1
|
Holt NM, Byrne MF. The Role of Artificial Intelligence and Big Data for Gastrointestinal Disease. Gastrointest Endosc Clin N Am 2025; 35:291-308. [PMID: 40021230 DOI: 10.1016/j.giec.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Artificial intelligence (AI) is a rapidly evolving presence in all fields and industries, with the ability to both improve quality and reduce the burden of human effort. Gastroenterology is a field with a focus on diagnostic techniques and procedures, and AI and big data have established and growing roles to play. Alongside these opportunities are challenges, which will evolve in parallel.
Collapse
Affiliation(s)
- Nicholas Mathew Holt
- Gastroenterology and Hepatology Unit, The Canberra Hospital, Yamba Drive, Garran, ACT 2605, Australia.
| | - Michael Francis Byrne
- Division of Gastroenterology, Vancouver General Hospital, University of British Columbia, UBC Division of Gastroenterology, 5153 - 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
2
|
Calabrese G, Maselli R, Maida M, Barbaro F, Morais R, Nardone OM, Sinagra E, Di Mitri R, Sferrazza S. Unveiling the effectiveness of Chat-GPT 4.0, an artificial intelligence conversational tool, for addressing common patient queries in gastrointestinal endoscopy. IGIE 2025. [DOI: 10.1016/j.igie.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
|
3
|
Mota J, Almeida MJ, Martins M, Mendes F, Cardoso P, Afonso J, Ribeiro T, Ferreira J, Fonseca F, Limbert M, Lopes S, Macedo G, Castro Poças F, Mascarenhas M. Artificial Intelligence in Coloproctology: A Review of Emerging Technologies and Clinical Applications. J Clin Med 2024; 13:5842. [PMID: 39407902 PMCID: PMC11477032 DOI: 10.3390/jcm13195842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a transformative tool across several specialties, namely gastroenterology, where it has the potential to optimize both diagnosis and treatment as well as enhance patient care. Coloproctology, due to its highly prevalent pathologies and tremendous potential to cause significant mortality and morbidity, has drawn a lot of attention regarding AI applications. In fact, its application has yielded impressive outcomes in various domains, colonoscopy being one prominent example, where it aids in the detection of polyps and early signs of colorectal cancer with high accuracy and efficiency. With a less explored path but equivalent promise, AI-powered capsule endoscopy ensures accurate and time-efficient video readings, already detecting a wide spectrum of anomalies. High-resolution anoscopy is an area that has been growing in interest in recent years, with efforts being made to integrate AI. There are other areas, such as functional studies, that are currently in the early stages, but evidence is expected to emerge soon. According to the current state of research, AI is anticipated to empower gastroenterologists in the decision-making process, paving the way for a more precise approach to diagnosing and treating patients. This review aims to provide the state-of-the-art use of AI in coloproctology while also reflecting on future directions and perspectives.
Collapse
Affiliation(s)
- Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-065 Porto, Portugal;
- DigestAID—Digestive Artificial Intelligence Development, Rua Alfredo Allen n.° 455/461, 4200-135 Porto, Portugal
| | - Filipa Fonseca
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO Lisboa), 1099-023 Lisboa, Portugal; (F.F.); (M.L.)
| | - Manuel Limbert
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO Lisboa), 1099-023 Lisboa, Portugal; (F.F.); (M.L.)
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
| | - Susana Lopes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| | - Fernando Castro Poças
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Department of Gastroenterology, Santo António University Hospital, 4099-001 Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| |
Collapse
|
4
|
Mascarenhas M, Martins M, Ribeiro T, Afonso J, Cardoso P, Mendes F, Cardoso H, Almeida R, Ferreira J, Fonseca J, Macedo G. Software as a Medical Device (SaMD) in Digestive Healthcare: Regulatory Challenges and Ethical Implications. Diagnostics (Basel) 2024; 14:2100. [PMID: 39335779 PMCID: PMC11431531 DOI: 10.3390/diagnostics14182100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The growing integration of software in healthcare, particularly the rise of standalone software as a medical device (SaMD), is transforming digestive medicine, a field heavily reliant on medical imaging for both diagnosis and therapeutic interventions. This narrative review aims to explore the impact of SaMD on digestive healthcare, focusing on the evolution of these tools and their regulatory and ethical challenges. Our analysis highlights the exponential growth of SaMD in digestive healthcare, driven by the need for precise diagnostic tools and personalized treatment strategies. This rapid advancement, however, necessitates the parallel development of a robust regulatory framework to ensure SaMDs are transparent and deliver universal clinical benefits without the introduction of bias or harm. In addition, the discussion highlights the importance of adherence to the FAIR principles for data management-findability, accessibility, interoperability, and reusability. However, enhanced accessibility and interoperability require rigorous protocols to ensure compliance with data protection guidelines and adequate data security, both of which are crucial for effective integration of SaMDs into clinical workflows. In conclusion, while SaMDs hold significant promise for improving patients' outcomes in digestive medicine, their successful integration into clinical workflow depends on rigorous data protection protocols and clinical validation. Future directions include the need for adequate clinical and real-world studies to demonstrate that these devices are safe and well-suited to healthcare settings.
Collapse
Affiliation(s)
- Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine of University of Porto, 4200 427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
| | - Hélder Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| | - Rute Almeida
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine of University of Porto, 4200 427 Porto, Portugal
| | - João Ferreira
- Department of Mechanic Engineering, Faculty of Engineering of University of Porto, 4200 427 Porto, Portugal
- DigestAID-Digestive Artificial Intelligence Development, 4200 427 Porto, Portugal
| | - João Fonseca
- CINTESIS@RISE, Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine of University of Porto, 4200 427 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200 427 Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, 4200 427 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200 427 Porto, Portugal
| |
Collapse
|
5
|
Khosravi M, Mojtabaeian SM, Zare Z. Factors influencing the use of big data within healthcare services: a systematic review. HEALTH INF MANAG J 2024:18333583241270484. [PMID: 39166442 DOI: 10.1177/18333583241270484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Background: The emergence of big data holds the promise of aiding healthcare providers by identifying patterns and converting vast quantities of data into actionable insights facilitating the provision of precision medicine and decision-making. Objective: This study aimed to investigate the factors influencing use of big data within healthcare services to facilitate their use. Method: A systematic review was conducted in February 2024, adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Database searches for articles published between 01 January 2020 and 18 February 2024 and included PubMed, Scopus, ProQuest and Cochrane Library. The Authority, Accuracy, Coverage, Objectivity, Date, Significance ( AACODS) checklist was used to evaluate the quality of the included articles. Subsequently, a thematic analysis was conducted on the findings of the review, using the Boyatzis approach. Results: A final selection of 46 studies were included in this systematic review. A significant proportion of these studies demonstrated acceptable quality, and the level of bias was deemed satisfactory. Thematic analysis identified seven major themes that influenced the use of big data in healthcare services. These themes were grouped into four primary categories: performance expectancy, effort expectancy, social influence, and facilitating conditions. Factors associated with "effort expectancy" were the most highly cited in the included studies (67%), while those related to "social influence" received the fewest citations (15%). Conclusion: This study underscored the critical role of "effort expectancy" factors, particularly those under the theme of "data complexity and management," in the process of using big data in healthcare services. Implications: Results of this study provide groundwork for future research to explore facilitators and barriers to using big data in health care, particularly in relation to data complexity and the efficient and effective management of big data, with significant implications for healthcare administrators and policymakers.
Collapse
Affiliation(s)
| | | | - Zahra Zare
- Shiraz University of Medical Sciences, Iran
| |
Collapse
|
6
|
Mascarenhas Saraiva M, Spindler L, Fathallah N, Beaussier H, Mamma C, Ribeiro T, Afonso J, Carvalho M, Moura R, Cardoso P, Mendes F, Martins M, Adam J, Ferreira J, Macedo G, de Parades V. Deep Learning in High-Resolution Anoscopy: Assessing the Impact of Staining and Therapeutic Manipulation on Automated Detection of Anal Cancer Precursors. Clin Transl Gastroenterol 2024; 15:e00681. [PMID: 38270249 DOI: 10.14309/ctg.0000000000000681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION High-resolution anoscopy (HRA) is the gold standard for detecting anal squamous cell carcinoma (ASCC) precursors. Preliminary studies on the application of artificial intelligence (AI) models to this modality have revealed promising results. However, the impact of staining techniques and anal manipulation on the effectiveness of these algorithms has not been evaluated. We aimed to develop a deep learning system for automatic differentiation of high-grade squamous intraepithelial lesion vs low-grade squamous intraepithelial lesion in HRA images in different subsets of patients (nonstained, acetic acid, lugol, and after manipulation). METHODS A convolutional neural network was developed to detect and differentiate high-grade and low-grade anal squamous intraepithelial lesions based on 27,770 images from 103 HRA examinations performed in 88 patients. Subanalyses were performed to evaluate the algorithm's performance in subsets of images without staining, acetic acid, lugol, and after manipulation of the anal canal. The sensitivity, specificity, accuracy, positive and negative predictive values, and area under the curve were calculated. RESULTS The convolutional neural network achieved an overall accuracy of 98.3%. The algorithm had a sensitivity and specificity of 97.4% and 99.2%, respectively. The accuracy of the algorithm for differentiating high-grade squamous intraepithelial lesion vs low-grade squamous intraepithelial lesion varied between 91.5% (postmanipulation) and 100% (lugol) for the categories at subanalysis. The area under the curve ranged between 0.95 and 1.00. DISCUSSION The introduction of AI to HRA may provide an accurate detection and differentiation of ASCC precursors. Our algorithm showed excellent performance at different staining settings. This is extremely important because real-time AI models during HRA examinations can help guide local treatment or detect relapsing disease.
Collapse
Affiliation(s)
- Miguel Mascarenhas Saraiva
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, Porto, Portugal
- Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | - Lucas Spindler
- Department of Proctology, GH Paris Saint-Joseph, Paris, France
| | - Nadia Fathallah
- Department of Proctology, GH Paris Saint-Joseph, Paris, France
| | - Hélene Beaussier
- Department of Clinical Research, GH Paris Saint-Joseph, Paris, France
| | - Célia Mamma
- Department of Clinical Research, GH Paris Saint-Joseph, Paris, France
| | - Tiago Ribeiro
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, Porto, Portugal
| | - João Afonso
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, Porto, Portugal
| | - Mariana Carvalho
- Department of Mechanical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- INEGI-Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - Rita Moura
- Department of Mechanical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- INEGI-Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - Pedro Cardoso
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, Porto, Portugal
| | - Francisco Mendes
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, Porto, Portugal
| | - Miguel Martins
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, Porto, Portugal
| | - Julien Adam
- Department of Pathology, GH Paris Saint-Joseph, Paris, France
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering of the University of Porto, Porto, Portugal
- INEGI-Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - Guilherme Macedo
- Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, Porto, Portugal
- WGO Gastroenterology and Hepatology Training Center, Porto, Portugal
- Faculty of Medicine of the University of Porto, Alameda Professor Hernâni Monteiro, Porto, Portugal
| | | |
Collapse
|
7
|
Mota J, Almeida MJ, Mendes F, Martins M, Ribeiro T, Afonso J, Cardoso P, Cardoso H, Andrade P, Ferreira J, Mascarenhas M, Macedo G. From Data to Insights: How Is AI Revolutionizing Small-Bowel Endoscopy? Diagnostics (Basel) 2024; 14:291. [PMID: 38337807 PMCID: PMC10855436 DOI: 10.3390/diagnostics14030291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The role of capsule endoscopy and enteroscopy in managing various small-bowel pathologies is well-established. However, their broader application has been hampered mainly by their lengthy reading times. As a result, there is a growing interest in employing artificial intelligence (AI) in these diagnostic and therapeutic procedures, driven by the prospect of overcoming some major limitations and enhancing healthcare efficiency, while maintaining high accuracy levels. In the past two decades, the applicability of AI to gastroenterology has been increasing, mainly because of the strong imaging component. Nowadays, there are a multitude of studies using AI, specifically using convolutional neural networks, that prove the potential applications of AI to these endoscopic techniques, achieving remarkable results. These findings suggest that there is ample opportunity for AI to expand its presence in the management of gastroenterology diseases and, in the future, catalyze a game-changing transformation in clinical activities. This review provides an overview of the current state-of-the-art of AI in the scope of small-bowel study, with a particular focus on capsule endoscopy and enteroscopy.
Collapse
Affiliation(s)
- Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Helder Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - Patrícia Andrade
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal;
- Digestive Artificial Intelligence Development, R. Alfredo Allen 455-461, 4200-135 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- ManopH Gastroenterology Clinic, R. de Sá da Bandeira 752, 4000-432 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal (G.M.)
- WGO Gastroenterology and Hepatology Training Center, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-427 Porto, Portugal
| |
Collapse
|
8
|
Ribeiro T, Morais R, Monteiro C, Carvalho A, Barros S, Fernando A, Pioche M, de Santiago ER, Macedo G. Estimating the environmental impact of endoscopic activity at a tertiary center: a pilot study. Eur J Gastroenterol Hepatol 2024; 36:39-44. [PMID: 37942729 DOI: 10.1097/meg.0000000000002667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
INTRODUCTION The growing number of endoscopic procedures, frequently requiring single-use disposable instruments, is responsible for the production of a large amount of waste. To this date, the reality of waste production at large European Gastroenterology centers is unknown. This study aimed to estimate the amount of waste due to endoscopic practice at a tertiary center in Portugal. METHODS We performed a prospective study to calculate the mass (in kg) of residues generated during a period of 5 working days of endoscopic practice. We included residues produced at endoscopy suites, pre and postprocedure areas and during endoscope reprocessing. Residues were categorized as non-dangerous (groups I/II), of biologic risk (group III) and specific hazardous hospital residues (group IV). The production of residues separated for recycling/valorization (paper/card and plastic) was also quantified. The volume of water used for reprocessing an endoscope was also assessed. RESULTS During the analyzed period, 241 endoscopic procedures were performed. A total of 443.2 kg of waste (22.6 kg from groups I/II, 266.9 kg from group III and 3.9 kg from group IV) were produced, most from group III (75%). For each endoscopic procedure, 1.8 kg of waste was generated. Of the total waste mass, 17.8% was separated for recycling/valorization. A volume of 55L of water was required for reprocessing one endoscope. CONCLUSION Each endoscopic procedure generated a significant amount of waste and water consumption during reprocessing. These real-life analyses are a pivotal step before implementing effective measures to improve resource utilization and more sustainable practices.
Collapse
Affiliation(s)
- Tiago Ribeiro
- Department of Gastroenterology, Centro Hospitalar Universitário de São João
- WGO Gastroenterology and Hepatology Training Center
| | - Rui Morais
- Department of Gastroenterology, Centro Hospitalar Universitário de São João
- WGO Gastroenterology and Hepatology Training Center
- Faculty of Medicine of the University of Porto
| | - Cristiana Monteiro
- Department of Gastroenterology, Centro Hospitalar Universitário de São João
- WGO Gastroenterology and Hepatology Training Center
| | - Ana Carvalho
- Department of Gastroenterology, Centro Hospitalar Universitário de São João
- WGO Gastroenterology and Hepatology Training Center
| | - Sónia Barros
- Department of Gastroenterology, Centro Hospitalar Universitário de São João
- WGO Gastroenterology and Hepatology Training Center
| | - André Fernando
- Department of Facilities Operations, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Mathieu Pioche
- Gastroenterology and Endoscopy Unit, Edouard Herriot Hospital, Lyon, France
| | - Enrique Rodríguez de Santiago
- Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBEREHD, Universidad de Alcalá, Madrid, Spain
| | - Guilherme Macedo
- Department of Gastroenterology, Centro Hospitalar Universitário de São João
- WGO Gastroenterology and Hepatology Training Center
- Faculty of Medicine of the University of Porto
| |
Collapse
|
9
|
Mahoney LB, Huang JS, Lightdale JR, Walsh CM. Pediatric endoscopy: how can we improve patient outcomes and ensure best practices? Expert Rev Gastroenterol Hepatol 2024; 18:89-102. [PMID: 38465446 DOI: 10.1080/17474124.2024.2328229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
INTRODUCTION Strategies to promote high-quality endoscopy in children require consensus around pediatric-specific quality standards and indicators. Using a rigorous guideline development process, the international Pediatric Endoscopy Quality Improvement Network (PEnQuIN) was developed to support continuous quality improvement efforts within and across pediatric endoscopy services. AREAS COVERED This review presents a framework, informed by the PEnQuIN guidelines, for assessing endoscopist competence, granting procedural privileges, audit and feedback, and for skill remediation, when required. As is critical for promoting quality, PEnQuIN indicators can be benchmarked at the individual endoscopist, endoscopy facility, and endoscopy community levels. Furthermore, efforts to incorporate technologies, including electronic medical records and artificial intelligence, into endoscopic quality improvement processes can aid in creation of large-scale networks to facilitate comparison and standardization of quality indicator reporting across sites. EXPERT OPINION PEnQuIN quality standards and indicators provide a framework for continuous quality improvement in pediatric endoscopy, benefiting individual endoscopists, endoscopy facilities, and the broader endoscopy community. Routine and reliable measurement of data, facilitated by technology, is required to identify and drive improvements in care. Engaging all stakeholders in endoscopy quality improvement processes is crucial to enhancing patient outcomes and establishing best practices for safe, efficient, and effective pediatric endoscopic care.
Collapse
Affiliation(s)
- Lisa B Mahoney
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Jeannie S Huang
- Rady Children's Hospital, San Diego, CA and University of California San Diego, La Jolla, CA, USA
| | - Jenifer R Lightdale
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Catharine M Walsh
- Division of Gastroenterology, Hepatology and Nutrition and the Research and Learning Institutes, The Hospital for Sick Children, Department of Paediatrics and the Wilson Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Feldman K, Nehme F. Beyond Clinical Accuracy: Considerations for the Use of Generative Artificial Intelligence Models in Gastrointestinal Care. Gastroenterology 2023; 165:336-338. [PMID: 37321355 DOI: 10.1053/j.gastro.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Affiliation(s)
- Keith Feldman
- Division of Health Services and Outcomes Research, Children's Mercy Kansas City, Kansas City, Missouri; Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Fredy Nehme
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
11
|
Kumar A, Clough J, Tavabie O. #FGCUP2023 - and the review paper of the year goes to…. Frontline Gastroenterol 2023; 14:263-264. [PMID: 37056316 PMCID: PMC10086707 DOI: 10.1136/flgastro-2023-102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/09/2023] [Indexed: 04/15/2023] Open
Affiliation(s)
- Aditi Kumar
- Gastroenterology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
| | - Jennifer Clough
- Gastroenterology, Guy's and Saint Thomas' NHS Foundation Trust, London, UK
| | - Oliver Tavabie
- Gastroenterology, Kingston Hospital NHS Trust, Kingston upon Thames, UK
| |
Collapse
|
12
|
Big Data in Gastroenterology Research. Int J Mol Sci 2023; 24:ijms24032458. [PMID: 36768780 PMCID: PMC9916510 DOI: 10.3390/ijms24032458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Studying individual data types in isolation provides only limited and incomplete answers to complex biological questions and particularly falls short in revealing sufficient mechanistic and kinetic details. In contrast, multi-omics approaches to studying health and disease permit the generation and integration of multiple data types on a much larger scale, offering a comprehensive picture of biological and disease processes. Gastroenterology and hepatobiliary research are particularly well-suited to such analyses, given the unique position of the luminal gastrointestinal (GI) tract at the nexus between the gut (mucosa and luminal contents), brain, immune and endocrine systems, and GI microbiome. The generation of 'big data' from multi-omic, multi-site studies can enhance investigations into the connections between these organ systems and organisms and more broadly and accurately appraise the effects of dietary, pharmacological, and other therapeutic interventions. In this review, we describe a variety of useful omics approaches and how they can be integrated to provide a holistic depiction of the human and microbial genetic and proteomic changes underlying physiological and pathophysiological phenomena. We highlight the potential pitfalls and alternatives to help avoid the common errors in study design, execution, and analysis. We focus on the application, integration, and analysis of big data in gastroenterology and hepatobiliary research.
Collapse
|
13
|
Istasy P, Lee WS, Iansavichene A, Upshur R, Gyawali B, Burkell J, Sadikovic B, Lazo-Langner A, Chin-Yee B. The Impact of Artificial Intelligence on Health Equity in Oncology: Scoping Review. J Med Internet Res 2022; 24:e39748. [PMID: 36005841 PMCID: PMC9667381 DOI: 10.2196/39748] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The field of oncology is at the forefront of advances in artificial intelligence (AI) in health care, providing an opportunity to examine the early integration of these technologies in clinical research and patient care. Hope that AI will revolutionize health care delivery and improve clinical outcomes has been accompanied by concerns about the impact of these technologies on health equity. OBJECTIVE We aimed to conduct a scoping review of the literature to address the question, "What are the current and potential impacts of AI technologies on health equity in oncology?" METHODS Following PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines for scoping reviews, we systematically searched MEDLINE and Embase electronic databases from January 2000 to August 2021 for records engaging with key concepts of AI, health equity, and oncology. We included all English-language articles that engaged with the 3 key concepts. Articles were analyzed qualitatively for themes pertaining to the influence of AI on health equity in oncology. RESULTS Of the 14,011 records, 133 (0.95%) identified from our review were included. We identified 3 general themes in the literature: the use of AI to reduce health care disparities (58/133, 43.6%), concerns surrounding AI technologies and bias (16/133, 12.1%), and the use of AI to examine biological and social determinants of health (55/133, 41.4%). A total of 3% (4/133) of articles focused on many of these themes. CONCLUSIONS Our scoping review revealed 3 main themes on the impact of AI on health equity in oncology, which relate to AI's ability to help address health disparities, its potential to mitigate or exacerbate bias, and its capability to help elucidate determinants of health. Gaps in the literature included a lack of discussion of ethical challenges with the application of AI technologies in low- and middle-income countries, lack of discussion of problems of bias in AI algorithms, and a lack of justification for the use of AI technologies over traditional statistical methods to address specific research questions in oncology. Our review highlights a need to address these gaps to ensure a more equitable integration of AI in cancer research and clinical practice. The limitations of our study include its exploratory nature, its focus on oncology as opposed to all health care sectors, and its analysis of solely English-language articles.
Collapse
Affiliation(s)
- Paul Istasy
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Rotman Institute of Philosophy, Western University, London, ON, Canada
| | - Wen Shen Lee
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine, Western University, London, ON, Canada
| | | | - Ross Upshur
- Division of Clinical Public Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Bridgepoint Collaboratory for Research and Innovation, Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Bishal Gyawali
- Division of Cancer Care and Epidemiology, Department of Oncology, Queen's University, Kingston, ON, Canada
- Division of Cancer Care and Epidemiology, Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | - Jacquelyn Burkell
- Faculty of Information and Media Studies, Western University, London, ON, Canada
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Schulich School of Medicine, Western University, London, ON, Canada
| | - Alejandro Lazo-Langner
- Division of Hematology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Benjamin Chin-Yee
- Rotman Institute of Philosophy, Western University, London, ON, Canada
- Division of Hematology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Division of Hematology, Department of Medicine, London Health Sciences Centre, London, ON, Canada
| |
Collapse
|
14
|
Boese A, Wex C, Croner R, Liehr UB, Wendler JJ, Weigt J, Walles T, Vorwerk U, Lohmann CH, Friebe M, Illanes A. Endoscopic Imaging Technology Today. Diagnostics (Basel) 2022; 12:1262. [PMID: 35626417 PMCID: PMC9140648 DOI: 10.3390/diagnostics12051262] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
One of the most applied imaging methods in medicine is endoscopy. A highly specialized image modality has been developed since the first modern endoscope, the "Lichtleiter" of Bozzini was introduced in the early 19th century. Multiple medical disciplines use endoscopy for diagnostics or to visualize and support therapeutic procedures. Therefore, the shapes, functionalities, handling concepts, and the integrated and surrounding technology of endoscopic systems were adapted to meet these dedicated medical application requirements. This survey gives an overview of modern endoscopic technology's state of the art. Therefore, the portfolio of several manufacturers with commercially available products on the market was screened and summarized. Additionally, some trends for upcoming developments were collected.
Collapse
Affiliation(s)
- Axel Boese
- INKA Health Tech Innovation Lab., Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.F.); (A.I.)
| | - Cora Wex
- Clinic of General-, Visceral-, Vascular- and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany; (C.W.); (R.C.)
| | - Roland Croner
- Clinic of General-, Visceral-, Vascular- and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany; (C.W.); (R.C.)
| | - Uwe Bernd Liehr
- Uro-Oncology, Roboter-Assisted and Focal Therapy, Clinic for Urology, University Hospital Magdeburg, 39120 Magdeburg, Germany; (U.B.L.); (J.J.W.)
| | - Johann Jakob Wendler
- Uro-Oncology, Roboter-Assisted and Focal Therapy, Clinic for Urology, University Hospital Magdeburg, 39120 Magdeburg, Germany; (U.B.L.); (J.J.W.)
| | - Jochen Weigt
- Hepatology, and Infectious Diseases, Clinic of Gastroenterology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Thorsten Walles
- Clinic of Cardiac and Thoracic Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Ulrich Vorwerk
- Clinic of Throat, Nose, and Ear, Head and Neck Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | | | - Michael Friebe
- INKA Health Tech Innovation Lab., Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.F.); (A.I.)
- Department of Measurement and Electronics, AGH University of Science and Technology, 31-503 Kraków, Poland
| | - Alfredo Illanes
- INKA Health Tech Innovation Lab., Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (M.F.); (A.I.)
| |
Collapse
|