1
|
Liu S, Wang Y, Xiao Y, Guo W, Li Y, Lu Y, Liu Y, Wang Y, Fu L, Feng B, Liu L. Impact of occupancy density and source location on inhalational exposure of infectious respiratory particles in a naturally ventilated fever clinic. BUILDING AND ENVIRONMENT 2025; 276:112839. [DOI: 10.1016/j.buildenv.2025.112839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
2
|
Zhang Y, Shankar SN, Vass WB, Lednicky JA, Fan ZH, Agdas D, Makuch R, Wu CY. Air Change Rate and SARS-CoV-2 Exposure in Hospitals and Residences: A Meta-Analysis. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2024; 58:217-243. [PMID: 38764553 PMCID: PMC11101186 DOI: 10.1080/02786826.2024.2312178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/16/2024] [Indexed: 05/21/2024]
Abstract
As SARS-CoV-2 swept across the globe, increased ventilation and implementation of air cleaning were emphasized by the US CDC and WHO as important strategies to reduce the risk of inhalation exposure to the virus. To assess whether higher ventilation and air cleaning rates lead to lower exposure risk to SARS-CoV-2, 1274 manuscripts published between April 2020 and September 2022 were screened using key words "airborne SARS-CoV-2 or "SARS-CoV-2 aerosol". Ninety-three studies involved air sampling at locations with known sources (hospitals and residences) were selected and associated data were compiled. Two metrics were used to assess exposure risk: SARS-CoV-2 concentration and SARS-CoV-2 detection rate in air samples. Locations were categorized by type (hospital or residence) and proximity to the sampling location housing the isolated/quarantined patient (primary or secondary). The results showed that hospital wards had lower airborne virus concentrations than residential isolation rooms. A negative correlation was found between airborne virus concentrations in primary-occupancy areas and air changes per hour (ACH). In hospital settings, sample positivity rates were significantly reduced in secondary-occupancy areas compared to primary-occupancy areas, but they were similar across sampling locations in residential settings. ACH and sample positivity rates were negatively correlated, though the effect was diminished when ACH values exceeded 8. While limitations associated with diverse sampling protocols exist, data considered by this meta-analysis support the notion that higher ACH may reduce exposure risks to the virus in ambient air.
Collapse
Affiliation(s)
- Yuetong Zhang
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columnia, Canada
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Environmental & Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - William B. Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Z. Hugh Fan
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Duzgun Agdas
- Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, Florida, USA
| | - Robert Makuch
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
3
|
Martinot M, Mohseni-Zadeh M, Gravier S, Ion C, Eyriey M, Beigue S, Coutan C, Ongagna JC, Henric A, Schieber A, Jochault L, Kempf C. Nosocomial Coronavirus Disease 2019 during 2020-2021: Role of Architecture and Ventilation. Healthcare (Basel) 2023; 12:46. [PMID: 38200952 PMCID: PMC10779121 DOI: 10.3390/healthcare12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Nosocomial coronavirus disease 2019 (COVID-19) is a major airborne health threat for inpatients. Architecture and ventilation are key elements to prevent nosocomial COVID-19 (NC), but real-life data are challenging to collect. We aimed to retrospectively assess the impact of the type of ventilation and the ratio of single/double rooms on the risk of NC (acquisition of COVID-19 at least 48 h after admission). This study was conducted in a tertiary hospital composed of two main structures (one historical and one modern), which were the sites of acquisition of NC: historical (H) (natural ventilation, 53% single rooms) or modern (M) hospital (double-flow mechanical ventilation, 91% single rooms). During the study period (1 October 2020 to 31 May 2021), 1020 patients presented with COVID-19, with 150 (14.7%) of them being NC (median delay of acquisition, 12 days). As compared with non-nosocomial cases, the patients with NC were older (79 years vs. 72 years; p < 0.001) and exhibited higher mortality risk (32.7% vs. 14.1%; p < 0.001). Among the 150 NC cases, 99.3% were diagnosed in H, mainly in four medical departments. A total of 73 cases were diagnosed in single rooms versus 77 in double rooms, including 26 secondary cases. Measured air changes per hour were lower in H than in M. We hypothesized that in H, SARS-CoV-2 transmission was favored by short-range transmission within a high ratio of double rooms, but also during clusters, via far-afield transmission through virus-laden aerosols favored by low air changes per hour. A better knowledge of the mechanism of airborne risk in healthcare establishments should lead to the implementation of corrective measures when necessary. People's health is improved using not only personal but also collective protective equipment, i.e., ventilation and architecture, thereby reinforcing the need to change institutional and professional practices.
Collapse
Affiliation(s)
- Martin Martinot
- Infectious Diseases Department, Hôpitaux Civils de Colmar, 68000 Colmar, France; (M.M.-Z.); (S.G.); (C.I.); (S.B.)
| | - Mahsa Mohseni-Zadeh
- Infectious Diseases Department, Hôpitaux Civils de Colmar, 68000 Colmar, France; (M.M.-Z.); (S.G.); (C.I.); (S.B.)
| | - Simon Gravier
- Infectious Diseases Department, Hôpitaux Civils de Colmar, 68000 Colmar, France; (M.M.-Z.); (S.G.); (C.I.); (S.B.)
| | - Ciprian Ion
- Infectious Diseases Department, Hôpitaux Civils de Colmar, 68000 Colmar, France; (M.M.-Z.); (S.G.); (C.I.); (S.B.)
| | - Magali Eyriey
- Clinical Research Department, Hôpitaux Civils de Colmar, 68000 Colmar, France; (M.E.); (J.-C.O.); (A.H.); (A.S.); (C.K.)
| | - Severine Beigue
- Infectious Diseases Department, Hôpitaux Civils de Colmar, 68000 Colmar, France; (M.M.-Z.); (S.G.); (C.I.); (S.B.)
| | - Christophe Coutan
- Technical Department, Hôpitaux Civils de Colmar, 68000 Colmar, France;
| | - Jean-Claude Ongagna
- Clinical Research Department, Hôpitaux Civils de Colmar, 68000 Colmar, France; (M.E.); (J.-C.O.); (A.H.); (A.S.); (C.K.)
| | - Anais Henric
- Clinical Research Department, Hôpitaux Civils de Colmar, 68000 Colmar, France; (M.E.); (J.-C.O.); (A.H.); (A.S.); (C.K.)
| | - Anne Schieber
- Clinical Research Department, Hôpitaux Civils de Colmar, 68000 Colmar, France; (M.E.); (J.-C.O.); (A.H.); (A.S.); (C.K.)
| | - Loic Jochault
- Medical Information Service, Hôpitaux Civils de Colmar, 68000 Colmar, France;
| | - Christian Kempf
- Clinical Research Department, Hôpitaux Civils de Colmar, 68000 Colmar, France; (M.E.); (J.-C.O.); (A.H.); (A.S.); (C.K.)
| |
Collapse
|
4
|
Janssens H, Heytens S, Meyers E, Devleesschauwer B, Cools P, Geens T. Exploratory study of risk factors related to SARS-CoV-2 prevalence in nursing homes in Flanders (Belgium) during the first wave of the COVID-19 pandemic. PLoS One 2023; 18:e0292596. [PMID: 37797082 PMCID: PMC10553833 DOI: 10.1371/journal.pone.0292596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
In a previous study in Belgian nursing homes (NH) during the first wave of the COVID-19 pandemic, we found a SARS-CoV-2 seroprevalence of 17% with a large variability (0-45%) between NH. The current exploratory study aimed to identify nursing home-specific risk factors for high SARS-CoV-2 seroprevalence. Between October 19th, 2020 and November 13th, 2020, during the second COVID-19 wave in Belgium, capillary blood was collected on dried blood spots from 60 residents and staff in each of the 20 participating NH in Flanders and Brussels. The presence of SARS-CoV-2-specific IgG antibodies was assessed by ELISA. Risk factors were evaluated using a questionnaire, filled in by the director or manager of the NH. Assessed risk factors comprised community-related factors, resident-related factors, management and performance features as well as building-related aspects. The relation between risk factors and seroprevalence was assessed by applying random forest modelling, generalized linear models and Bayesian linear regression. The present analyses showed that the prevalence of residents with dementia, the scarcity of personal protective equipment (surgical masks, FFP2 masks, glasses and face shields), and inadequate PCR test capacity were related to a higher seroprevalence. Generally, our study put forward that the various aspects of infection prevention in NH require more attention and investment. This exploratory study suggests that the ratio of residents with dementia, the availability of test capacity and personal protective equipment may have played a role in the SARS-CoV-2 seroprevalence of NH, after the first wave. It underscores the importance of the availability of PPE and education in infection prevention. Moreover, investments may also yield benefits in the prevention of other respiratory infections (such as influenza).
Collapse
Affiliation(s)
- Heidi Janssens
- Research and Analytics, Liantis, Belgium
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Stefan Heytens
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Eline Meyers
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Brecht Devleesschauwer
- Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Sciences, Ghent University, Merelbeke, Belgium
| | - Piet Cools
- Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Tom Geens
- Research and Analytics, Liantis, Belgium
| |
Collapse
|
5
|
Li Y, Lu Y, Wang Y, Liu L, Zhou H, Lin B, Peng Z, Yuan Y. Investigation on the effectiveness of ventilation dilution on mitigating COVID-19 patients' secondary airway damage due to exposure to disinfectants. BUILDING AND ENVIRONMENT 2023; 228:109787. [PMID: 36407877 PMCID: PMC9652096 DOI: 10.1016/j.buildenv.2022.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Chlorine-containing disinfectants are widely used in hospitals to prevent hospital-acquired severe acute respiratory syndrome coronavirus 2 infection. Meanwhile, ventilation is a simple but effective means to maintain clean air. It is essential to explore the exposure level and health effects of coronavirus disease 2019 patients' inhalation exposure to by-products of chloride-containing disinfectants under frequent surface disinfection and understand the role of ventilation in mitigating subsequent airway damage. We determined ventilation dilution performance and indoor air quality of two intensive care unit wards of the largest temporary hospital constructed in China, Leishenshan Hospital. The chloride inhalation exposure levels, and health risks indicated by interleukin-6 and D-dimer test results of 32 patients were analysed. The mean ± standard deviation values of the outdoor air change rate in the two intensive care unit wards were 8.8 ± 1.5 h-1 (Intensive care unit 1) and 4.1 ± 1.4 h-1 (Intensive care unit 2). The median carbon dioxide and fine particulate matter concentrations were 480 ppm and 19 μg/m3 for intensive care unit 1, and 567 ppm and 21 μg/m3 for intensive care unit 2, all of which were around the average levels of those in permanent hospitals (579 ppm and 21 μg/m3). Of these patients, the median (lower quartile, upper quartile) chloride exposure time and calculated dose were 26.66 (2.89, 57.21) h and 0.357 (0.008, 1.317) mg, respectively. A statistically significant positive correlation was observed between interleukin-6 and D-dimer concentrations. To conclude, ventilation helped maintain ward air cleanliness and health risks were not observed.
Collapse
Affiliation(s)
- Yifan Li
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yiran Lu
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Ying Wang
- Department of Infection Management, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei 430071, China
| | - Li Liu
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei 430071, China
| | - Hao Zhou
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
- Institute for Urban Governance and Sustainable Development, Tsinghua University, Beijing 100084, China
| | - Borong Lin
- Department of Building Science, Tsinghua University, Beijing 100084, China
- Laboratory of Eco-Planning & Green Building, Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Zhiyong Peng
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei 430071, China
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yufeng Yuan
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, Hubei 430071, China
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
6
|
Barberá-Riera M, Porru S, Barneo-Muñoz M, Villasante Ferrer A, Carrasco P, de Llanos R, Llueca A, Delgado-Saborit JM. Genetic Load of SARS-CoV-2 in Aerosols Collected in Operating Theaters. Appl Environ Microbiol 2022; 88:e0129722. [PMID: 36102660 PMCID: PMC9552596 DOI: 10.1128/aem.01297-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
After the outbreak of COVID-19, additional protocols have been established to prevent the transmission of the SARS-CoV-2 from the patient to the health personnel and vice versa in health care settings. However, in the case of emergency surgeries, it is not always possible to ensure that the patient is not infected with SARS-CoV-2, assuming a potential source of transmission of the virus to health personnel. This work aimed to evaluate the presence of the SARS-CoV-2 and quantify the viral load in indoor air samples collected inside operating rooms, where emergency and scheduled operations take place. Samples were collected for 3 weeks inside two operating rooms for 24 h at 38 L/min in quartz filters. RNA was extracted from the filters and analyzed using RT-qPCR targeting SARS-CoV-2 genes E, N1 and N2 regions. SARS-CoV-2 RNA was detected in 11.3% of aerosol samples collected in operating rooms, despite with low concentrations (not detected at 13.5 cg/m3 and 10.5 cg/m3 in the scheduled and emergency operating rooms, respectively). Potential sources of airborne SARS-CoV-2 could be aerosolization of the virus during aerosol-generating procedures and in open surgery from patients that might have been recently infected with the virus, despite presenting a negative COVID-19 test. Another source could be related to health care workers unknowingly infected with the virus and exhaling SARS-CoV-2 virions into the air. These results highlight the importance of reinforcing preventive measures against COVID-19 in operating rooms, such as the correct use of protective equipment, screening programs for health care workers, and information campaigns. IMPORTANCE Operating rooms are critical environments in which asepsis must be ensured. The COVID-19 pandemic entailed the implementation of additional preventative measures in health care settings, including operating theaters. Although one of the measures is to operate only COVID-19 free patients, this measure cannot be always implemented, especially in emergency interventions. Therefore, a surveillance campaign was conducted during 3 weeks in two operating rooms to assess the level of SARS-CoV-2 genetic material detected in operating theaters with the aim to assess the risk of COVID-19 transmission during operating procedures. SARS-CoV-2 genetic material was detected in 11% of aerosol samples collected in operating rooms, despite with low concentrations. Plausible SARS-CoV-2 sources have been discussed, including patients and health care personnel infected with the virus. These results highlight the importance of reinforcing preventive measures against COVID-19 in operating rooms, such as the correct use of protective equipment, screening programs for health care workers and information campaigns.
Collapse
Affiliation(s)
- María Barberá-Riera
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Simona Porru
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Manuela Barneo-Muñoz
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Andrea Villasante Ferrer
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Paula Carrasco
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO–Universitat Jaume I–Universitat de València, Valencia, Spain
| | - Rosa de Llanos
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Antoni Llueca
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
- Multidisciplinary Unit of Abdominal Pelvic Oncology Surgery (MUAPOS), University General Hospital of Castellon, Castellón, Spain
| | - Juana María Delgado-Saborit
- Department of Medicine, School of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
- Epidemiology and Environmental Health Joint Research Unit, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, FISABIO–Universitat Jaume I–Universitat de València, Valencia, Spain
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom
| |
Collapse
|