assay can provide three-dimensional (3D) imaging of the tissue structure and vasculature in the epidermis, enabling monitoring of the pathophysiologic alterations in the zebrafish skin wound. We present a longitudinal study for assessing the cutaneous wound healing of the diabetic adult zebrafish model using OCTA, which is of importance for the diabetes research using the alternative animal models. We used non-diabetic (n = 9) and type 1 diabetes mellitus (DM) adult zebrafish models (n = 9). The full-thickness wound was generated on the fish skin, and the wound healing was monitored with OCTA for 15 days. The OCTA results demonstrated significant differences between diabetic and non-diabetic wound healing, involving delayed tissue remodeling and impaired angiogenesis for the diabetic wound, leading to slow wound recovery. The adult zebrafish model and OCTA technique may benefit long-term metabolic disease studies using zebrafish for drug development.
Collapse
Affiliation(s)
- Jaeyoung Kim
- Research Institute for Skin Image, Korea University College of Medicine, Seoul 08308, Republic of Korea
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
- Departments of Cancer Control Research and Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Suhyun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Zebrafish Translational Medical Research Center, Korea University Ansan Hospital, Ansan 15355, Republic of Korea
| | - Woo June Choi
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Febuxostat Alleviates Allergic Rhinitis by Inhibiting Inflammation and Monocyte Adhesion in Human Nasal Epithelial Cells via Regulating KLF6. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9092311. [PMID: 36118091 PMCID: PMC9477640 DOI: 10.1155/2022/9092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
Introduction Febuxostat is a novel inhibitor of xanthine oxidase that suppresses cell adhesion molecules-mediated (CAMs) inflammation by activating KLF6. In this study, we explored the therapeutic function and potential mechanisms of febuxostat against allergic rhinitis (AR). Methods We investigated the role of febuxostat through in vitro cell and in vivo animal experiments. Human nasal epithelial cells (hNECs) were cultured with histamine as an in vitro model. To establish the AR animal model, rats were exposed to ovalbumin. Rats were randomly grouped into control, model, 7.5 mg/kg febuxostat, and 15 mg/kg febuxostat groups. Results In the in vitro study, we found significantly increased release of lactate dehydrogenase, elevated production of inflammatory factors and chemokines, and upregulated CAMs in histamine-treated hNECs. However, these results were significantly reversed for the 10 and 20 μM febuxostat treatments. The enhanced adhesion between hNECs and monocytes induced by histamine was dramatically repressed by febuxostat. In the vivo experiments, we observed that febuxostat ameliorated the increased sneezing times, the number of nose scratching episodes, and elevated HE pathological scores as well as alleviated the inflammation in nasal mucous tissues of AR mice. We found that KLF6, which was downregulated in histamine-treated hNECs, was significantly upregulated by febuxostat. The inhibitory effects of febuxostat on the expression levels of CAMs and adhesion between histamine-treated hNECs and monocytes were significantly abolished by the knockdown of KLF6. Conclusion Febuxostat alleviates AR by inhibiting inflammation and monocyte adhesion in human nasal epithelial cells through the regulation of KLF6.
Collapse
|
5
|
Lee J, Hestrin R, Nuccio EE, Morrison KD, Ramon CE, Samo TJ, Pett-Ridge J, Ly SS, Laurence TA, Weber PK. Label-Free Multiphoton Imaging of Microbes in Root, Mineral, and Soil Matrices with Time-Gated Coherent Raman and Fluorescence Lifetime Imaging. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1994-2008. [PMID: 35029104 DOI: 10.1021/acs.est.1c05818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Imaging biogeochemical interactions in complex microbial systems─such as those at the soil-root interface─is crucial to studies of climate, agriculture, and environmental health but complicated by the three-dimensional (3D) juxtaposition of materials with a wide range of optical properties. We developed a label-free multiphoton nonlinear imaging approach to provide contrast and chemical information for soil microorganisms in roots and minerals with epi-illumination by simultaneously imaging two-photon excitation fluorescence (TPEF), coherent anti-Stokes Raman scattering (CARS), second-harmonic generation (SHG), and sum-frequency mixing (SFM). We used fluorescence lifetime imaging (FLIM) and time gating to correct CARS for the autofluorescence background native to soil particles and fungal hyphae (TG-CARS) using time-correlated single-photon counting (TCSPC). We combined TPEF, TG-CARS, and FLIM to maximize image contrast for live fungi and bacteria in roots and soil matrices without fluorescence labeling. Using this instrument, we imaged symbiotic arbuscular mycorrhizal fungi (AMF) structures within unstained plant roots in 3D to 60 μm depth. High-quality imaging was possible at up to 30 μm depth in a clay particle matrix and at 15 μm in complex soil preparation. TG-CARS allowed us to identify previously unknown lipid droplets in the symbiotic fungus, Serendipita bescii. We also visualized unstained putative bacteria associated with the roots of Brachypodium distachyon in a soil microcosm. Our results show that this multimodal approach holds significant promise for rhizosphere and soil science research.
Collapse
Affiliation(s)
- Janghyuk Lee
- Materials Science Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Rachel Hestrin
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Erin E Nuccio
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Keith D Morrison
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Christina E Ramon
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Ty J Samo
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Jennifer Pett-Ridge
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Life and Environmental Sciences Department, University of California Merced, Merced, California 95343, United States
| | - Sonny S Ly
- Materials Science Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Ted A Laurence
- Materials Science Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Peter K Weber
- Nuclear and Chemical Sciences Division, Physical & Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
6
|
Zuhayri H, Nikolaev VV, Knyazkova AI, Lepekhina TB, Krivova NA, Tuchin VV, Kistenev YV. In Vivo Quantification of the Effectiveness of Topical Low-Dose Photodynamic Therapy in Wound Healing Using Two-Photon Microscopy. Pharmaceutics 2022; 14:287. [PMID: 35214020 PMCID: PMC8877659 DOI: 10.3390/pharmaceutics14020287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
The effect of low-dose photodynamic therapy on in vivo wound healing with topical application of 5-aminolevulinic acid and methylene blue was investigated using an animal model for two laser radiation doses (1 and 4 J/cm2). A second-harmonic-generation-to-auto-fluorescence aging index of the dermis (SAAID) was analyzed by two-photon microscopy. SAAID measured at 60-80 μm depths was shown to be a suitable quantitative parameter to monitor wound healing. A comparison of SAAID in healthy and wound tissues during phototherapy showed that both light doses were effective for wound healing; however, healing was better at a dose of 4 J/cm2.
Collapse
Affiliation(s)
- Hala Zuhayri
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia; (H.Z.); (V.V.N.); (A.I.K.); (T.B.L.); (N.A.K.); (V.V.T.)
| | - Viktor V. Nikolaev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia; (H.Z.); (V.V.N.); (A.I.K.); (T.B.L.); (N.A.K.); (V.V.T.)
| | - Anastasia I. Knyazkova
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia; (H.Z.); (V.V.N.); (A.I.K.); (T.B.L.); (N.A.K.); (V.V.T.)
| | - Tatiana B. Lepekhina
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia; (H.Z.); (V.V.N.); (A.I.K.); (T.B.L.); (N.A.K.); (V.V.T.)
| | - Natalya A. Krivova
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia; (H.Z.); (V.V.N.); (A.I.K.); (T.B.L.); (N.A.K.); (V.V.T.)
| | - Valery V. Tuchin
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia; (H.Z.); (V.V.N.); (A.I.K.); (T.B.L.); (N.A.K.); (V.V.T.)
- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia
| | - Yury V. Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, 36 Lenin Av., 634050 Tomsk, Russia; (H.Z.); (V.V.N.); (A.I.K.); (T.B.L.); (N.A.K.); (V.V.T.)
| |
Collapse
|
7
|
Mukherjee P, Aksamitiene E, Alex A, Shi J, Bera K, Zhang C, Spillman DR, Marjanovic M, Fazio M, Seth PP, Frazier K, Hood SR, Boppart SA. Differential Uptake of Antisense Oligonucleotides in Mouse Hepatocytes and Macrophages Revealed by Simultaneous Two-Photon Excited Fluorescence and Coherent Raman Imaging. Nucleic Acid Ther 2021; 32:163-176. [PMID: 34797690 PMCID: PMC9221167 DOI: 10.1089/nat.2021.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Antisense oligonucleotides (ASOs), a novel paradigm in modern therapeutics, modulate cellular gene expression by binding to complementary messenger RNA (mRNA) sequences. While advances in ASO medicinal chemistry have greatly improved the efficiency of cellular uptake, selective uptake by specific cell types has been difficult to achieve. For more efficient and selective uptake, ASOs are often conjugated with molecules with high binding affinity for transmembrane receptors. Triantennary N-acetyl-galactosamine conjugated phosphorothioate ASOs (GalNAc-PS-ASOs) were developed to enhance targeted ASO delivery into liver through the hepatocyte-specific asialoglycoprotein receptor (ASGR). We assessed the kinetics of uptake and subsequent intracellular distribution of AlexaFluor 488 (AF488)-labeled PS-ASOs and GalNAc-PS-ASOs in J774A.1 mouse macrophages and primary mouse or rat hepatocytes using simultaneous coherent anti-Stokes Raman scattering (CARS) and two-photon fluorescence (2PF) imaging. The CARS modality captured the dynamic lipid distributions and overall morphology of the cells; two-photon fluorescence (2PF) measured the time- and dose-dependent localization of ASOs delivered by a modified treatment of suspension cells. Our results show that in macrophages, the uptake rate of PS-ASOs did not significantly differ from that of GalNAc-PS-ASOs. However, in hepatocytes, GalNAc-PS-ASOs exhibited a peripheral uptake distribution compared to a polar uptake distribution observed in macrophages. The peripheral distribution correlated with a significantly larger amount of internalized GalNAc-PS-ASOs compared to the PS-ASOs. This work demonstrates the relevance of multimodal imaging for elucidating the uptake mechanism, accumulation, and fate of different ASOs in liver cells that can be used further in complex in vitro models and liver tissues to evaluate ASO distribution and activity.
Collapse
Affiliation(s)
- Prabuddha Mukherjee
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Edita Aksamitiene
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,In vitro/In vivo Translation, Research, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Jindou Shi
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kajari Bera
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Chi Zhang
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Fazio
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Punit P Seth
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | - Kendall Frazier
- In vitro/In vivo Translation, Research, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Steve R Hood
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,In vitro/In vivo Translation, Research, GlaxoSmithKline, Stevenage, United Kingdom
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering and University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Jiang F, Wang C, Yang P, Sun P, Liu J. Pathological cytomorphologic features and the percentage of ALK FISH-positive cells predict pulmonary adenocarcinoma prognosis: a prospective cohort study. World J Surg Oncol 2021; 19:278. [PMID: 34530849 PMCID: PMC8447701 DOI: 10.1186/s12957-021-02386-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Background We conducted a study to explore the relationship between pathological cytomorphologic features and the percentage of anaplastic lymphoma kinase (ALK)-positive cells to better predict pulmonary adenocarcinoma prognosis with crizotinib treatment. Patients and methods We investigated 60 cases of patients with ALK-positive advanced or metastatic non-small cell lung cancer (NSCLC). Immunohistochemistry was performed to screen for ALK rearrangement. Fluorescence in situ hybridization (FISH) was used to detect the percentage of ALK-positive cells. The primary objectives of the study were the progression-free survival (PFS), the 3-year overall survival, and the 3-year overall survival (OS) rates. The secondary objectives of the study were the disease control rate (DCR) and the overall response rate (ORR). Results We compared the pathological cytomorphologic features of 60 cases of ALK-positive pulmonary adenocarcinoma, of which 21 cases were ALK-positive with signet ring cell cytomorphologic characteristics. There were statistical differences in the ORR (p = 0.019), DCR (p = 0.032), and PFS (p = 0.047) between the signet ring cell group and group without signet ring cells. Of these, 37 cases were ALK-positive with EML4 (echinoderm microtubule associated protein like 4)-ALK high percentage of positivity group. These cases benefited more from crizotinib treatment in the ORR (p = 0.046) and achieved a longer PFS (p = 0.036) compared to those with EML4-ALK low percentage of positivity group. Conclusions Signet ring cell cytomorphologic characteristics of pulmonary adenocarcinoma are associated with the percentage of ALK-positive cells. Signet ring cell cytomorphologic characteristics and the percentage of ALK-positive cells might predict the prognosis of pulmonary adenocarcinoma with crizotinib treatment. Trial registration The study was approved by the Institutional Review Board (Medical Ethics Committee of Yantai Yuhuangding Hospital). The registration number is NO.2016[193].
Collapse
Affiliation(s)
- Fenge Jiang
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People's Republic of China
| | - Congcong Wang
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People's Republic of China
| | - Ping Yang
- Department of Pathology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People's Republic of China
| | - Ping Sun
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People's Republic of China
| | - Jiannan Liu
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People's Republic of China.
| |
Collapse
|
9
|
Seeger M, Dehner C, Jüstel D, Ntziachristos V. Label-free concurrent 5-modal microscopy (Co5M) resolves unknown spatio-temporal processes in wound healing. Commun Biol 2021; 4:1040. [PMID: 34489513 PMCID: PMC8421396 DOI: 10.1038/s42003-021-02573-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
The non-invasive investigation of multiple biological processes remains a methodological challenge as it requires capturing different contrast mechanisms, usually not available with any single modality. Intravital microscopy has played a key role in dynamically studying biological morphology and function, but it is generally limited to resolving a small number of contrasts, typically generated by the use of transgenic labels, disturbing the biological system. We introduce concurrent 5-modal microscopy (Co5M), illustrating a new concept for label-free in vivo observations by simultaneously capturing optoacoustic, two-photon excitation fluorescence, second and third harmonic generation, and brightfield contrast. We apply Co5M to non-invasively visualize multiple wound healing biomarkers and quantitatively monitor a number of processes and features, including longitudinal changes in wound shape, microvascular and collagen density, vessel size and fractality, and the plasticity of sebaceous glands. Analysis of these parameters offers unique insights into the interplay of wound closure, vasodilation, angiogenesis, skin contracture, and epithelial reformation in space and time, inaccessible by other methods. Co5M challenges the conventional concept of biological observation by yielding multiple simultaneous parameters of pathophysiological processes in a label-free mode.
Collapse
Affiliation(s)
- Markus Seeger
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christoph Dehner
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Jüstel
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
10
|
Sternisha SM, Mukherjee P, Alex A, Chaney EJ, Barkalifa R, Wan B, Lee JH, Rico-Jimenez J, Žurauskas M, Spillman DR, Sripada SA, Marjanovic M, Arp Z, Galosy SS, Bhanushali DS, Hood SR, Bose S, Boppart SA. Longitudinal monitoring of cell metabolism in biopharmaceutical production using label-free fluorescence lifetime imaging microscopy. Biotechnol J 2021; 16:e2000629. [PMID: 33951311 DOI: 10.1002/biot.202000629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 11/11/2022]
Abstract
Chinese hamster ovary (CHO) cells are routinely used in the biopharmaceutical industry for production of therapeutic monoclonal antibodies (mAbs). Although multiple offline and time-consuming measurements of spent media composition and cell viability assays are used to monitor the status of culture in biopharmaceutical manufacturing, the day-to-day changes in the cellular microenvironment need further in-depth characterization. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was used as a tool to directly probe into the health of CHO cells from a bioreactor, exploiting the autofluorescence of intracellular nicotinamide adenine dinucleotide phosphate (NAD(P)H), an enzymatic cofactor that determines the redox state of the cells. A custom-built multimodal microscope with two-photon FLIM capability was utilized to monitor changes in NAD(P)H fluorescence for longitudinal characterization of a changing environment during cell culture processes. Three different cell lines were cultured in 0.5 L shake flasks and 3 L bioreactors. The resulting FLIM data revealed differences in the fluorescence lifetime parameters, which were an indicator of alterations in metabolic activity. In addition, a simple principal component analysis (PCA) of these optical parameters was able to identify differences in metabolic progression of two cell lines cultured in bioreactors. Improved understanding of cell health during antibody production processes can result in better streamlining of process development, thereby improving product titer and verification of scale-up. To our knowledge, this is the first study to use FLIM as a label-free measure of cellular metabolism in a biopharmaceutically relevant and clinically important CHO cell line.
Collapse
Affiliation(s)
- Shawn M Sternisha
- Biopharm Product Development, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Prabuddha Mukherjee
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aneesh Alex
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,In vitro/In vivo Translation, Research, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Eric J Chaney
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ronit Barkalifa
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Boyong Wan
- Biopharm Product Development, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Jang Hyuk Lee
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jose Rico-Jimenez
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mantas Žurauskas
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Darold R Spillman
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sobhana A Sripada
- Biopharm Product Development, GlaxoSmithKline, King of Prussia, Pennsylvania, USA.,Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Marina Marjanovic
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zane Arp
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sybille S Galosy
- Biopharm Product Development, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | | | - Steve R Hood
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,GlaxoSmithKline Research and Development, Stevenage, Hertfordshire, UK
| | - Sayantan Bose
- Biopharm Product Development, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Stephen A Boppart
- GSK Center for Optical Molecular Imaging, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
11
|
Dmitriev RI, Intes X, Barroso MM. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci 2021; 134:1-17. [PMID: 33961054 PMCID: PMC8126452 DOI: 10.1242/jcs.254763] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
Collapse
Affiliation(s)
- Ruslan I. Dmitriev
- Tissue Engineering and Biomaterials Group, Department of
Human Structure and Repair, Faculty of Medicine and Health Sciences,
Ghent University, Ghent 9000,
Belgium
| | - Xavier Intes
- Department of Biomedical Engineering, Center for
Modeling, Simulation and Imaging for Medicine (CeMSIM),
Rensselaer Polytechnic Institute, Troy, NY
12180-3590, USA
| | - Margarida M. Barroso
- Department of Molecular and Cellular
Physiology, Albany Medical College,
Albany, NY 12208, USA
| |
Collapse
|
12
|
Optical Coherence Tomography Angiography Monitors Cutaneous Wound Healing under Angiogenesis-Promoting Treatment in Diabetic and Non-Diabetic Mice. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052447] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During wound healing, the rapid re-establishment of a functional microcirculation in the wounded tissue is of utmost importance. We applied optical coherence tomography (OCT) angiography to evaluate vascular remodeling in an excisional wound model in the pinnae of C57BL/6 and db/db mice receiving different proangiogenic topical treatments. Analysis of the high-resolution OCT angiograms, including the four quantitative parameters vessel density, vessel length, number of bifurcations, and vessel tortuosity, revealed changes of the microvasculature and allowed identification of the overlapping wound healing phases hemostasis, inflammation, proliferation, and remodeling. Angiograms acquired in the inflammatory phase in the first days showed a dilation of vessels and recruitment of pre-existing capillaries. In the proliferative phase, angiogenesis with the sprouting of new capillaries into the wound tissue led to an increase of the OCT angiography parameters vessel density, normalized vessel length, number of bifurcations, and vessel tortuosity by 28–47%, 39–52%, 33–48%, and 3–8% versus baseline, respectively. After the peak observed on study days four to seven, the parameters slowly decreased but remained still elevated 18 days after wounding, indicating a continuing remodeling phase. Our study suggests that OCT angiography has the potential to serve as a valuable preclinical research tool in studies investigating impaired vascular remodeling during wound healing and potential new treatment strategies.
Collapse
|
13
|
Parodi V, Jacchetti E, Osellame R, Cerullo G, Polli D, Raimondi MT. Nonlinear Optical Microscopy: From Fundamentals to Applications in Live Bioimaging. Front Bioeng Biotechnol 2020; 8:585363. [PMID: 33163482 PMCID: PMC7581943 DOI: 10.3389/fbioe.2020.585363] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
A recent challenge in the field of bioimaging is to image vital, thick, and complex tissues in real time and in non-invasive mode. Among the different tools available for diagnostics, nonlinear optical (NLO) multi-photon microscopy allows label-free non-destructive investigation of physio-pathological processes in live samples at sub-cellular spatial resolution, enabling to study the mechanisms underlying several cellular functions. In this review, we discuss the fundamentals of NLO microscopy and the techniques suitable for biological applications, such as two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG-THG), and coherent Raman scattering (CRS). In addition, we present a few of the most recent examples of NLO imaging employed as a label-free diagnostic instrument to functionally monitor in vitro and in vivo vital biological specimens in their unperturbed state, highlighting the technological advantages of multi-modal, multi-photon NLO microscopy and the outstanding challenges in biomedical engineering applications.
Collapse
Affiliation(s)
- Valentina Parodi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan, Italy
| | - Emanuela Jacchetti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan, Italy
| | - Roberto Osellame
- Istituto di Fotonica e Nanotecnologie (IFN) – CNR, Milan, Italy
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Giulio Cerullo
- Istituto di Fotonica e Nanotecnologie (IFN) – CNR, Milan, Italy
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Dario Polli
- Istituto di Fotonica e Nanotecnologie (IFN) – CNR, Milan, Italy
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|