1
|
Tennant KS, Less EH, Raghanti MA, Amendolagine LA, Lukas KE, Willis MA, Dennis PM. Using an Oral Sugar Test to Biologically Validate the Use of a Commercial Enzyme Immunoassay to Measure Salivary Insulin in Western Lowland Gorillas (Gorilla gorilla gorilla). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:493-501. [PMID: 39868589 DOI: 10.1002/jez.2907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
Noninvasive evaluations of hormones can contribute to the assessment of health and welfare of animals. Variations in insulin levels and sensitivity, for example, have been linked to health concerns in non-human and human primates including insulin resistance, diabetes, and heart disease, the leading cause of death in zoo-housed gorillas. Few published studies have assessed insulin concentrations in western lowland gorillas (Gorilla gorilla gorilla), and all did so using serum. Anesthesia is typically required to collect blood samples from zoo-housed gorillas, limiting sampling frequency and restricting samples to the fasted state. The ability to measure insulin levels in saliva would eliminate these constraints and provide a minimally invasive means for monitoring this hormone. The purpose of this study was to analytically and biologically validate the measurement of insulin in saliva of western lowland gorillas using a commercially available enzyme immunoassay. For validation, an oral sugar test was conducted on five adult gorillas residing at Cleveland Metroparks Zoo. Such assessments are common practice in both human and equine medicine to evaluate the body's insulin response to ingestion of sugars. The test involved measuring salivary insulin at timed intervals before and after gorillas consumed doses of sugar. Salivary insulin levels increased from 15 min post-sugar ingestion and peaked after 90 to 120 min. One female had a high response and peaked at 990.21 mU/L. The other four gorillas had peaks between 49.82 and 167.04 mU/L. The assessment provided a biological validation for the measurement of salivary insulin in western lowland gorillas.
Collapse
Affiliation(s)
- Kaylin S Tennant
- Zoological Programs, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Elena H Less
- Zoological Programs, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
| | | | | | - Kristen E Lukas
- Zoological Programs, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Willis
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Patricia M Dennis
- Zoological Programs, Cleveland Metroparks Zoo, Cleveland, Ohio, USA
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Veterinary Preventive Medicine, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Seedat F, Kandzija N, Ellis M, Jiang S, Sarbalina A, Bancroft J, Drydale E, Hester S, Fischer R, Wade A, Stefana M, Todd J, Vatish M. Placental small extracellular vesicles from normal pregnancy and gestational diabetes increase insulin gene transcription and content in β cells. Clin Sci (Lond) 2024; 138:1481-1502. [PMID: 39432712 PMCID: PMC11579211 DOI: 10.1042/cs20241782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 10/23/2024]
Abstract
Insulin secretion increases progressively during pregnancy to maintain normal maternal blood glucose levels. The placenta plays a crucial role in this process by releasing hormones and extracellular vesicles into the maternal circulation, which drive significant changes in pregnancy physiology. Placental extracellular vesicles, which are detectable in the plasma of pregnant women, have been shown to signal peripheral tissues and contribute to pregnancy-related conditions. While studies using murine models have demonstrated that extracellular vesicles can modulate insulin secretion in pancreatic islets, it remains unclear whether these effects translate to human biology. Understanding how placental signals enhance insulin synthesis and secretion from β cells could be pivotal in developing new therapies for diabetes. In our study, we isolated placental small extracellular vesicles from human placentae and utilised the human β cell line, EndoC-βH3, to investigate their effects on β-cell function in vitro. Our results indicate that human β cells internalise placental small extracellular vesicles, leading to enhanced insulin gene expression and increased insulin content within the β cells. Moreover, these vesicles up-regulated the expression of Annexin A1, a protein known to increase insulin content. This up-regulation of Annexin A1 holds promise as a potential mechanism by which placental small extracellular vesicles enhance insulin biosynthesis.
Collapse
Affiliation(s)
- Faheem Seedat
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Neva Kandzija
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Michael J. Ellis
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Shuhan Jiang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - Asselzhan Sarbalina
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| | - James Bancroft
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Edward Drydale
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Svenja S. Hester
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Roman Fischer
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, U.K
| | - Alisha N. Wade
- Research in Metabolism and Endocrinology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
- Division of Endocrinology, Diabetes and Metabolism, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, U.S.A
| | - M. Irina Stefana
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - John A. Todd
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
| | - Manu Vatish
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, U.K
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, U.K
| |
Collapse
|
3
|
Usman TO, Chhetri G, Yeh H, Dong HH. Beta-cell compensation and gestational diabetes. J Biol Chem 2023; 299:105405. [PMID: 38229396 PMCID: PMC10694657 DOI: 10.1016/j.jbc.2023.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 01/18/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by glucose intolerance in pregnant women without a previous diagnosis of diabetes. While the etiology of GDM remains elusive, the close association of GDM with increased maternal adiposity and advanced gestational age implicates insulin resistance as a culpable factor for the pathogenesis of GDM. Pregnancy is accompanied by the physiological induction of insulin resistance in the mother secondary to maternal weight gain. This effect serves to spare blood glucose for the fetus. To overcome insulin resistance, maternal β-cells are conditioned to release more insulin into the blood. Such an adaptive response, termed β-cell compensation, is essential for maintaining normal maternal metabolism. β-cell compensation culminates in the expansion of β-cell mass and augmentation of β-cell function, accounting for increased insulin synthesis and secretion. As a result, a vast majority of mothers are protected from developing GDM during pregnancy. In at-risk pregnant women, β-cells fail to compensate for maternal insulin resistance, contributing to insulin insufficiency and GDM. However, gestational β-cell compensation ensues in early pregnancy, prior to the establishment of insulin resistance in late pregnancy. How β-cells compensate for pregnancy and what causes β-cell failure in GDM are subjects of investigation. In this mini-review, we will provide clinical and preclinical evidence that β-cell compensation is pivotal for overriding maternal insulin resistance to protect against GDM. We will highlight key molecules whose functions are critical for integrating gestational hormones to β-cell compensation for pregnancy. We will provide mechanistic insights into β-cell decompensation in the etiology of GDM.
Collapse
Affiliation(s)
- Taofeek O Usman
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Goma Chhetri
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hsuan Yeh
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - H Henry Dong
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|