1
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Majamaa K, Kärppä M, Moilanen JS. Neurological manifestations in adult patients with the m.3243A>G variant in mitochondrial DNA. BMJ Neurol Open 2024; 6:e000825. [PMID: 39324021 PMCID: PMC11423728 DOI: 10.1136/bmjno-2024-000825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024] Open
Abstract
ABSTRACT Background The m.3243A>G variant in mitochondrial DNA (mtDNA) is the most common cause of the MELAS (Mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) syndrome usually commencing in childhood or adolescence. In adults, the variant presents with versatile and mostly neurological phenotypes, but MELAS may not be common. Objective To examine the frequency of phenotypes in adults with m.3243A>G in a population-based cohort and in a meta-analysis of reported case series. Methods We clinically examined 51 adult patients with m.3243A>G to determine the frequency of phenotypes and to analyse the contribution of variant heteroplasmy, age, sex and mtDNA haplogroup to the phenotypes. The frequencies of neurological features were also assessed in a meta-analysis on 25 published case series reporting 1314 patients. Results Sensorineural hearing impairment (HI), cognitive impairment and myopathy were the most common manifestations, whereas stroke-like episodes were infrequent. Variant heteroplasmy and age were only modest predictors of the phenotypes, although heteroplasmy correlated significantly with disability and Kaplan-Meier analysis showed progression of phenotypes with age. Male sex predicted more severe disability, whereas haplogroup UK was associated with no significant disability. Meta-analysis revealed substantial heterogeneity of phenotype frequencies and preferential inclusion of the MELAS phenotype. Discussion In adult patients with m.3243A>G sensorineural HI, cognitive impairment and myopathy are common manifestations with lifetime prevalences approaching unity. Stroke-like episodes are rare. Variant heteroplasmy, age, sex and mtDNA haplogroup contribute to the severity of the disease. Meta-analysis provided a solid estimate of the various neurological symptoms in adults with m.3243A>G.
Collapse
Affiliation(s)
- Kari Majamaa
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu and Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Mikko Kärppä
- Research Unit of Clinical Medicine, Neurology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu and Neurocenter, Oulu University Hospital, Oulu, Finland
| | - Jukka S Moilanen
- Research Unit of Clinical Medicine, Clinical Genetics, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
3
|
Aguilar K, Jakubek P, Zorzano A, Wieckowski MR. Primary mitochondrial diseases: The intertwined pathophysiology of bioenergetic dysregulation, oxidative stress and neuroinflammation. Eur J Clin Invest 2024; 54:e14217. [PMID: 38644687 DOI: 10.1111/eci.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVES AND SCOPE Primary mitochondrial diseases (PMDs) are rare genetic disorders resulting from mutations in genes crucial for effective oxidative phosphorylation (OXPHOS) that can affect mitochondrial function. In this review, we examine the bioenergetic alterations and oxidative stress observed in cellular models of primary mitochondrial diseases (PMDs), shedding light on the intricate complexity between mitochondrial dysfunction and cellular pathology. We explore the diverse cellular models utilized to study PMDs, including patient-derived fibroblasts, induced pluripotent stem cells (iPSCs) and cybrids. Moreover, we also emphasize the connection between oxidative stress and neuroinflammation. INSIGHTS The central nervous system (CNS) is particularly vulnerable to mitochondrial dysfunction due to its dependence on aerobic metabolism and the correct functioning of OXPHOS. Similar to other neurodegenerative diseases affecting the CNS, individuals with PMDs exhibit several neuroinflammatory hallmarks alongside neurodegeneration, a pattern also extensively observed in mouse models of mitochondrial diseases. Based on histopathological analysis of postmortem human brain tissue and findings in mouse models of PMDs, we posit that neuroinflammation is not merely a consequence of neurodegeneration but a potential pathogenic mechanism for disease progression that deserves further investigation. This recognition may pave the way for novel therapeutic strategies for this group of devastating diseases that currently lack effective treatments. SUMMARY In summary, this review provides a comprehensive overview of bioenergetic alterations and redox imbalance in cellular models of PMDs while underscoring the significance of neuroinflammation as a potential driver in disease progression.
Collapse
Affiliation(s)
- Kevin Aguilar
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Patrycja Jakubek
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- Departament de Bioquímica i Biomedicina Molecular, Universitat de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| |
Collapse
|