1
|
Occhipinti G, Brugaletta S, Abbate A, Pedicino D, Del Buono MG, Vinci R, Biondi Zoccai G, Sabate M, Angiolillo D, Liuzzo G. Inflammation in coronary atherosclerosis: diagnosis and treatment. Heart 2025:heartjnl-2024-325408. [PMID: 40139681 DOI: 10.1136/heartjnl-2024-325408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
Coronary atherosclerosis is a chronic condition characterised by the development of an atherosclerotic plaque in the inner layer of the coronary artery, mainly associated with cholesterol accumulation and favoured by endothelial dysfunction related to other cardiovascular risk factors, such as smoking, diabetes and hypertension. A key actor in this process is the systemic inflammatory response, which can make plaques either grow slowly over the course of years (like a 'mountain'), obstructing coronary flow, and causing stable coronary artery disease, or make them explode (like a 'volcano') with subsequent abrupt thrombosis causing an acute coronary syndrome. This central role of inflammation in coronary atherosclerosis has led to its consideration as a modifiable cardiovascular risk factor and a therapeutic target. Classic anti-inflammatory drugs have been tested in clinical trials with some encouraging results, and new drugs specifically designed to tackle inflammation are currently being under investigation in ongoing trials. The objectives of this review are to (1) summarise the role of inflammatory biomarkers and imaging techniques to detect inflammation at each stage of plaque progression, and (2) explore currently available and upcoming anti-inflammatory therapies.
Collapse
Affiliation(s)
- Giovanni Occhipinti
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
| | - Salvatore Brugaletta
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
- Universitat de Barcelona Facultat de Medicina i Ciències de la Salut, Barcelona, Catalunya, Spain
| | - Antonio Abbate
- Robert M. Berne Cardiovascular Research Center and Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Daniela Pedicino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ramona Vinci
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| | - Giuseppe Biondi Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome La Sapienza, Latina, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Manel Sabate
- Cardiovascular Clinic Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Hospital Clínic de Barcelona, Barcelona, Catalunya, Spain
- Universitat de Barcelona Facultat de Medicina i Ciències de la Salut, Barcelona, Catalunya, Spain
| | - Dominick Angiolillo
- Division of Cardiology, University of Florida College of Medicine, Jacksonville, Florida, USA
| | - Giovanna Liuzzo
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Cardiovascular and Pulmonary Sciences, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy
| |
Collapse
|
2
|
Muhs T, Ljubojevic-Holzer S, Sattler S. Anti-inflammatory Therapies for Ischemic Heart Disease. Curr Cardiol Rep 2025; 27:57. [PMID: 39969632 PMCID: PMC11839821 DOI: 10.1007/s11886-025-02211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
PURPOSE OF REVIEW The inclusion of immunomodulatory strategies as supportive therapies in ischemic heart disease (IHD) has garnered significant support over recent years. Several such approaches appear to be unified through their ultimate target, the NLRP3 inflammasome. This review presents a brief update on immunomodulatory strategies in the continuum of conditions constituting ischemic heart disease and emphasising on the seemingly unifying mechanism of NLRP3 activation as well as modulation across these conditions. RECENT FINDINGS The NLRP3 inflammasome is a multiprotein complex assembled upon inflammatory stimulation, causing the release of pro-inflammatory cytokines and initiating pyroptosis. The NLRP3 pathway is relevant in inflammatory signalling of cardiac immune cells as well as non-immune cells in the myocardium, including cardiomyocytes, fibroblasts and endothelial cells. In addition to a focus on clinical outcome and efficacy trials of targeting NLRP3-related pathways, the potential connection between immunomodulation in cardiology and the NLRP3 pathway is currently being explored in preclinical trials. Colchicine, cytokine-based approaches and SGLT2 inhibitors have emerged as promising agents. However, the conditions comprising IHD including atherosclerosis, coronary artery disease (CAD), myocardial infarction (MI) and ischemic cardiomyopathy/heart failure (iCMP/HF) are not equally amenable to immunomodulation with the respective drugs. Atherosclerosis, coronary artery disease and ischemic cardiomyopathy are affected by chronic inflammation, but the immunomodulatory approach to acute inflammation in the post-MI setting remains a pharmacological challenge, as detrimental and regenerative effects of myocardial inflammation are initiated in unison. The NLRP3 inflammasome lies at the center of cell mediated inflammation in IHD. Recent trial evidence has highlighted anti-inflammatory effects of colchicine, interleukin-based therapy as well as SGLT2i in IHD and that the respective drugs modulate the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Tillmann Muhs
- Department of Pharmacology, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Senka Ljubojevic-Holzer
- Department of Cardiology, LKH Univ. Klinikum Graz, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Susanne Sattler
- Department of Pharmacology, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
- Department of Cardiology, LKH Univ. Klinikum Graz, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
3
|
Giakomidi D, Ishola A, Nus M. Targeting gut microbiota to regulate the adaptive immune response in atherosclerosis. Front Cardiovasc Med 2025; 12:1502124. [PMID: 39957996 PMCID: PMC11825770 DOI: 10.3389/fcvm.2025.1502124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025] Open
Abstract
Atherosclerosis, the leading cause of death worldwide, is a chronic inflammatory disease leading to the accumulation of lipid-rich plaques in the intima of large and medium-sized arteries. Accumulating evidence indicates the important regulatory role of the adaptive immune system in atherosclerosis during all stages of the disease. The gut microbiome has also become a key regulator of atherosclerosis and immunomodulation. Whilst existing research extensively explores the impact of the microbiome on the innate immune system, only a handful of studies have explored the regulatory capacity of the microbiome on the adaptive immune system to modulate atherogenesis. Building on these concepts and the pitfalls on the gut microbiota and adaptive immune response interaction, this review explores potential strategies to therapeutically target the microbiome, including the use of prebiotics and vaccinations, which could influence the adaptive immune response and consequently plaque composition and development.
Collapse
Affiliation(s)
- Despina Giakomidi
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| | - Ayoola Ishola
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Fardman A, Chernomordik F, Beigel R. Looking Back, Leaning Forward-A Contemporary Overview of Acute Coronary Syndrome. J Clin Med 2024; 13:7331. [PMID: 39685794 DOI: 10.3390/jcm13237331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular disease (CVD) remains the most common cause of morbidity and mortality worldwide [...].
Collapse
Affiliation(s)
- Alexander Fardman
- Cardiovascular Division, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 5262000, Israel
| | - Fernando Chernomordik
- Cardiovascular Division, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 5262000, Israel
| | - Roy Beigel
- Cardiovascular Division, Sheba Medical Center, Tel-Hashomer, Ramat-Gan 5262000, Israel
| |
Collapse
|
5
|
Juhasz V, Charlier FT, Zhao TX, Tsiantoulas D. Targeting the adaptive immune continuum in atherosclerosis and post-MI injury. Atherosclerosis 2024; 399:118616. [PMID: 39546915 DOI: 10.1016/j.atherosclerosis.2024.118616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 11/17/2024]
Abstract
Atherosclerotic disease is a cholesterol-rich lipoprotein particle-driven disease resulting in the formation of atherosclerotic plaques in large and medium size arteries. Rupture or erosion of atherosclerotic plaques can trigger the formation of a thrombus causing the obstruction of the blood flow in the coronary artery and thereby leading to myocardial infarction (MI). Inflammation is a crucial pillar of the mechanisms leading to atherosclerosis and governing the cardiac repair post-MI. Dissecting the complex and sophisticated networks of the immune responses underlying the formation of atherosclerotic plaques and affecting the healing of the heart after MI will allow the designing of highly precise immunomodulatory therapies for these settings. Notably, MI also accelerates atherosclerosis via modulating the response of the immune system. Therefore, for the identification of effective and safe therapeutic targets, it is critical to consider the inflammatory continuum that interconnects the two pathologies and identify immunomodulatory strategies that confer a protective effect in both settings or at least, affect each pathology independently. Adaptive immunity, which consists of B and T lymphocytes, is a major regulator of atherosclerosis and post-MI cardiac repair. Here, we review and discuss the effect of potential adaptive immunity-targeting therapies, such as cell-depleting therapies, in atherosclerosis and post-MI cardiac injury.
Collapse
Affiliation(s)
- Viktoria Juhasz
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Fiona T Charlier
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tian X Zhao
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Cardiology, Royal Papworth Hospital NHS Trust, Cambridge, United Kingdom
| | | |
Collapse
|
6
|
Döring Y, van der Vorst EPC, Weber C. Targeting immune cell recruitment in atherosclerosis. Nat Rev Cardiol 2024; 21:824-840. [PMID: 38664575 DOI: 10.1038/s41569-024-01023-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 10/17/2024]
Abstract
Atherosclerosis is the primary underlying cause of myocardial infarction and stroke. Atherosclerotic cardiovascular disease is characterized by a chronic inflammatory reaction in medium-to-large-sized arteries, with its onset and perpetuation driven by leukocytes infiltrating the subendothelial space. Activation of endothelial cells triggered by hyperlipidaemia and lipoprotein retention in the arterial intima initiates the accumulation of pro-inflammatory leukocytes in the arterial wall, fostering the progression of atherosclerosis. This inflammatory response is coordinated by an array of soluble mediators, namely cytokines and chemokines, that amplify inflammation both locally and systemically and are complemented by tissue-specific molecules that regulate the homing, adhesion and transmigration of leukocytes. Despite abundant evidence from mouse models, only a few therapies targeting leukocytes in atherosclerosis have been assessed in humans. The major challenges for the clinical translation of these therapies include the lack of tissue specificity and insufficient selectivity of inhibition strategies. In this Review, we discuss the latest research on receptor-ligand pairs and interactors that regulate leukocyte influx into the inflamed artery wall, primarily focusing on studies that used pharmacological interventions. We also discuss mechanisms that promote the resolution of inflammation and highlight how major findings from these research areas hold promise as potential therapeutic strategies for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yvonne Döring
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Emiel P C van der Vorst
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany.
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, Aachen, Germany.
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
7
|
Porsch F, Binder CJ. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:780-807. [PMID: 38937626 DOI: 10.1038/s41569-024-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Autoimmune diseases are associated with a dramatically increased risk of atherosclerotic cardiovascular disease and its clinical manifestations. The increased risk is consistent with the notion that atherogenesis is modulated by both protective and disease-promoting immune mechanisms. Notably, traditional cardiovascular risk factors such as dyslipidaemia and hypertension alone do not explain the increased risk of cardiovascular disease associated with autoimmune diseases. Several mechanisms have been implicated in mediating the autoimmunity-associated cardiovascular risk, either directly or by modulating the effect of other risk factors in a complex interplay. Aberrant leukocyte function and pro-inflammatory cytokines are central to both disease entities, resulting in vascular dysfunction, impaired resolution of inflammation and promotion of chronic inflammation. Similarly, loss of tolerance to self-antigens and the generation of autoantibodies are key features of autoimmunity but are also implicated in the maladaptive inflammatory response during atherosclerotic cardiovascular disease. Therefore, immunomodulatory therapies are potential efficacious interventions to directly reduce the risk of cardiovascular disease, and biomarkers of autoimmune disease activity could be relevant tools to stratify patients with autoimmunity according to their cardiovascular risk. In this Review, we discuss the pathophysiological aspects of the increased cardiovascular risk associated with autoimmunity and highlight the many open questions that need to be answered to develop novel therapies that specifically address this unmet clinical need.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Buch MH, Mallat Z, Dweck MR, Tarkin JM, O'Regan DP, Ferreira V, Youngstein T, Plein S. Current understanding and management of cardiovascular involvement in rheumatic immune-mediated inflammatory diseases. Nat Rev Rheumatol 2024; 20:614-634. [PMID: 39232242 DOI: 10.1038/s41584-024-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a spectrum of disorders of overlapping immunopathogenesis, with a prevalence of up to 10% in Western populations and increasing incidence in developing countries. Although targeted treatments have revolutionized the management of rheumatic IMIDs, cardiovascular involvement confers an increased risk of mortality and remains clinically under-recognized. Cardiovascular pathology is diverse across rheumatic IMIDs, ranging from premature atherosclerotic cardiovascular disease (ASCVD) to inflammatory cardiomyopathy, which comprises myocardial microvascular dysfunction, vasculitis, myocarditis and pericarditis, and heart failure. Epidemiological and clinical data imply that rheumatic IMIDs and associated cardiovascular disease share common inflammatory mechanisms. This concept is strengthened by emergent trials that indicate improved cardiovascular outcomes with immune modulators in the general population with ASCVD. However, not all disease-modifying therapies that reduce inflammation in IMIDs such as rheumatoid arthritis demonstrate equally beneficial cardiovascular effects, and the evidence base for treatment of inflammatory cardiomyopathy in patients with rheumatic IMIDs is lacking. Specific diagnostic protocols for the early detection and monitoring of cardiovascular involvement in patients with IMIDs are emerging but are in need of ongoing development. This Review summarizes current concepts on the potentially targetable inflammatory mechanisms of cardiovascular pathology in rheumatic IMIDs and discusses how these concepts can be considered for the diagnosis and management of cardiovascular involvement across rheumatic IMIDs, with an emphasis on the potential of cardiovascular imaging for risk stratification, early detection and prognostication.
Collapse
Affiliation(s)
- Maya H Buch
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| | - Ziad Mallat
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Marc R Dweck
- Centre for Cardiovascular Science, Chancellors Building, Little France Crescent, University of Edinburgh, Edinburgh, UK
| | - Jason M Tarkin
- Section of Cardiorespiratory Medicine, Victor Phillip Dahdaleh Heart & Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Declan P O'Regan
- MRC Laboratory of Medical Sciences, Imperial College London, London, UK
| | - Vanessa Ferreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Taryn Youngstein
- National Heart & Lung Institute, Imperial College London, London, UK
- Department of Rheumatology, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Sven Plein
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| |
Collapse
|
9
|
Caffè A, Animati FM, Iannaccone G, Rinaldi R, Montone RA. Precision Medicine in Acute Coronary Syndromes. J Clin Med 2024; 13:4569. [PMID: 39124834 PMCID: PMC11313297 DOI: 10.3390/jcm13154569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Nowadays, current guidelines on acute coronary syndrome (ACS) provide recommendations mainly based on the clinical presentation. However, greater attention is being directed to the specific pathophysiology underlying ACS, considering that plaque destabilization and rupture leading to luminal thrombotic obstruction is not the only pathway involved, albeit the most recognized. In this review, we discuss how intracoronary imaging and biomarkers allow the identification of specific ACS endotypes, leading to the recognition of different prognostic implications, tailored management strategies, and new potential therapeutic targets. Furthermore, different strategies can be applied on a personalized basis regarding antithrombotic therapy, non-culprit lesion revascularization, and microvascular obstruction (MVO). With respect to myocardial infarction with non-obstructive coronary arteries (MINOCA), we will present a precision medicine approach, suggested by current guidelines as the mainstay of the diagnostic process and with relevant therapeutic implications. Moreover, we aim at illustrating the clinical implications of targeted strategies for ACS secondary prevention, which may lower residual risk in selected patients.
Collapse
Affiliation(s)
- Andrea Caffè
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.C.); (F.M.A.); (R.R.)
| | - Francesco Maria Animati
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.C.); (F.M.A.); (R.R.)
| | - Giulia Iannaccone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.C.); (F.M.A.); (R.R.)
| | - Riccardo Rinaldi
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, 00168 Rome, Italy; (A.C.); (F.M.A.); (R.R.)
| | - Rocco Antonio Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
10
|
O’Brien JW, Case A, Kemper C, Zhao TX, Mallat Z. Therapeutic Avenues to Modulate B-Cell Function in Patients With Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:1512-1522. [PMID: 38813699 PMCID: PMC11208059 DOI: 10.1161/atvbaha.124.319844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The adaptive immune system plays an important role in the development and progression of atherosclerotic cardiovascular disease. B cells can have both proatherogenic and atheroprotective roles, making treatments aimed at modulating B cells important therapeutic targets. The innate-like B-cell response is generally considered atheroprotective, while the adaptive response is associated with mixed consequences for atherosclerosis. Additionally, interactions of B cells with components of the adaptive and innate immune system, including T cells and complement, also represent key points for therapeutic regulation. In this review, we discuss therapeutic approaches based on B-cell depletion, modulation of B-cell survival, manipulation of both the antibody-dependent and antibody-independent B-cell response, and emerging immunization techniques.
Collapse
Affiliation(s)
- James W. O’Brien
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
| | - Ayden Case
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (C.K.)
| | - Tian X. Zhao
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
- Department of Cardiology, Royal Papworth Hospital, Cambridge, United Kingdom (T.X.Z.)
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, United Kingdom (J.W.O., A.C., T.X.Z., Z.M.)
- Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, France (Z.M.)
| |
Collapse
|
11
|
Nitz K, Herrmann J, Lerman A, Lutgens E. Costimulatory and Coinhibitory Immune Checkpoints in Atherosclerosis: Therapeutic Targets in Atherosclerosis? JACC Basic Transl Sci 2024; 9:827-843. [PMID: 39070270 PMCID: PMC11282889 DOI: 10.1016/j.jacbts.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 07/30/2024]
Abstract
The benefits of current state-of-the-art treatments to combat atherosclerotic cardiovascular disease (ASCVD) have stagnated. Treatments are mostly based on controlling cardiovascular risk factors, especially hyperlipidemia. Although the most recent advances with PCSK-9 inhibitors support the hyperlipidemia aspect of ASCVD, several lines of experimental evidence have outlined that atherosclerosis is also driven by inflammation. In the past years, phase 1, 2, and 3 clinical trials targeting inflammation to combat ASCVD have revealed that patients do tolerate such immune therapies, show decreases in inflammatory markers, and/or have reductions in cardiovascular endpoints. However, the search for the optimal anti-inflammatory or immune-modulating strategy and the stratification of patients who would benefit from such treatments and appropriate treatment regimens to combat ASCVD is only just beginning. In this review, we focus on immune checkpoint-based therapeutics (costimulation and coinhibition), many of which are already approved by the U.S. Food and Drug Administration for the treatment of cancer or autoimmune diseases, and discuss their use as a novel immunotherapeutic strategy to treat ASCVD.
Collapse
Affiliation(s)
- Katrin Nitz
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Esther Lutgens
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Bonacina F, Della-Morte D. Editorial: Exploiting cellular immunometabolism as a strategy for innovative cardiovascular therapies. Front Cardiovasc Med 2024; 11:1435850. [PMID: 38883983 PMCID: PMC11176533 DOI: 10.3389/fcvm.2024.1435850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Affiliation(s)
- F Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - D Della-Morte
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
13
|
Sharma H, Mossman K, Austin RC. Fatal attractions that trigger inflammation and drive atherosclerotic disease. Eur J Clin Invest 2024; 54:e14169. [PMID: 38287209 DOI: 10.1111/eci.14169] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Atherosclerosis is the salient, underlying cause of cardiovascular diseases, such as arrhythmia, coronary artery disease, cardiomyopathy, pulmonary embolism and myocardial infarction. In recent years, atherosclerosis pathophysiology has evolved from a lipid-based to an inflammation-centric ideology. METHODS This narrative review is comprised of review and original articles that were found through the PubMed search engine. The following search terms or amalgamation of terms were used: "cardiovascular disease," "atherosclerosis," "inflammation," "GRP78," "Hsp60," "oxidative low-density lipoproteins," "aldehyde dehydrogenase," "β2-glycoprotein," "lipoprotein lipase A," "human cytomegalovirus." "SARS-CoV-2," "chlamydia pneumonia," "autophagy," "thrombosis" and "therapeutics." RESULTS Emerging evidence supports the concept that atherosclerosis is associated with the interaction between cell surface expression of stress response chaperones, including GRP78 and Hsp60, and their respective autoantibodies. Moreover, various other autoantigens and their autoantibodies have displayed a compelling connection with the development of atherosclerosis, including oxidative low-density lipoproteins, aldehyde dehydrogenase, β2-glycoprotein and lipoprotein lipase A. Atherosclerosis progression is also concurrent with viral and bacterial activators of various diseases. This narrative review will focus on the contributions of human cytomegalovirus as well as SARS-CoV-2 and chlamydia pneumonia in atherosclerosis development. Notably, the interaction of an autoantigen with their respective autoantibodies or the presence of a foreign antigen can enhance inflammation development, which leads to atherosclerotic lesion progression. CONCLUSION We will highlight and discuss the complex role of the interaction between autoantigens and autoantibodies, and the presence of foreign antigens in the development of atherosclerotic lesions in relationship to pro-inflammatory responses.
Collapse
Affiliation(s)
- Hitesh Sharma
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| | - Karen Mossman
- Department of Medicine, Michael DeGroote Institute for Infectious Disease Research and the McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton and the Hamilton Centre for Kidney Research, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Snijckers RPM, Foks AC. Adaptive immunity and atherosclerosis: aging at its crossroads. Front Immunol 2024; 15:1350471. [PMID: 38686373 PMCID: PMC11056569 DOI: 10.3389/fimmu.2024.1350471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Adaptive immunity plays a profound role in atherosclerosis pathogenesis by regulating antigen-specific responses, inflammatory signaling and antibody production. However, as we age, our immune system undergoes a gradual functional decline, a phenomenon termed "immunosenescence". This decline is characterized by a reduction in proliferative naïve B- and T cells, decreased B- and T cell receptor repertoire and a pro-inflammatory senescence associated secretory profile. Furthermore, aging affects germinal center responses and deteriorates secondary lymphoid organ function and structure, leading to impaired T-B cell dynamics and increased autoantibody production. In this review, we will dissect the impact of aging on adaptive immunity and the role played by age-associated B- and T cells in atherosclerosis pathogenesis, emphasizing the need for interventions that target age-related immune dysfunction to reduce cardiovascular disease risk.
Collapse
Affiliation(s)
| | - Amanda C. Foks
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
15
|
Zheng WC, Chan W, Dart A, Shaw JA. Novel therapeutic targets and emerging treatments for atherosclerotic cardiovascular disease. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2024; 10:53-67. [PMID: 37813820 DOI: 10.1093/ehjcvp/pvad074] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality worldwide. Even with excellent control of low-density lipoprotein cholesterol (LDL-C) levels, adverse cardiovascular events remain a significant clinical problem worldwide, including among those without any traditional ASCVD risk factors. It is necessary to identify novel sources of residual risk and to develop targeted strategies that address them. Lipoprotein(a) has become increasingly recognized as a new cardiovascular risk determinant. Large-scale clinical trials have also signalled the potential additive cardiovascular benefits of decreasing triglycerides beyond lowering LDL-C levels. Since CANTOS (Anti-inflammatory Therapy with Canakinumab for Atherosclerotic Disease) demonstrated that antibodies against interleukin-1β may decrease recurrent cardiovascular events in secondary prevention, various anti-inflammatory medications used for rheumatic conditions and new monoclonal antibody therapeutics have undergone rigorous evaluation. These data build towards a paradigm shift in secondary ASCVD prevention, underscoring the value of targeting multiple biological pathways in the management of both lipid levels and systemic inflammation. Evolving knowledge of the immune system, and the gut microbiota may result in opportunities for modifying previously unrecognized sources of residual inflammatory risk. This review provides an overview of novel therapeutic targets for ASCVD and emerging treatments with a focus on mechanisms, efficacy, and safety.
Collapse
Affiliation(s)
- Wayne C Zheng
- Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
| | - William Chan
- Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anthony Dart
- Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - James A Shaw
- Department of Cardiology, Alfred Health, Melbourne, Victoria, Australia
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, Australia
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Ogawa M. Targeted Molecular Imaging and Therapy Based on Nuclear and Optical Technologies. Biol Pharm Bull 2024; 47:1066-1071. [PMID: 38825459 DOI: 10.1248/bpb.b24-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Both nuclear and optical imaging are used for in vivo molecular imaging. Nuclear imaging displays superior quantitativity, and it permits imaging in deep tissues. Thus, this method is widely used clinically. Conversely, because of the low permeability of visible to near-IR light in living animals, it is difficult to visualize deep tissues via optical imaging. However, the light at these wavelengths has no ionizing effect, and it can be used without any restrictions in terms of location. Furthermore, optical signals can be controlled in vivo to accomplish target-specific imaging. Nuclear medicine and phototherapy have also evolved to permit targeted-specific imaging. In targeted nuclear therapy, beta emitters are conventionally used, but alpha emitters have received significant attention recently. Concerning phototherapy, photoimmunotherapy with near-IR light was approved in Japan in 2020. In this article, target-specific imaging and molecular targeted therapy utilizing nuclear medicine and optical technologies are discussed.
Collapse
Affiliation(s)
- Mikako Ogawa
- Laboratory of Bioanalysis and Molecular Imaging, Faculty of Pharmaceutical Sciences, Hokkaido University
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University
| |
Collapse
|
17
|
Behrens F, Bartolomaeus H, Wilck N, Holle J. Gut-immune axis and cardiovascular risk in chronic kidney disease. Clin Kidney J 2024; 17:sfad303. [PMID: 38229879 PMCID: PMC10790347 DOI: 10.1093/ckj/sfad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Indexed: 01/18/2024] Open
Abstract
Patients with chronic kidney disease (CKD) suffer from marked cardiovascular morbidity and mortality, so lowering the cardiovascular risk is paramount to improve quality of life and survival in CKD. Manifold mechanisms are hold accountable for the development of cardiovascular disease (CVD), and recently inflammation arose as novel risk factor significantly contributing to progression of CVD. While the gut microbiome was identified as key regulator of immunity and inflammation in several disease, CKD-related microbiome-immune interaction gains increasing importance. Here, we summarize the latest knowledge on microbiome dysbiosis in CKD, subsequent changes in bacterial and host metabolism and how this drives inflammation and CVD in CKD. Moreover, we outline potential therapeutic targets along the gut-immune-cardiovascular axis that could aid the combat of CVD development and high mortality in CKD.
Collapse
Affiliation(s)
- Felix Behrens
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité – Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité – Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Nephrology und Intensive Medical Care, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité – Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Nephrology und Intensive Medical Care, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Holle
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité – Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
| |
Collapse
|
18
|
Blanchard I, Vootukuru N, Bhattaru A, Patil S, Rojulpote C. PET Radiotracers in Atherosclerosis: A Review. Curr Probl Cardiol 2023; 48:101925. [PMID: 37392979 DOI: 10.1016/j.cpcardiol.2023.101925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Traditional atherosclerosis imaging modalities are limited to late stages of disease, prior to which patients are frequently asymptomatic. Positron emission tomography (PET) imaging allows for the visualization of metabolic processes underscoring disease progression via radioactive tracer, allowing earlier-stage disease to be identified. 2-deoxy-2-[fluorine-18]fluoro-D-glucose (18F-FDG) uptake largely reflects the metabolic activity of macrophages, but is unspecific and limited in its utility. By detecting areas of microcalcification, 18F-Sodium Fluoride (18F-NaF) uptake also provides insight into atherosclerosis pathogenesis. Gallium-68 DOTA-0-Tyr3-Octreotate (68Ga-DOTATATE) PET has also shown potential in identifying vulnerable atherosclerotic plaques with high somatostatin receptor expression. Finally, 11-carbon (11C)-choline and 18F-fluoromethylcholine (FMCH) tracers may identify high-risk atherosclerotic plaques by detecting increased choline metabolism. Together, these radiotracers quantify disease burden, assess treatment efficacy, and stratify risk for adverse cardiac events.
Collapse
Affiliation(s)
| | - Nishita Vootukuru
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - Abhijit Bhattaru
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ; Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Chaitanya Rojulpote
- Department of Radiology, University of Pennsylvania, Philadelphia, PA; Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA.
| |
Collapse
|
19
|
Espinoza-Derout J, Arambulo JML, Ramirez-Trillo W, Rivera JC, Hasan KM, Lao CJ, Jordan MC, Shao XM, Roos KP, Sinha-Hikim AP, Friedman TC. The lipolysis inhibitor acipimox reverses the cardiac phenotype induced by electronic cigarettes. Sci Rep 2023; 13:18239. [PMID: 37880325 PMCID: PMC10600141 DOI: 10.1038/s41598-023-44082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Electronic cigarettes (e-cigarettes) are a prevalent alternative to conventional nicotine cigarettes among smokers and people who have never smoked. Increased concentrations of serum free fatty acids (FFAs) are crucial in generating lipotoxicity. We studied the effects of acipimox, an antilipolytic drug, on e-cigarette-induced cardiac dysfunction. C57BL/6J wild-type mice on high fat diet were treated with saline, e-cigarette with 2.4% nicotine [e-cigarette (2.4%)], and e-cigarette (2.4%) plus acipimox for 12 weeks. Fractional shortening and ejection fraction were diminished in mice exposed to e-cigarettes (2.4%) compared with saline and acipimox-treated mice. Mice exposed to e-cigarette (2.4%) had increased circulating levels of inflammatory cytokines and FFAs, which were diminished by acipimox. Gene Set Enrichment Analysis revealed that e-cigarette (2.4%)-treated mice had gene expression changes in the G2/M DNA damage checkpoint pathway that was normalized by acipimox. Accordingly, we showed that acipimox suppressed the nuclear localization of phospho-p53 induced by e-cigarette (2.4%). Additionally, e-cigarette (2.4%) increased the apurinic/apyrimidinic sites, a marker of oxidative DNA damage which was normalized by acipimox. Mice exposed to e-cigarette (2.4%) had increased cardiac Heme oxygenase 1 protein levels and 4-hydroxynonenal (4-HNE). These markers of oxidative stress were decreased by acipimox. Therefore, inhibiting lipolysis with acipimox normalizes the physiological changes induced by e-cigarettes and the associated increase in inflammatory cytokines, oxidative stress, and DNA damage.
Collapse
Affiliation(s)
- Jorge Espinoza-Derout
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA.
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jose Mari Luis Arambulo
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - William Ramirez-Trillo
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - Juan Carlos Rivera
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
| | - Kamrul M Hasan
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Candice J Lao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Maria C Jordan
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xuesi M Shao
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kenneth P Roos
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Amiya P Sinha-Hikim
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Theodore C Friedman
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, 1731 E. 120th Street, Los Angeles, CA, 90059, USA
- Departments of Physiology, Medicine, and Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
20
|
Zhu X, Li Q, George V, Spanoudis C, Gilkes C, Shrestha N, Liu B, Kong L, You L, Echeverri C, Li L, Wang Z, Chaturvedi P, Muniz GJ, Egan JO, Rhode PR, Wong HC. A novel interleukin-2-based fusion molecule, HCW9302, differentially promotes regulatory T cell expansion to treat atherosclerosis in mice. Front Immunol 2023; 14:1114802. [PMID: 36761778 PMCID: PMC9907325 DOI: 10.3389/fimmu.2023.1114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/27/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease caused by deposition of oxidative low-density lipoprotein (LDL) in the arterial intima which triggers the innate immune response through myeloid cells such as macrophages. Regulatory T cells (Tregs) play an important role in controlling the progression or regression of atherosclerosis by resolving macrophage-mediated inflammatory functions. Interleukin-2 (IL-2) signaling is essential for homeostasis of Tregs. Since recombinant IL-2 has an unfavorable pharmacokinetic profile limiting its therapeutic use, we constructed a fusion protein, designated HCW9302, containing two IL-2 domains linked by an extracellular tissue factor domain. We found that HCW9302 exhibited a longer serum half-life with an approximately 1000-fold higher affinity for the IL-2Rα than IL-2. HCW9302 could be administered to mice at a dosing range that expanded and activated Tregs but not CD4+ effector T cells. In an ApoE-/- mouse model, HCW9302 treatment curtailed the progression of atherosclerosis through Treg activation and expansion, M2 macrophage polarization and myeloid-derived suppressor cell induction. HCW9302 treatment also lessened inflammatory responses in the aorta. Thus, HCW9302 is a potential therapeutic agent to expand and activate Tregs for treatment of inflammatory and autoimmune diseases.
Collapse
|
21
|
Meng Q, Liu H, Liu J, Pang Y, Liu Q. Advances in immunotherapy modalities for atherosclerosis. Front Pharmacol 2023; 13:1079185. [PMID: 36703734 PMCID: PMC9871313 DOI: 10.3389/fphar.2022.1079185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. Atherosclerosis is the pathological basis of atherosclerotic cardiovascular disease (ASCVD). Atherosclerosis is now understood to be a long-term immune-mediated inflammatory condition brought on by a complicated chain of factors, including endothelial dysfunction, lipid deposits in the artery wall, and monocyte-derived macrophage infiltration, in which both innate immunity and adaptive immunity play an indispensable role. Recent studies have shown that atherosclerosis can be alleviated by inducing a protective immune response through certain auto-antigens or exogenous antigens. Some clinical trials have also demonstrated that atherosclerotic is associated with the presence of immune cells and immune factors in the body. Therefore, immunotherapy is expected to be a new preventive and curative measure for atherosclerosis. In this review, we provide a summary overview of recent progress in the research of immune mechanisms of atherosclerosis and targeted therapeutic pathways.
Collapse
Affiliation(s)
- Qingwen Meng
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China,Hainan Provincial Key Laboratory of Tropical Brain Research and Transformation, Hainan Medical University, Haikou, China
| | - Huajiang Liu
- Deparment of Cardiovascular, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jinteng Liu
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Yangyang Pang
- School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, China,School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China,*Correspondence: Qibing Liu,
| |
Collapse
|