1
|
Zhao N, Lian X, Du J, Ren H, Zhao T, Lu Q, Li Y, Cui F, Qin T. Respiratory tract bacteria distribution and transmission patterns among individuals in close contact. BMC Infect Dis 2024; 24:1289. [PMID: 39538143 PMCID: PMC11562301 DOI: 10.1186/s12879-024-10019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Respiratory disease outbreaks frequently occur in settings where individuals are in close contact, for example, schools and factories. However, the transmission patterns of oropharyngeal microbiota among healthy individuals living in clusters are unclear. Therefore, we aimed to investigate the respiratory tract bacteria distribution and transmission patterns among individuals in close contact. METHODS A total of 36 freshmen from Peking University Medical School participated in the study. We collected pharyngeal swabs on the first day of enrollment, 15, 30, and 60 days after cohabitation. DNA was extracted from the swabs and subjected to high-throughput sequencing to profile the microbial composition. Statistical analyses were performed to assess diversity and significance. RESULTS Neisseriaceae, Prevotellaceae, and Streptococcaceae were the most abundant bacterial families detected. Over time, changes were observed in the bacterial communities, with a tendency for increased similarity between dormitory room members. By day 60 of cohabitation, the bacterial communities appeared to be more similar compared to the baseline (prior to cohabitation). The transmission patterns included spreading with colonization, spreading without colonization, and non-spreading. Bacteria belonging to the core genera are most likely to spread and colonize easily. CONCLUSION The risk of healthy cohabitants acquiring respiratory pathogens through close contact may be overestimated in epidemiological studies. Therefore, monitoring the spread of core genera that are easily transmitted and colonized is crucial for effective prevention of respiratory pathogen transmission.
Collapse
Affiliation(s)
- Na Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102211, China
| | - Xingxing Lian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102211, China
- Wuxi Liangxi District Center for Disease Control and Prevention, Jiangsu, 214000, China
| | - Juan Du
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100091, China
| | - Hongyu Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102211, China
| | - Tianshuo Zhao
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100091, China
| | - Qingbin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100091, China
| | - Yinan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102211, China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, 100091, China
| | - Tian Qin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102211, China.
| |
Collapse
|
2
|
Lozada J, Gómez JO, Serrano-Mayorga CC, Viñán Garcés AE, Enciso V, Mendez-Castillo L, Acosta-González A, Bustos IG, Fuentes YV, Ibáñez-Prada ED, Crispin AM, Delgado-Cañaveral MC, Morales Celis LM, Jaimes D, Turner P, Reyes LF. Streptococcus pneumoniae as a colonizing agent of the Nasopharynx - Oropharynx in adults: A systematic review and meta-analysis. Vaccine 2024; 42:2747-2757. [PMID: 38514352 DOI: 10.1016/j.vaccine.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Streptococcus pneumoniae (Spn) is a commensal pathogen that usually colonizes the upper respiratory tract of children. Likewise, Spn colonization has been considered a critical factor in the development of pneumococcal invasive disease. However, Spn prevalence in adults remains unclear. This study performs a systematic review and meta-analysis to explore the prevalence of Spn Nasopharynx - Oropharynx Colonization (NOC) in adults. METHODS A Systematic review of scientific databases was utilized to identify eligible studies that follow strict selection criteria. Subsequently, a meta-analysis was conducted to establish NOC prevalence in adults (≥18 years old). The heterogeneity and sensitivity analyses were assessed using the microorganism identification technique, sample type, and age subgroups. RESULTS Initial selection includes 69 studies, with 37 selected for the meta-analysis, involving 23,724 individuals. The overall prevalence (95 % CI) of Spn NOC among adults was 6 % (5-9). The subgroup analysis revealed that young adults (YA), 18-64 years old, had a prevalence of 10 %, whereas older adults (OA), ≥65 years old, had a prevalence of 2 %. The identification of Spn NOC may vary depending on the method of diagnosis used. High heterogeneity (I2 > 90 %) was observed but diminished to 70 % when the analysis was restricted to oropharyngeal swabs as an identification method. Furthermore, heterogeneity decreased to 58 % when exclusively employing traditional culture as the identification method. CONCLUSIONS This study found a low prevalence of Spn NOC in adults. Notably, the prevalence of Spn NOC was higher in younger adults than in older adults. It is essential to highlight a significant heterogeneity among studies, which indicates there is no standardized method of Spn NOC identification.
Collapse
Affiliation(s)
- Julián Lozada
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Juan Olivella Gómez
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Cristian C Serrano-Mayorga
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - André Emilio Viñán Garcés
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Valeria Enciso
- School of Medicine, Universidad de La Sabana, Chía, Colombia
| | | | - Alejandro Acosta-González
- Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Ingrid G Bustos
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Bioscience PhD, Engineering School, Universidad de La Sabana, Chía, Colombia
| | - Yuli V Fuentes
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia
| | - Elsa D Ibáñez-Prada
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | - Ana M Crispin
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia
| | | | | | - Diego Jaimes
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia
| | - Paul Turner
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Luis Felipe Reyes
- School of Medicine, Universidad de La Sabana, Chía, Colombia; Clínica Universidad de La Sabana, Chía, Colombia; Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
German EL, Nabwera HM, Robinson R, Shiham F, Liatsikos K, Parry CM, McNamara C, Kattera S, Carter K, Howard A, Pojar S, Hamilton J, Matope A, Read JM, Allen SJ, Hill H, Hawcutt DB, Urban BC, Collins AM, Ferreira DM, Nikolaou E. Participant perceptions and experiences of a novel community-based respiratory longitudinal sampling method in Liverpool, UK: A mixed methods feasibility study. PLoS One 2023; 18:e0294133. [PMID: 37943741 PMCID: PMC10635470 DOI: 10.1371/journal.pone.0294133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Longitudinal, community-based sampling is important for understanding prevalence and transmission of respiratory pathogens. Using a minimally invasive sampling method, the FAMILY Micro study monitored the oral, nasal and hand microbiota of families for 6 months. Here, we explore participant experiences and opinions. A mixed methods approach was utilised. A quantitative questionnaire was completed after every sampling timepoint to report levels of discomfort and pain, as well as time taken to collect samples. Participants were also invited to discuss their experiences in a qualitative structured exit interview. We received questionnaires from 36 families. Most adults and children >5y experienced no pain (94% and 70%) and little discomfort (73% and 47% no discomfort) regardless of sample type, whereas children ≤5y experienced variable levels of pain and discomfort (48% no pain but 14% hurts even more, whole lot or worst; 38% no discomfort but 33% moderate, severe, or extreme discomfort). The time taken for saliva and hand sampling decreased over the study. We conducted interviews with 24 families. Families found the sampling method straightforward, and adults and children >5y preferred nasal sampling using a synthetic absorptive matrix over nasopharyngeal swabs. It remained challenging for families to fit sampling into their busy schedules. Adequate fridge/freezer space and regular sample pick-ups were found to be important factors for feasibility. Messaging apps proved extremely effective for engaging with participants. Our findings provide key information to inform the design of future studies, specifically that self-sampling at home using minimally invasive procedures is feasible in a family context.
Collapse
Affiliation(s)
- Esther L. German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Helen M. Nabwera
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Ryan Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Farah Shiham
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kostas Liatsikos
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | | | | | | | - Katie Carter
- Alder Hey Children’s Hospital, Liverpool, United Kingdom
| | - Ashleigh Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sherin Pojar
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joshua Hamilton
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Agnes Matope
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jonathan M. Read
- Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Stephen J. Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Edward Francis Small Teaching Hospital, Banjul, The Gambia
| | - Helen Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniel B. Hawcutt
- Alder Hey Children’s Hospital, Liverpool, United Kingdom
- University of Liverpool, Liverpool, United Kingdom
| | - Britta C. Urban
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Andrea M. Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Daniela M. Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Elissavet Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
4
|
Nikolaou E, German EL, Howard A, Nabwera HM, Matope A, Robinson R, Shiham F, Liatsikos K, McNamara C, Kattera S, Carter K, Parry CM, Read JM, Allen SJ, Urban BC, Hawcutt DB, Hill H, Collins AM, Ferreira DM. Assessing the use of minimally invasive self-sampling at home for long-term monitoring of the microbiota within UK families. Sci Rep 2023; 13:18201. [PMID: 37875557 PMCID: PMC10598218 DOI: 10.1038/s41598-023-45574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023] Open
Abstract
Monitoring the presence of commensal and pathogenic respiratory microorganisms is of critical global importance. However, community-based surveillance is difficult because nasopharyngeal swabs are uncomfortable and painful for a wide age range of participants. We designed a methodology for minimally invasive self-sampling at home and assessed its use for longitudinal monitoring of the oral, nasal and hand microbiota of adults and children within families. Healthy families with two adults and up to three children, living in and near Liverpool, United Kingdom, self-collected saliva, nasal lining fluid using synthetic absorptive matrices and hand swabs at home every two weeks for six months. Questionnaires were used to collect demographic and epidemiological data and assess feasibility and acceptability. Participants were invited to take part in an exit interview. Thirty-three families completed the study. Sampling using our approach was acceptable to 25/33 (76%) families, as sampling was fast (76%), easy (76%) and painless (60%). Saliva and hand sampling was acceptable to all participants of any age, whereas nasal sampling was accepted mostly by adults and children older than 5 years. Multi-niche self-sampling at home can be used by adults and children for longitudinal surveillance of respiratory microorganisms, providing key data for design of future studies.
Collapse
Affiliation(s)
- E Nikolaou
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
- Infection and Immunity, Murdoch Children's Research Institute, Parkville, VIC, 3050, Australia.
- Microbiology and Immunology Department, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.
| | - E L German
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - A Howard
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - H M Nabwera
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Alder Hey Children's Hospital, Liverpool, UK
- Centre of Excellence in Women and Child Health, Aga Khan University, Nairobi, Kenya
| | - A Matope
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - R Robinson
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - F Shiham
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - K Liatsikos
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - C McNamara
- Alder Hey Children's Hospital, Liverpool, UK
| | - S Kattera
- Alder Hey Children's Hospital, Liverpool, UK
| | - K Carter
- Alder Hey Children's Hospital, Liverpool, UK
| | - C M Parry
- Alder Hey Children's Hospital, Liverpool, UK
| | - J M Read
- Lancaster Medical School, Lancaster University, Lancaster, UK
| | - S J Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Edward Francis Small Teaching Hospital, Banjul, The Gambia
| | - B C Urban
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, OX3 7LE, UK
| | - D B Hawcutt
- Alder Hey Children's Hospital, Liverpool, UK
- University of Liverpool, Liverpool, UK
| | - H Hill
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - A M Collins
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - D M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, OX3 7LE, UK.
| |
Collapse
|
5
|
Ong HH, Toh WK, Thong LY, Phoon LQ, Clarke SC, Cheah ESG. Investigation of Upper Respiratory Carriage of Bacterial Pathogens among University Students in Kampar, Malaysia. Trop Med Infect Dis 2023; 8:tropicalmed8050269. [PMID: 37235317 DOI: 10.3390/tropicalmed8050269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The carriage of bacterial pathogens in the human upper respiratory tract (URT) is associated with a risk of invasive respiratory tract infections, but the related epidemiological information on this at the population level is scarce in Malaysia. This study aimed to investigate the URT carriage of Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa among 100 university students by nasal and oropharyngeal swabbing. The presence of S. aureus, K. pneumoniae and P. aeruginosa was assessed via swab culture on selective media and PCR on the resulting isolates. For S. pneumoniae, H. influenzae and N. meningitidis, their presence was assessed via multiplex PCR on the total DNA extracts from chocolate agar cultures. The carriage prevalence of H. influenzae, S. aureus, S. pneumoniae, K. pneumoniae, N. meningitidis and P. aeruginosa among the subjects was 36%, 27%, 15%, 11%, 5% and 1%, respectively, by these approaches. Their carriage was significantly higher in males compared to females overall. The S. aureus, K. pneumoniae and P. aeruginosa isolates were also screened by the Kirby-Bauer assay, in which 51.6% of S. aureus were penicillin-resistant. The outcomes from carriage studies are expected to contribute to informing infectious disease control policies and guidelines.
Collapse
Affiliation(s)
- Hing Huat Ong
- Department of Biological Science, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Wai Keat Toh
- Department of Biological Science, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Li Ying Thong
- Department of Biological Science, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Lee Quen Phoon
- Department of Allied Health Sciences, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Centre for Biomedical and Nutrition Research, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| | - Stuart C Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
- Global Health Research Institute, University of Southampton, Southampton SO17 1BJ, UK
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia
- Centre for Translational Research, Institute for Research, Development, and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Eddy Seong Guan Cheah
- Department of Biological Science, Faculty of Science, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
- Centre for Biomedical and Nutrition Research, Kampar Campus, Universiti Tunku Abdul Rahman, Kampar 31900, Malaysia
| |
Collapse
|
6
|
Tran HH, Nguyen HAT, Tran HB, Vu BNT, Nguyen TCT, Tacoli C, Tran TP, Trinh TS, Cai THN, Nadjm B, Tran KHT, Pham QD, Nguyen THT, Nguyen TT, Pham TD, Kesteman T, Dang DA, Tran TD, van Doorn HR, Lewycka S. Feasibility, acceptability, and bacterial recovery for community-based sample collection to estimate antibiotic resistance in commensal gut and upper respiratory tract bacteria. Sci Rep 2022; 12:22512. [PMID: 36581706 PMCID: PMC9797900 DOI: 10.1038/s41598-022-27084-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Vietnam has high rates of antibiotic use and resistance. Measuring resistance in commensal bacteria could provide an objective indicator for evaluating the impact of interventions to reduce antibiotic use and resistance. This study aimed to evaluate the feasibility, acceptability, and bacterial recovery for different sampling strategies. We conducted a cross-sectional mixed methods study in a rural community in Ha Nam Province, northern Vietnam, and collected structured interviews, samples, and in-depth interviews from households. Out of 389 households invited, 324 participated (83%), representing 1502 individuals. Samples were collected from these individuals (1498 stool, 1002 self-administered nasal swabs, and 496 HW-administered nasopharyngeal swabs). Pneumococci were recovered from 11.1% (128/1149) of the total population and 26.2% (48/183) of those under 5-years. Recovery was higher for health-worker (HW)-administered swabs (13.7%, 48/350) than self-administered swabs (10.0%, 80/799) (OR 2.06, 95% CI 1.07-3.96). Cost per swab was cheaper for self-administered ($7.26) than HW-administered ($8.63) swabs, but the overall cost for 100 positive samples was higher ($7260 and $6300 respectively). Qualitative interviews revealed that HW-administered nasopharyngeal swabs took longer to collect, caused more discomfort, and were more difficult to take from children. Factors affecting participation included sense of contribution, perceived trade-offs between benefits and effort, and peer influence. Reluctance was related to stool sampling and negative perceptions of research. This study provides important evidence for planning community-based carriage studies, including cost, logistics, and acceptability. Self-administered swabs had lower recovery, and though cheaper and quicker, this would translate to higher costs for large population-based studies. Recovery might be improved by swab-type, transport medium, and better cold-chain to lab.
Collapse
Affiliation(s)
- Hoang Huy Tran
- National Institute for Hygiene and Epidemiology, Hanoi, Vietnam
| | | | | | | | | | | | | | - Tung Son Trinh
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | | | - Behzad Nadjm
- Oxford University Clinical Research Unit, Hanoi, Vietnam.,Medical Research Council Unit The Gambia at the London, School of Hygiene and Tropical Medicine, Serekunda, The Gambia
| | | | | | | | | | - Thai Duy Pham
- National Institute for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Thomas Kesteman
- Oxford University Clinical Research Unit, Hanoi, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Duc Anh Dang
- National Institute for Hygiene and Epidemiology, Hanoi, Vietnam
| | - Tien Dac Tran
- Centre for Disease Control, Phu Ly, Ha Nam Province, Vietnam
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sonia Lewycka
- Oxford University Clinical Research Unit, Hanoi, Vietnam. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Self-collected gargle fluids and nasopharyngeal swabs as a strategy for molecular diagnostics of respiratory viruses. JOURNAL OF CLINICAL VIROLOGY PLUS 2022. [DOI: 10.1016/j.jcvp.2022.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
8
|
Cyprowski M, Ławniczek-Wałczyk A, Stobnicka-Kupiec A, Gołofit-Szymczak M, Górny RL. Across-Shift Changes in Viable Nasal Bacteria among Waste-Incineration Plant Workers-A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19158984. [PMID: 35897354 PMCID: PMC9331216 DOI: 10.3390/ijerph19158984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
The aim of this pilot study was to assess the time-related changes in viable nasal bacteria concentrations among waste-incineration plant (WIP) workers compared to a group of office building (OB) workers outside the plant. In total, 20 volunteers participated in the study, including 14 WIP and 6 OB workers. WIP workers were divided into two sub-groups: supervisory staff (SVS) and maintenance and repair workers (MRW). Nasal swabs were collected before and after the morning work shift. Airborne bacteria were sampled with a six-stage impactor to assess the bioaerosol size distribution. The analysis showed that a significant, almost three-fold increase in nasal bacterial concentration was found only among WIP workers, and this referred mainly to anaerobic species. The load of anaerobic bacteria at the beginning of work was 12,988 CFU/mL, and after work shift 36,979 CFU/mL (p < 0.01). Significant increases in microbial concentrations was found only in the MRW subgroup, among non-smoking workers only. The results showed increased bacterial concentration in WIP nasal samples for as many as 12 bacterial species, including, e.g., Streptococcus constellatus, Peptostreptococcus spp., E. coli, and P. mirabilis. These preliminary data confirmed that the nasal swab method was helpful for assessment of the workers’ real-time exposure to airborne bacteria.
Collapse
|
9
|
Morris DE, Osman KL, Cleary DW, Clarke SC. The characterization of Moraxella catarrhalis carried in the general population. Microb Genom 2022; 8:mgen000820. [PMID: 35639578 PMCID: PMC9465073 DOI: 10.1099/mgen.0.000820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Moraxella catarrhalis is a common cause of respiratory tract infection, particularly otitis media in children, whilst it is also associated with the onset of exacerbation in chronic obstructive pulmonary disease in adults. Despite the need for an efficacious vaccine against M. catarrhalis, no candidates have progressed to clinical trial. This study, therefore, aimed to characterize the diversity of M. catarrhalis isolated from the upper respiratory tract of healthy children and adults, to gain a better understanding of the epidemiology of M. catarrhalis and the distribution of genes associated with virulence factors, to aid vaccine efforts. Isolates were sequenced and the presence of target genes reported. Contrary to prevailing data, this study found that lipooligosaccharide (LOS) B serotypes are not exclusively associated with 16S type 1. In addition, a particularly low prevalence of LOS B and high prevalence of LOS C serotypes was observed. M. catarrhalis isolates showed low prevalence of antimicrobial resistance and a high gene prevalence for a number of the target genes investigated: ompB2 (also known as copB), ompCD, ompE, ompG1a, ompG1b, mid (also known as hag), mcaP, m35, tbpA, lbpA, tbpB, lbpB, msp22, msp75 and msp78, afeA, pilA, pilQ, pilT, mod, oppA, sbp2, mcmA and mclS.
Collapse
Affiliation(s)
- Denise E. Morris
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Karen L. Osman
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - David W. Cleary
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Global Health Research Institute, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton SO16 6YD, UK
| | - Stuart C. Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Global Health Research Institute, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton SO16 6YD, UK
| |
Collapse
|
10
|
Mutib HH, Oleiwi SR, Majeed Hameed D, Suhail Hussein S. Study of Bacterial Contamination in Operating Theatres at Al-Hussein Teaching Hospital in Al-Samawah, Iraq. ARCHIVES OF RAZI INSTITUTE 2021; 76:1671-1676. [PMID: 35546981 PMCID: PMC9083858 DOI: 10.22092/ari.2021.356365.1831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/25/2021] [Indexed: 06/15/2023]
Abstract
The continuing bacterial contamination in hospitals operating units and theaters has an important role in the spread of hospital infections. The current study evaluated the level of bacterial contamination in the operating theatres at Al-Hussein Teaching Hospital in Al-Samawah, Iraq. For the purpose of sample collection from surgical equipment surfaces, the swab plate method conducted by nurses and laboratory workers was used to collect the samples in the operating theater. The samples were then transferred to the laboratory unit for diagnosis by standard methods. The present study found different rates among operating theatres. According to bacterial contamination rate, especially for the operating theatre in emergency wings with 334 contaminated isolates, the highest rates of contaminated bacterial isolates were Staphylococcus epidermidis (n=171; 26.1%), Bacillus species (spp.) (n=118; 18%), S. aureus (n=111; 16.9%), Klebsiella spp. (n=92; 14%), Enterobacter spp. (n=82; 12.5%), P.aurogenosa (n=24; 3.7%), and Escherichia coli (n=23; 3.7%). Despite the use of all methods of sterilization among the hospital wards, especially the surgical halls in the hospital wards, bacterial contamination is still widespread among these units. It was noted that the bacteria isolated in this study posed a risk as pathogenic bacteria.
Collapse
Affiliation(s)
- H H Mutib
- University of Al-Muthanna, College of Nursing, Samawah, Iraq
| | - S R Oleiwi
- Al-Safwa University College, Nursing Department, Karbala, Iraq
| | - D Majeed Hameed
- University of Al-Muthanna, College of Nursing, Samawah, Iraq
| | | |
Collapse
|
11
|
Smith EL, Wheeler I, Adler H, Ferreira DM, Sá-Leão R, Abdullahi O, Adetifa I, Becker-Dreps S, Esposito S, Farida H, Kandasamy R, Mackenzie GA, Nuorti JP, Nzenze S, Madhi SA, Ortega O, Roca A, Safari D, Schaumburg F, Usuf E, Sanders EAM, Grant LR, Hammitt LL, O'Brien KL, Gounder P, Bruden DJT, Stanton MC, Rylance J. Upper airways colonisation of Streptococcus pneumoniae in adults aged 60 years and older: A systematic review of prevalence and individual participant data meta-analysis of risk factors. J Infect 2020; 81:540-548. [PMID: 32562794 PMCID: PMC7532703 DOI: 10.1016/j.jinf.2020.06.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
Abstract
Systematic review and meta-analysis of 18 studies and more than 6000 participants. Adults over the age of 60 had a pooled prevalence of pneumococcal carriage of 9%. Risk factors: contact with children, smoking and residing in a nursing home.
Background Colonisation with Streptococcus pneumoniae can lead to invasive pneumococcal disease and pneumonia. Pneumococcal acquisition and prevalence of colonisation are high in children. In older adults, a population susceptible to pneumococcal disease, colonisation prevalence is reported to be lower, but studies are heterogeneous. Methods This is a systematic review and meta-analysis of prevalence of, and risk factors for, pneumococcal colonisation in adults ≥ 60 years of age (PROSPERO #42016036891). We identified peer-reviewed studies reporting the prevalence of S. pneumoniae colonisation using MEDLINE and EMBASE (until April 2016), excluding studies of acute disease. Participant-level data on risk factors were sought from each study. Findings Of 2202 studies screened, 29 were analysable: 18 provided participant-level data (representing 6290 participants). Prevalence of detected pneumococcal colonisation was 0–39% by conventional culture methods and 3–23% by molecular methods. In a multivariate analysis, colonisation was higher in persons from nursing facilities compared with the community (odds ratio (OR) 2•30, 95% CI 1•26–4•21 and OR 7•72, 95% CI 1•15–51•85, respectively), in those who were currently smoking (OR 1•69, 95% CI 1•12–2•53) or those who had regular contact with children (OR 1•93, 95%CI 1•27–2•93). Persons living in urban areas had significantly lower carriage prevalence (OR 0•43, 95%CI 0•27–0•70). Interpretation Overall prevalence of pneumococcal colonisation in older adults was higher than expected but varied by risk factors. Future studies should further explore risk factors for colonisation, to highlight targets for focussed intervention such as pneumococcal vaccination of high-risk groups. Funding No funding was required.
Collapse
Affiliation(s)
- Emma L Smith
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - India Wheeler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Hugh Adler
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Daniela M Ferreira
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Raquel Sá-Leão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Osman Abdullahi
- Department of Public Health, School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - Ifedayo Adetifa
- Epidemiology and Demography Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, United Kingdom; Department of Paediatrics and Child Health, College of Medicine, University of Lagos, Idi-Araba, Lagos, Nigeria
| | - Sylvia Becker-Dreps
- Departments of Family Medicine and Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Helmia Farida
- Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Rama Kandasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, United Kingdom; NIHR Oxford Biomedical Research Centre, Oxford OX3 7LE, United Kingdom
| | - Grant A Mackenzie
- Medical Research Council The Gambia Unit at LSHTM, Banjul, The Gambia; Faculty of Infectious and Tropical Diseases, The London School of Hygiene & Tropical Medicine, United Kingdom; Infection and Immunity Theme, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - J Pekka Nuorti
- Health Sciences Unit, Faculty of Social Sciences, Tampere University, Finland; Department of Health Security, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Susan Nzenze
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, Johannesburg, South Africa; Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Omar Ortega
- Gastrointestinal Physiology Laboratory, Department of Surgery, Hospital de Mataró, Universitat Autónoma de Barcelona, Mataró, Spain; Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Anna Roca
- Medical Research Council The Gambia Unit at LSHTM, Banjul, The Gambia
| | - Dodi Safari
- Eijkman Institute for Molecular Biology, Jl. Diponegoro no. 69 Jakarta, Indonesia
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Muenster, Muenster, Germany
| | - Effua Usuf
- Medical Research Council The Gambia Unit at LSHTM, Banjul, The Gambia
| | - Elisabeth A M Sanders
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, the Netherlands
| | - Lindsay R Grant
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Laura L Hammitt
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Katherine L O'Brien
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Prabhu Gounder
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, Center for Disease Control and Prevention, Anchorage, Alaska
| | - Dana J T Bruden
- Arctic Investigations Program, Division of Preparedness and Emerging Infections, Center for Disease Control and Prevention, Anchorage, Alaska
| | | | - Jamie Rylance
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| |
Collapse
|
12
|
Vandendriessche S, Padalko E, Wollants E, Verfaillie C, Verhasselt B, Coorevits L. Evaluation of the Seegene Allplex™ Respiratory Panel for diagnosis of acute respiratory tract infections. Acta Clin Belg 2019; 74:379-385. [PMID: 30307378 DOI: 10.1080/17843286.2018.1531605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objectives: The Seegene AllplexTM Respiratory panel was retrospectively challenged using a collection of quality control samples (QCMD) and clinical samples previously analysed with validated routine methods. Methods: A collection of 111 samples [43 QCMD samples, 13 bronchoalveolar lavage fluids and 55 nasopharyngeal aspirates/swabs] was tested with Seegene AllplexTM. The clinical samples were tested previously using either FTD® Respiratory Pathogens 21 qPCR assay (Fast Track Diagnostics), an in-house multiplex PCR for Bordetella, or BioGX Sample-ReadyTM Atypical pneumo panel (Becton Dickinson). Samples were stored at -80°C prior to analysis with Seegene Allplex™, nucleic acids were automatically extracted with NucliSENS Easymag (bioMérieux). Samples returning discordant results were subjected to repeat testing and/or additional testing by reference laboratories. Results: Seegene correctly identified 41/43 QCMD samples (95.4%); two samples positive for respiratory syncytial virus (RSV) and human metapneumovirus, respectively, were only correctly identified following repeat testing. In the 56 clinical samples, overall, 97 pathogens were identified: 65 pathogens (67.0%) were detected both by routine methods and Seegene, 24 pathogens (24.7%) only by routine methods, and 8 pathogens (8.2%) only by Seegene. The majority of discordant results was detected in samples with low pathogen load (22/32, 68.8%) and in samples containing multiple pathogens (25/32, 78.1%). Full agreement between methods was observed for influenza, RSV, adenovirus, Bordetella (para)pertussis and Chlamydia pneumoniae. Discordance was observed for human metapneumovirus, coronavirus OC43, bocavirus and parainfluenza virus, mainly type 4. Conclusion: Overall, the Seegene AllplexTM assay performed well for routine detection of important respiratory targets. Acceptable agreement was observed between Seegene and other routine assays.
Collapse
Affiliation(s)
- Stien Vandendriessche
- Department of Laboratory Medicine, Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - Elizaveta Padalko
- Department of Laboratory Medicine, Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - Elke Wollants
- Rega Institute, Laboratory of Clinical & Epidemiological Virology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Charlotte Verfaillie
- Department of Laboratory Medicine, Medical Microbiology, AZ Sint-Lucas Ghent, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Laboratory Medicine, Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| | - Liselotte Coorevits
- Department of Laboratory Medicine, Medical Microbiology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
13
|
Coughtrie AL, Jefferies JM, Cleary DW, Doncaster CP, Faust SN, Kraaijeveld AR, Moore MV, Mullee MA, Roderick PJ, Webb JS, Yuen HM, Clarke SC. Microbial epidemiology and carriage studies for the evaluation of vaccines. J Med Microbiol 2019; 68:1408-1418. [DOI: 10.1099/jmm.0.001046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Abigail L. Coughtrie
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Johanna M. Jefferies
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - David W. Cleary
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | - Saul N. Faust
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
- NIHR Southampton Clinical Research Facility, University Hospital Southampton Foundation NHS Trust, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | | | - Michael V. Moore
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Mark A. Mullee
- NIHR Research Design Service South Central, University Hospital Southampton Foundation NHS Trust, Southampton, UK
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Paul J. Roderick
- Global Health Research Institute, University of Southampton, Southampton, UK
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jeremy S. Webb
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Ho Ming Yuen
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Stuart C. Clarke
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
- Global Health Research Institute, University of Southampton, Southampton, UK
| |
Collapse
|
14
|
Zanella RC, Brandileone MCDC, Almeida SCG, de Lemos APS, Sacchi CT, Gonçalves CR, Gonçalves MG, Fukasawa LO, Saraiva MD, Rangel LF, Cunha JLL, Rotta TCA, Douradinho C, Jacob-Filho W, Minamisava R, Andrade AL. Nasopharyngeal carriage of Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus in a Brazilian elderly cohort. PLoS One 2019; 14:e0221525. [PMID: 31437226 PMCID: PMC6705818 DOI: 10.1371/journal.pone.0221525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/08/2019] [Indexed: 11/19/2022] Open
Abstract
We aimed to investigate the nasopharyngeal colonization (NPC) by Streptococcus pneumoniae, Haemophilus influenzae, and Staphylococcus aureus in the elderly population and to assess the demographic factors associated with NPC. This was an observational cohort study in which outpatients aged ≥60 years were enrolled from April to August 2017, with a follow-up visit from September through December 2017. Nasopharyngeal (NP) swabs were collected, bacteria were detected and isolated, and isolates were subjected to phenotypic and molecular characterization using standard microbiological techniques. At enrolment, the rates of S. aureus, methicillin-resistant S. aureus (MRSA), H. influenzae, and S. pneumoniae among 776 elderly outpatients were 15.9%, 2.3%, 2.5%, and 2.2%, respectively. Toxin production was detected in 21.1% of methicillin-susceptible S. aureus, and three SCCmec types were identified: II/IIb, IVa, and VI. At the follow-up visit, all carriage rates were similar (p > 0.05) to the rates at enrolment. Most of S. pneumoniae serotypes were not included in pneumococcal conjugate vaccines (PCVs), except for 7F, 3, and 19A. All strains of H. influenzae were non-typeable. Previous use of antibiotics and 23-valent pneumococcal polysaccharide vaccination (p < 0.05) were risk factors for S. aureus and MRSA carriage; S. aureus colonization was also associated with chronic kidney disease (p = 0.021). S. pneumoniae carriage was associated with male gender (p = 0.032) and an absence of diabetes (p = 0.034), while not receiving an influenza vaccine (p = 0.049) and chronic obstructive pulmonary disease (p = 0.031) were risk factors for H. influenzae colonization. The frailty of study participants was not associated with colonization status. We found a higher S. aureus carriage rate compared with the S. pneumoniae- and H. influenzae-carriage rates in a well-attended population in a geriatric outpatient clinic. This is one of the few studies conducted in Brazil that can support future colonization studies among elderly individuals.
Collapse
Affiliation(s)
- Rosemeire Cobo Zanella
- National Laboratory for Meningitis and Pneumococcal Infections, Centre of Bacteriology, Institute Adolfo Lutz (IAL), São Paulo, Brazil
- * E-mail:
| | | | - Samanta Cristine Grassi Almeida
- National Laboratory for Meningitis and Pneumococcal Infections, Centre of Bacteriology, Institute Adolfo Lutz (IAL), São Paulo, Brazil
| | - Ana Paula Silva de Lemos
- National Laboratory for Meningitis and Pneumococcal Infections, Centre of Bacteriology, Institute Adolfo Lutz (IAL), São Paulo, Brazil
| | | | | | | | | | - Marcos Daniel Saraiva
- Medical Research Laboratory in Aging (LIM 66) of Geriatrics Division of the Clinics Hospital of the University of São Paulo Medical School (GDCH-USPMS), São Paulo, Brazil
| | - Luís Fernando Rangel
- Medical Research Laboratory in Aging (LIM 66) of Geriatrics Division of the Clinics Hospital of the University of São Paulo Medical School (GDCH-USPMS), São Paulo, Brazil
| | - Julia Lusis Lassance Cunha
- Medical Research Laboratory in Aging (LIM 66) of Geriatrics Division of the Clinics Hospital of the University of São Paulo Medical School (GDCH-USPMS), São Paulo, Brazil
| | - Thereza Cristina Ariza Rotta
- Medical Research Laboratory in Aging (LIM 66) of Geriatrics Division of the Clinics Hospital of the University of São Paulo Medical School (GDCH-USPMS), São Paulo, Brazil
| | - Christian Douradinho
- Medical Research Laboratory in Aging (LIM 66) of Geriatrics Division of the Clinics Hospital of the University of São Paulo Medical School (GDCH-USPMS), São Paulo, Brazil
| | - Wilson Jacob-Filho
- Medical Research Laboratory in Aging (LIM 66) of Geriatrics Division of the Clinics Hospital of the University of São Paulo Medical School (GDCH-USPMS), São Paulo, Brazil
| | - Ruth Minamisava
- School of Nursing, Federal University of Goiás, Goiânia, Brazil
| | - Ana Lúcia Andrade
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
15
|
Amarnath SK, Joshi S, Abhyankar MN, Adhikary R, Beena HB, Chugh TD, Gandhi KD, Hittinahalli V, Indumathi VA, Rajavari M, Muralidharan S, Rao SS, Roy I, Saini N. Cross-country transport and isolation and identification of Streptococcus pneumoniae by use of alternate sources of blood supplemented media among laboratories in India. Indian J Med Microbiol 2019; 37:363-369. [PMID: 32003334 DOI: 10.4103/ijmm.ijmm_19_82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background The isolation of S. pneumoniae (Sp) depends on specimen integrity / transport, media and expertise. The non-availability of sheep blood agar poses a challenge in identification of colonial morphology and identification in India. Methods Laboratories processed swabs containing either pure Sp or Sp in mixed cultures with a second (confounding) bacterium shipped across the country in cold conditions. Duplicate set of swabs was shipped back to the central laboratory to assess the impact of shipping on culture viability. The identical swab was cultured on sheep, human blood and one additional agar plate used in the laboratory. Results 46/60(77%) of cultures containing only Sp were correctly identified. In specimens where Sp was present in mixed culture, the proportion of isolates in which Sp was correctly identified varied, with most variability attributed to the particular confounding organism rather than the media. There was no discernible impact of temperature-controlled (4-6°C) transport on the isolation of Sp from culture swabs. Conclusions The study clearly elucidates the ability of laboratories for isolation of S. pneumoniae on human blood agar in resource limited settings. The results highlight the difficulties inherent in correctly identifying pathogens in mixed cultures in needs improvement using standardized tests across the study centers. The study also reaffirms the ability to transport biological specimens over long geographical distances without loss.
Collapse
Affiliation(s)
| | - Sangeeta Joshi
- Consultant Microbiologist, Manipal Hospital, Bengaluru, Karnataka, India
| | - Madhuwanti N Abhyankar
- Consultant Microbiologist, Golwilkar Metropolis Health Services, (I) Pvt. Ltd., Pune, Maharashtra, India
| | - Ranjeeta Adhikary
- Consultant Microbiologist, Manipal Hospital, Bengaluru, Karnataka, India
| | - H B Beena
- Consultant Microbiologist, Manipal Hospital, Bengaluru, Karnataka, India
| | - T D Chugh
- Sr. Consultant, Department of Microbiology, BL Kapoor Memorial Hospital, New Delhi, India
| | - K D Gandhi
- Consultant Microbiologist, Shanti Mukund Hospital, New Delhi, India
| | - Vivek Hittinahalli
- Consultant Microbiologist, Yashomati Hospital, Bengaluru, Karnataka, India
| | - V A Indumathi
- M.S. Ramaiah Medical College, Bengaluru, Karnataka, India
| | | | - S Muralidharan
- St. John's Medical College Hospital, Bengaluru, Karnataka, India
| | - S S Rao
- SS Microbiology Laboratory, Thane, Maharashtra, India
| | - I Roy
- Consultant Microbiologist, Sri Aurobindo Seva Kendra, Kolkata, West Bengal, India
| | - N Saini
- Consultant Microbiologist, Pushpanjali Hospital, New Delhi, India
| |
Collapse
|
16
|
Palmu AA, Ware RS, Lambert SB, Sarna M, Bialasiewicz S, Seib KL, Atack JM, Nissen MD, Grimwood K. Nasal swab bacteriology by PCR during the first 24-months of life: A prospective birth cohort study. Pediatr Pulmonol 2019; 54:289-296. [PMID: 30609299 PMCID: PMC7167656 DOI: 10.1002/ppul.24231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/08/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Most respiratory bacterial carriage studies in children are based on cross-sectional samples or longitudinal studies with infrequent sampling points. The prospective Observational Research in Childhood Infectious Diseases birth cohort study intensively evaluated the community-based epidemiology of respiratory viruses and bacteria during the first 2-years of life. Here we report the bacteriologic findings. METHODS Pregnant women in Brisbane, Australia were recruited between September 2010 and October 2012, and their healthy newborn children were followed for the first 2-years of life. Parents kept a daily symptom diary for the study child, collected a weekly anterior nose swab and completed an illness burden diary when their child met pre-defined illness criteria. Specimens were tested for respiratory bacteria by real-time polymerase chain reaction (PCR) assays and those containing human genomic DNA, deemed as high-quality, were analyzed. RESULTS Altogether 8100 high-quality nasal swab specimens from 158 enrolled children were analyzed. Streptococcus pneumoniae, Moraxella catarrhalis, and Haemophilus influenzae were detected in 42.4%, 38.9%, and 14.8% of these samples, respectively. Concomitant detection of bacteria was common. In contrast, Bordetella pertussis, B. parapertussis, Mycoplasma pneumoniae, Chlamydia pneumoniae, and Simkania negevensis were rarely identified. The prevalence of the three major bacteria was higher with increasing age and in the winter and spring months. Siblings and childcare attendance were the other risk factors identified. CONCLUSIONS We confirmed the feasibility of frequent nasal swabbing by parents for studying bacterial colonization. PCR detected the major respiratory tract bacteria with expected high frequencies, but atypical bacteria were found rarely in this cohort.
Collapse
Affiliation(s)
- Arto A Palmu
- National Institute for Health and Welfare, Department of Public Health Solutions, Tampere, Finland
| | - Robert S Ware
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Stephen B Lambert
- UQ Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Children's Health Research, Children's Health Queensland, Brisbane, Australia
| | - Mohinder Sarna
- UQ Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Seweryn Bialasiewicz
- UQ Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Children's Health Research, Children's Health Queensland, Brisbane, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael D Nissen
- UQ Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,Centre for Children's Health Research, Children's Health Queensland, Brisbane, Australia
| | - Keith Grimwood
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.,Departments of Infectious Diseases and Paediatrics, Gold Coast Health, Gold Coast, Queensland, Australia
| |
Collapse
|
17
|
Coughtrie AL, Morris DE, Anderson R, Begum N, Cleary DW, Faust SN, Jefferies JM, Kraaijeveld AR, Moore MV, Mullee MA, Roderick PJ, Tuck A, Whittaker RN, Yuen HM, Doncaster CP, Clarke SC. Ecology and diversity in upper respiratory tract microbial population structures from a cross-sectional community swabbing study. J Med Microbiol 2018; 67:1096-1108. [PMID: 29927372 DOI: 10.1099/jmm.0.000773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Respiratory tract infections (RTIs) are responsible for over 2.8 million deaths per year worldwide with pathobiont carriage a required precursor to infection. We sought to determine carriage epidemiology for both bacterial and viral respiratory pathogens as part of a large population-based cross-sectional carriage study. METHODOLOGY Nose self-swab samples were collected in two separate time-points, May to August 2012 (late spring/summer) and February to April 2013 (winter/early spring). The presence of six bacterial species: S. pneumoniae, H. influenzae, M. catarrhalis, S. aureus, P. aeruginosa and N. meningitidis in addition to respiratory syncytial virus, influenza viruses A and B, rhinovirus/enterovirus, coronavirus, parainfluenza viruses 1-3 and adenovirus was determined using culture and PCR methods.Results/Key findings. Carriage was shown to vary with age, recent RTI and the presence of other species. Spatial structures of microbial communities were more disordered in the 0-4 age group and those with recent RTI. Species frequency distributions were flatter than random expectation in young individuals (X2=20.42, P=0.002), indicating spatial clumping of species consistent with facilitative relationships. Deviations from a neutral model of ecological niches were observed in summer samples and from older individuals but not in the winter or younger individuals (0-4 years), suggesting the presence of seasonal and age-dependent niche processes in respiratory community assembly. CONCLUSION The application of epidemiological methods and ecological theory to respiratory tract samples has yielded novel insights into the factors that drive microbial community composition.
Collapse
Affiliation(s)
- Abigail L Coughtrie
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Denise E Morris
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Rebecca Anderson
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Nelupha Begum
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - David W Cleary
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,2NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | - Saul N Faust
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,3NIHR Southampton Clinical Research Facility, University Hospital Southampton Foundation NHS Trust, Southampton, UK.,4NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | - Johanna M Jefferies
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,4NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | - Alex R Kraaijeveld
- 5Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Michael V Moore
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Mark A Mullee
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,6NIHR Research Design Service South Central, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | - Paul J Roderick
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,7Global Health Research Institute, University of Southampton, Southampton, UK
| | - Andrew Tuck
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Robert N Whittaker
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Ho Ming Yuen
- 1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - C Patrick Doncaster
- 5Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Stuart C Clarke
- 7Global Health Research Institute, University of Southampton, Southampton, UK.,2NIHR Southampton Biomedical Research Centre, University Hospital Southampton Foundation NHS Trust, Southampton, UK.,1Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.,4NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| |
Collapse
|
18
|
Karppinen S, Teräsjärvi J, Auranen K, Schuez-Havupalo L, Siira L, He Q, Waris M, Peltola V. Acquisition and Transmission of Streptococcus pneumoniae Are Facilitated during Rhinovirus Infection in Families with Children. Am J Respir Crit Care Med 2017; 196:1172-1180. [PMID: 28489454 DOI: 10.1164/rccm.201702-0357oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RATIONALE Laboratory and clinical evidence suggests synergy between rhinoviruses and Streptococcus pneumoniae in the pathogenesis of respiratory tract infections. However, it is unclear whether rhinoviruses promote pneumococcal acquisition and transmission. OBJECTIVES To describe the impact of rhinovirus infection on the acquisition and transmission of pneumococci within families with children. METHODS We investigated 29 families with at least two children. The follow-up started at the onset of respiratory infectious symptoms in any family member and consisted of daily symptom diary and nasal swab samples from each participant twice per week for 3 weeks. Swabs were taken by the parents and sent to a study clinic by mail. Rhinoviruses were detected by reverse transcription-polymerase chain reaction and typed by sequencing. Pneumococci were identified by an antigen test and by standard culture methods, serotyping, and whole-genome sequencing. The effect of rhinovirus infection on the rates of pneumococcal acquisition and within-family transmission was estimated from the observed acquisition events and person-times spent uncolonized, using Poisson regression. MEASUREMENTS AND MAIN RESULTS Rhinovirus was detected in 38 subjects (30%) at the onset and in 86 subjects (67%) during the follow-up. S. pneumoniae was detected on the first day in 9 (7%) and during follow-up in 38 (30%) subjects. Children with rhinovirus infection had a 4.3-fold rate of pneumococcal acquisition from the community (95% confidence interval, 1.1-15.4) and a 14.8-fold rate of within-family transmission (95% confidence interval, 3.1-69.6) compared with children without rhinovirus infection. CONCLUSIONS Rhinovirus infection within families facilitates acquisition and within-family transmission of S. pneumoniae.
Collapse
Affiliation(s)
| | | | - Kari Auranen
- 3 Department of Mathematics and Statistics, and.,4 Department of Clinical Medicine, University of Turku, Turku, Finland
| | | | - Lotta Siira
- 5 Department of Health Security, National Institute for Health and Welfare, Helsinki, Finland; and
| | - Qiushui He
- 2 Department of Medical Microbiology and Immunology.,6 Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Matti Waris
- 7 Department of Virology and Clinical Virology, Turku University Hospital and University of Turku, Turku, Finland
| | - Ville Peltola
- 1 Department of Pediatrics and Adolescent Medicine and
| |
Collapse
|
19
|
Pizzutto SJ, Hare KM, Upham JW. Bronchiectasis in Children: Current Concepts in Immunology and Microbiology. Front Pediatr 2017; 5:123. [PMID: 28611970 PMCID: PMC5447051 DOI: 10.3389/fped.2017.00123] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/08/2017] [Indexed: 12/26/2022] Open
Abstract
Bronchiectasis is a complex chronic respiratory condition traditionally characterized by chronic infection, airway inflammation, and progressive decline in lung function. Early diagnosis and intensive treatment protocols can stabilize or even improve the clinical prognosis of children with bronchiectasis. However, understanding the host immunologic mechanisms that contribute to recurrent infection and prolonged inflammation has been identified as an important area of research that would contribute substantially to effective prevention strategies for children at risk of bronchiectasis. This review will focus on the current understanding of the role of the host immune response and important pathogens in the pathogenesis of bronchiectasis (not associated with cystic fibrosis) in children.
Collapse
Affiliation(s)
- Susan J Pizzutto
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Kim M Hare
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - John W Upham
- Department of Respiratory Medicine, Princess Alexandra Hospital, Brisbane, QLD, Australia.,School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Harrison EM, Gleadall NS, Ba X, Danesh J, Peacock SJ, Holmes M. Validation of self-administered nasal swabs and postage for the isolation of Staphylococcus aureus. J Med Microbiol 2016; 65:1434-1437. [PMID: 27902394 PMCID: PMC5203668 DOI: 10.1099/jmm.0.000381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus carriers are at higher risk of S. aureus infection and are a reservoir for transmission to others. Detection of nasal S. aureus carriage is important for both targeted decolonization and epidemiological studies. Self-administered nasal swabbing has been reported previously, but the effects of posting swabs prior to culture on S. aureus yield have not been investigated. A longitudinal cohort study was performed in which healthy volunteers were recruited, trained in the swabbing procedure and asked to take weekly nasal swabs for 6 weeks (median: 3 weeks, range 1–6 weeks). Two swabs were taken at each sampling episode and randomly assigned for immediate processing on arrival to the laboratory (Swab A) or second class postage prior to processing (Swab B). S. aureus was isolated using standard methods. A total of 95 participants were recruited, who took 944 swabs (472 pairs) over a median of 5 weeks. Of these, 459 swabs were positive for S. aureus. We found no significant difference (P=0.25) between 472 pairs of nasal self-swabs processed immediately or following standard postage from 95 study participants (51.4 % vs. 48.6 %, respectively). We also provide further evidence that persistent carriers can be detected by two weekly swabs with high degrees of sensitivity [92.3 % (95 % CI 74.8–98.8 %)] and specificity [95.6 % (95 % CI 84.8–99.3 %)] compared with a gold standard of five weekly swabs. Self-swabbing and postage of nasal swabs prior to processing has no effect on yield of S. aureus, and could facilitate large community-based carriage studies.
Collapse
Affiliation(s)
- Ewan M Harrison
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - John Danesh
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Sharon J Peacock
- Wellcome Trust Sanger Institute, Hinxton, UK.,Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mark Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Nasopharyngeal Bacterial Carriage in the Conjugate Vaccine Era with a Focus on Pneumococci. J Immunol Res 2015; 2015:394368. [PMID: 26351646 PMCID: PMC4553195 DOI: 10.1155/2015/394368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/29/2015] [Accepted: 06/10/2015] [Indexed: 12/17/2022] Open
Abstract
Seven-valent pneumococcal conjugate vaccine (PCV7) was included in the UK national immunisation program in 2006, and this was replaced by thirteen-valent PCV in 2010. During this time, the carriage of vaccine-type Streptococcus pneumoniae decreased but pneumococcal carriage remained stable due to increases in non-vaccine-type S. pneumoniae. Carriage studies have been undertaken in various countries to monitor vaccine-type replacement and to help predict the serotypes, which may cause invasive disease. There has been less focus on how conjugate vaccines indirectly affect colonization of other nasopharyngeal bacteria. If the nasopharynx is treated as a niche, then bacterial dynamics are accepted to occur. Alterations in these dynamics have been shown due to seasonal changes, antibiotic use, and sibling/day care interaction. It has been shown that, following PCV7 introduction, an eradication of pneumococcal vaccine types has resulted in increases in the abundance of other respiratory pathogens including Haemophilus influenzae and Staphylococcus aureus. These changes are difficult to attribute to PCV7 introduction alone and these studies do not account for further changes due to PCV13 implementation. This review aims to describe nasopharyngeal cocarriage of respiratory pathogens in the PCV era.
Collapse
|
22
|
Gladstone RA, Jefferies JM, Tocheva AS, Beard KR, Garley D, Chong WW, Bentley SD, Faust SN, Clarke SC. Five winters of pneumococcal serotype replacement in UK carriage following PCV introduction. Vaccine 2015; 33:2015-21. [PMID: 25776920 PMCID: PMC4392391 DOI: 10.1016/j.vaccine.2015.03.012] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/02/2022]
Abstract
PCV7 serotype replacement was near complete 5 years after PCV7 introduction. The carriage rate remained stable through out the 5 year period. Serotypes unique to PCV13 significantly decreased by the final winter. Clonal expansion of existing genotypes was primarily responsible for replacement. Continued surveillance is needed to monitor replacement until equilibrium is reached.
The seven-valent pneumococcal conjugate vaccine (PCV7) was added to the UK national immunisation programme in September 2006. PCV13 replaced PCV7 in April 2010. As carriage precedes disease cases this study collected carried pneumococci from children each winter from 2006/7 to 2010/11 over PCV introduction. Conventional microbiology and whole genome sequencing were utilised to characterise pneumococcal strains. Overall prevalence of pneumococcal carriage remained stable. Vaccine serotypes (VT) decreased (p < 0.0001) with concomitant increases in non-vaccine serotypes (NVT). In winter 2010/11 only one isolate of PCV7 VT was observed (6B). PCV13 unique VTs decreased between winters immediately preceding and following PCV13 introduction (p = 0.04). Significant decreases for VTs 6B, 19F, 23F (PCV7) and 6A (PCV13) and increases for NVT 21, 23B, 33F and 35F were detected. The serotype replacement was accompanied by parallel changes in genotype prevalence for associated sequence types with clonal expansion contributing to replacement. By winter 2010/11, serotype coverage of PCV7 and PCV13 was 1% and 11% respectively. VT replacement was observed for PCV7 and PCV13 serotypes. Conjugate vaccine design and use requires continuous monitoring and revision.
Collapse
Affiliation(s)
- Rebecca A Gladstone
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK
| | - Johanna M Jefferies
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | - Anna S Tocheva
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK
| | - Kate R Beard
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK
| | - David Garley
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK
| | - Wei Wei Chong
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK
| | | | - Saul N Faust
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, UK; NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton Foundation NHS Trust, Southampton, UK
| | - Stuart C Clarke
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, UK; Southampton NIHR Respiratory Biomedical Research Unit, University Hospital Southampton Foundation NHS Trust, Southampton, UK.
| |
Collapse
|
23
|
Elliot AJ, Bermingham A, Charlett A, Lackenby A, Ellis J, Sadler C, Sebastianpillai P, Powers C, Foord D, Povey E, Evans B, Durnall H, Fleming DM, Brown D, Smith GE, Zambon M. Self-sampling for community respiratory illness: a new tool for national virological surveillance. ACTA ACUST UNITED AC 2015; 20:21058. [PMID: 25788252 DOI: 10.2807/1560-7917.es2015.20.10.21058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This report aims to evaluate the usefulness of self-sampling as an approach for future national surveillance of emerging respiratory infections by comparing virological data from two parallel surveillance schemes in England. Nasal swabs were obtained via self-administered sampling from consenting adults (≥ 16 years-old) with influenza symptoms who had contacted the National Pandemic Flu Service (NPFS) health line during the 2009 influenza pandemic. Equivalent samples submitted by sentinel general practitioners participating in the national influenza surveillance scheme run jointly by the Royal College of General Practitioners (RCGP) and Health Protection Agency were also obtained. When comparable samples were analysed there was no significant difference in results obtained from self-sampling and clinician-led sampling schemes. These results demonstrate that self-sampling can be applied in a responsive and flexible manner, to supplement sentinel clinician-based sampling, to achieve a wide spread and geographically representative way of assessing community transmission of a known organism.
Collapse
Affiliation(s)
- A J Elliot
- Public Health England, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|