1
|
McLester-Davis LWY, Norton D, Papale LA, James TT, Salazar H, Asthana S, Johnson SC, Gooding DC, Roy TR, Alisch RS, Hogan KJ, Drury SS, Gleason CE, Zuelsdorff M. Telomere Length and Cognitive Function Among Middle-Aged and Older Participants From Communities Underrepresented in Aging Research: A Preliminary Study. J Aging Health 2025:8982643251331260. [PMID: 40253647 DOI: 10.1177/08982643251331260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
ObjectiveAccelerated biological aging is a plausible and modifiable determinant of dementia burden facing minoritized communities but is not well-studied in these historically underrepresented populations. Our objective was to preliminarily characterize relationships between telomere length and cognitive health among American Indian/Alaska Native (AI/AN) and Black/African American (B/AA) middle-aged and older adults.MethodsThis study included data on telomere length and neuropsychological test performance from 187 participants, enrolled in one of two community-based cognitive aging cohorts and who identified their primary race as AI/AN or B/AA.ResultsNested multivariable regression models revealed preliminary evidence for associations between telomere length and cognitive performance, and these associations were partially independent of chronological age.DiscussionSmall sample size limited estimate precision; however, findings suggest future work on telomere length and cognitive health in underrepresented populations at high risk for dementia is feasible and valuable as a foundation for social and behavioral intervention research.
Collapse
Affiliation(s)
- Lauren W Y McLester-Davis
- Native American Center for Health Professions, University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Derek Norton
- Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| | - Ligia A Papale
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Taryn T James
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Hector Salazar
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sanjay Asthana
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Diane C Gooding
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Department of Psychology, University of Wisconsin, Madison, WI, USA
| | - Trevor R Roy
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kirk J Hogan
- Department of Anesthesiology, University of Wisconsin, Madison, WI, USA
| | - Stacy S Drury
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Carey E Gleason
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital Geriatric Research Education and Clinical Center, Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Megan Zuelsdorff
- School of Nursing, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
2
|
Wang Q, Liu F, Cai B, Wang X, Deng Y, Chen T. Telomere Length, Brain Imaging-Derived Phenotypes, and Alzheimer's Disease: Mendelian Randomization Analysis. Mol Neurobiol 2025:10.1007/s12035-025-04913-6. [PMID: 40220244 DOI: 10.1007/s12035-025-04913-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Previous studies have reported a correlation between telomere length (TL) and Alzheimer's disease (AD); however, the specific biological mechanisms supporting this association remain unclear. We used two-sample Mendelian randomization (MR) to systematically explore the putative causal relationships between TL, brain imaging-derived phenotypes (IDPs), and AD, while further evaluating the mediating role of IDPs using both two-step MR and multivariable MR. In addition, we utilized several independent validation cohorts to repeat the analysis, further strengthening our inferences. The MR analysis showed that a longer TL was causally associated with a lower risk for AD (OR, 0.84; 95% CI, 0.75 to 0.93; P = 0.001). In addition, the subsequent two-step MR results indicate that nine brain IDPs partially mediate the effect of TL on AD. The inverse association of genetically predicted TL with AD was attenuated after adjusting for these IDPs in multivariable MR. Our study provides further evidence for the causal relationship between TL and AD, with IDPs potentially partially mediating this association. Therefore, telomere biology may be a potential pathway involved in AD development, and identifying the important role of telomeres can draw more attention to the development of telomere-related diagnostics, treatments, and AD therapies.
Collapse
Affiliation(s)
- Qitong Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Fang Liu
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Benchi Cai
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Xinyu Wang
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China
| | - Yidong Deng
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
| | - Tao Chen
- Department of Neurology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, Hainan, China.
- Hainan Provincial Bureau of Disease Prevention and Control, Haikou, 570100, China.
| |
Collapse
|
3
|
Campos-Sánchez I, Navarrete-Muñoz EM, Martens DS, Riaño-Galán I, Lertxundi A, Llop S, Guxens M, Rodríguez-Dehli C, Lertxundi N, Soler-Blasco R, Vrijheid M, Nawrot TS, Wright J, Yang TC, McEachan R, Gützkow KB, Chatzi VL, Vafeiadi M, Kampouri M, Grazuleviciene R, Andrusaityte S, Lepeule J, Valera-Gran D. Telomere Length and Symptoms of Attention Deficit and Hyperactivity Disorder in Children at 6-12 Years. J Atten Disord 2025; 29:474-485. [PMID: 39878307 DOI: 10.1177/10870547251314923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
OBJECTIVE To explore the association between telomere length (TL) and attention deficit hyperactivity disorder (ADHD) symptoms in children at 6-12 years. METHOD Data from 1,759 children belonging to the HELIX project cohorts and the Asturias, Gipuzkoa and Valencia cohorts of INMA project were included. TL was determined by blood sample using a PCR protocol. ADHD symptoms were described by parents using the Conners' Parent Rating Scale-Revised: Short Form. Multiple negative binomial regression models adjusted for potential confounders were used to estimate associations. RESULTS Overall estimates showed no associations between TL and ADHD symptoms. However, we observed that a longer TL was significantly associated with a lower risk of presenting hyperactivity symptoms in children belonging to the HELIX project (IRR = 0.93, 95% CI [0.87, 0.99]; p = .022). CONCLUSION While our study did not find a consistent association between TL and ADHD symptoms across all cohorts, the significant association found within the HELIX cohort suggests that longer TL may be linked to a lower risk of hyperactivity symptoms. Further research is needed to explore this association in more detail.
Collapse
Affiliation(s)
- Irene Campos-Sánchez
- Occupational Therapy Research Group (InTeO, Investigación en Terapia Ocupacional), Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain
| | - Eva María Navarrete-Muñoz
- Occupational Therapy Research Group (InTeO, Investigación en Terapia Ocupacional), Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dries S Martens
- Center of Environmental Sciences, Hasselt University, Belgium
| | - Isolina Riaño-Galán
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Asturias, Endocrinología Pediátrica, Hospital Universitario Central de Asturias, Universidad de Oviedo, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- University of the Basque Country (UPV/EHU), Spain
- Group of Environmental Epidemiology and Child Development, Biogipuzkoa Health Research Institute, San Sebastián, Spain
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-University of Valencia, Spain
- Faculty of Nursing and Chiropody, University of Valencia, Spain
| | - Mónica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Nerea Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- University of the Basque Country (UPV/EHU), Spain
- Group of Environmental Epidemiology and Child Development, Biogipuzkoa Health Research Institute, San Sebastián, Spain
| | - Raquel Soler-Blasco
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-University of Valencia, Spain
- Faculty of Nursing and Chiropody, University of Valencia, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Tim S Nawrot
- Center of Environmental Sciences, Hasselt University, Belgium
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK
| | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK
| | - Rosie McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, UK
| | - Kristine Bjerve Gützkow
- Division of Climate and Environmental Health, Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Vaia Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Marina Vafeiadi
- Faculty of Medicine, Department of Social Medicine, University of Crete, Heraklion, Greece
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mariza Kampouri
- Faculty of Medicine, Department of Social Medicine, University of Crete, Heraklion, Greece
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, Kaunas, Lithuania
| | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Development and Respiratory Health, IAB, Grenoble, France
| | - Desirée Valera-Gran
- Occupational Therapy Research Group (InTeO, Investigación en Terapia Ocupacional), Department of Surgery and Pathology, Miguel Hernandez University, Alicante, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| |
Collapse
|
4
|
Lehodey A, Kaliman P, Palix C, de Florès R, Touron E, Turpin AL, Fauvel S, Mézenge F, Landeau B, Chocat A, Vrillon A, Paquet C, Vivien D, de La Sayette V, Chételat G, Poisnel G. Association of critically short telomeres with brain and blood markers of ageing and Alzheimer's disease in older adults. Alzheimers Res Ther 2024; 16:269. [PMID: 39707531 DOI: 10.1186/s13195-024-01635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Accumulation of critically short telomeres (CST) is implicated in decreased tissular regenerative capacity and increased susceptibility to degenerative diseases such as Alzheimer's disease (AD). Telomere shortening has also been associated with age-related brain changes. However, it remains unclear whether CST accumulation is directly associated with AD markers or instead amplifies age-related effects, potentially increasing susceptibility of developing AD in cognitively healthy older adults. METHODS This cross-sectional study used baseline data of 129 community-dwelling cognitively healthy older adults from the Age-Well trial (NCT02977819), aged 65 years and older enrolled between 2016 and 2018, in France. Using linear regressions, we analyzed the relationship between an innovative marker of telomere shortening, the percentage of CST (%CST), structural, functional and molecular neuroimaging outcomes, and multiple blood-based biomarkers related to AD pathophysiology. The effect of apolipoprotein E ε4 genotype (APOE4) was assessed on these relationships using interaction analysis. RESULTS A higher %CST was associated with lower global kurtosis fractional anisotropy (β = -.230; P = .010), particularly in frontal and temporal regions. A higher %CST was also related to higher plasma levels of Neurofilament light chain (β = .195; P = .020) and a lower subiculum volume (β = -.206; P = .020), although these associations did not meet the threshold for multiple comparisons. %CST was not associated with AD-related neuroimaging markers, including the AD-sensitive gray matter pattern (β = -.060; P = .441), glucose metabolism pattern (β = -.099; P = .372), brain perfusion pattern (β = -.106; P = .694) or hippocampus volume (β = -.106; P = .194). In APOE4 carriers, higher %CST was associated with lower subiculum (β = -.423; P = 0.003), DG (β = -.410; P = 0.018) and CA1 volumes (β = -.373; P = 0.024), even though associations with DG and CA1 volumes did not survive multiple comparison. CONCLUSIONS Although an increase in %CST does not appear to be directly linked to the pathophysiology of AD in cognitively healthy older adults, it could heighten the susceptibility of APOE4 carriers to develop AD plausibly due to greater vulnerability to age-related effects. However, longitudinal studies would be necessary to determine whether %CST influences the development and progression of AD later in life.
Collapse
Affiliation(s)
- Asrar Lehodey
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Perla Kaliman
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou, 154-156, Sant Martí, 08018, Barcelona, Espagne
| | - Cassandre Palix
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Robin de Florès
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Edelweiss Touron
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Anne-Laure Turpin
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Séverine Fauvel
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Florence Mézenge
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Brigitte Landeau
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Anne Chocat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Agathe Vrillon
- Université de Paris, Inserm U1144, 4 Avenue de L'Observatoire, 75006, Paris, France
- AP-HP Nord, Hôpital Lariboisière Fernand-Widal, GHU, Université de Paris, Centre de Neurologie Cognitive/CMRR Paris Nord Île de France, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Claire Paquet
- Université de Paris, Inserm U1144, 4 Avenue de L'Observatoire, 75006, Paris, France
- AP-HP Nord, Hôpital Lariboisière Fernand-Widal, GHU, Université de Paris, Centre de Neurologie Cognitive/CMRR Paris Nord Île de France, 2 Rue Ambroise Paré, 75010, Paris, France
| | - Denis Vivien
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
- Clinical Research Department, CHU Caen-Normandie, Avenue de La Côte de Nacre CS 30001, 14000, Caen, France
| | - Vincent de La Sayette
- CHU Caen-Normandie, Neurology Department, Avenue de La Côte de Nacre CS 30001, 14000, Caen, France
| | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France
| | - Géraldine Poisnel
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Boulevard Henri Becquerel, BP 5229, 14074, Caen Cedex, France.
| |
Collapse
|
5
|
McLester-Davis LWY, Norton D, Papale LA, James TT, Salazar H, Asthana S, Johnson SC, Gooding DC, Roy TR, Alisch RS, Hogan KJ, Drury SS, Gleason CE, Zuelsdorff M. Telomere length and cognitive function among middle-aged and older participants from communities underrepresented in aging research: A preliminary study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618331. [PMID: 39464117 PMCID: PMC11507781 DOI: 10.1101/2024.10.14.618331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Objective Accelerated biological aging is a plausible and modifiable determinant of dementia burden facing minoritized communities, but is not well-studied in these historically underrepresented populations. Our objective was to preliminarily characterize relationships between telomere length and cognitive health among American Indian/Alaska Native (AI/AN) and Black/African American (B/AA) middle-aged and older adults. Methods This study included data on telomere length and cognitive test performance from 187 participants, enrolled in one of two community-based cognitive aging cohorts and who identified their primary race as AI/AN or B/AA. Results Nested multivariable regression models revealed preliminary evidence for associations between telomere length and cognitive performance, and these associations were partially independent of chronological age. Discussion Small sample size limited estimate precision, however, findings suggest future work on telomere length and cognitive health in underrepresented populations at high risk for dementia is feasible and valuable as a foundation for social and behavioral intervention research.
Collapse
Affiliation(s)
- Lauren W Y McLester-Davis
- University of Wisconsin Native American Center for Health Professions, Department of Biochemistry, Department of Medicine
| | - Derek Norton
- University of Wisconsin Biostatistics and Medical Informatics
| | - Ligia A Papale
- University of Wisconsin Department of Neurological Surgery
| | | | | | | | | | - Diane C Gooding
- University of Wisconsin Department of Psychology, Department of Medicine, Department of Psychiatry
| | | | - Reid S Alisch
- University of Wisconsin Department of Neurological Surgery
| | - Kirk J Hogan
- University of Wisconsin Department of Anesthesiology
| | - Stacy S Drury
- Boston Children's Hospital Department of Psychiatry and Behavioral Sciences
| | - Carey E Gleason
- University of Wisconsin Department of Medicine, William S. Middleton Memorial Veterans Hospital Geriatric Research Education and Clinical Center
| | | |
Collapse
|
6
|
Qiu H, Shi M, Zhong Z, Hu H, Sang H, Zhou M, Feng Z. Causal Relationship between Aging and Anorexia Nervosa: A White-Matter-Microstructure-Mediated Mendelian Randomization Analysis. Biomedicines 2024; 12:1874. [PMID: 39200338 PMCID: PMC11351342 DOI: 10.3390/biomedicines12081874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
This study employed a two-step Mendelian randomization analysis to explore the causal relationship between telomere length, as a marker of aging, and anorexia nervosa and to evaluate the mediating role of changes in the white matter microstructure across different brain regions. We selected genetic variants associated with 675 diffusion magnetic resonance imaging phenotypes representing changes in brain white matter. F-statistics confirmed the validity of the instruments, ensuring robust causal inference. Sensitivity analyses, including heterogeneity tests, horizontal pleiotropy tests, and leave-one-out tests, validated the results. The results show that telomere length is significantly negatively correlated with anorexia nervosa in a unidirectional manner (p = 0.017). Additionally, changes in specific white matter structures, such as the internal capsule, corona radiata, posterior thalamic radiation, left cingulate gyrus, left longitudinal fasciculus, and left forceps minor (p < 0.05), were identified as mediators. These findings enhance our understanding of the neural mechanisms, underlying the exacerbation of anorexia nervosa with aging; emphasize the role of brain functional networks in disease progression; and provide potential biological targets for future therapeutic interventions.
Collapse
Affiliation(s)
- Haoyuan Qiu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Miao Shi
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Zicheng Zhong
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Haoran Hu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; (H.Q.); (M.S.); (Z.Z.); (H.H.)
| | - Hunini Sang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhijun Feng
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Carver AJ, Hing B, Elser BA, Lussier SJ, Yamanashi T, Howard MA, Kawasaki H, Shinozaki G, Stevens HE. Correlation of telomere length in brain tissue with peripheral tissues in living human subjects. Front Mol Neurosci 2024; 17:1303974. [PMID: 38516039 PMCID: PMC10954899 DOI: 10.3389/fnmol.2024.1303974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Telomeres are important to chromosomal stability, and changes in their length correlate with disease, potentially relevant to brain disorders. Assessing telomere length in human brain is invasive, but whether peripheral tissue telomere length correlates with that in brain is not known. Saliva, buccal, blood, and brain samples were collected at time points before, during, and after subjects undergoing neurosurgery (n = 35) for intractable epilepsy. DNA was isolated from samples and average telomere length assessed by qPCR. Correlations of telomere length between tissue samples were calculated across subjects. When data were stratified by sex, saliva telomere length correlated with brain telomere length in males only. Buccal telomere length correlated with brain telomere length when males and females were combined. These findings indicate that in living subjects, telomere length in peripheral tissues variably correlates with that in brain and may be dependent on sex. Peripheral tissue telomere length may provide insight into brain telomere length, relevant to assessment of brain disorder pathophysiology.
Collapse
Affiliation(s)
- Annemarie J. Carver
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
| | - Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Benjamin A. Elser
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
| | - Stephanie J. Lussier
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Biostatistics Graduate Program, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Takehiko Yamanashi
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Standford University, Stanford, CA, United States
- Division of Neuropsychiatry, Tottori University, Tottori, Japan
| | - Matthew A. Howard
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Hiroto Kawasaki
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurosurgery, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gen Shinozaki
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Standford University, Stanford, CA, United States
| | - Hanna E. Stevens
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA, United States
- Hawk-Intellectual and Developmental Disabilities Research Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
8
|
Huang L, Li Q, Lu Y, Pan F, Cui L, Wang Y, Miao Y, Chen T, Li Y, Wu J, Chen X, Jia J, Guo Q. Consensus on rapid screening for prodromal Alzheimer's disease in China. Gen Psychiatr 2024; 37:e101310. [PMID: 38313393 PMCID: PMC10836380 DOI: 10.1136/gpsych-2023-101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) is a common cause of dementia, characterised by cerebral amyloid-β deposition, pathological tau and neurodegeneration. The prodromal stage of AD (pAD) refers to patients with mild cognitive impairment (MCI) and evidence of AD's pathology. At this stage, disease-modifying interventions should be used to prevent the progression to dementia. Given the inherent heterogeneity of MCI, more specific biomarkers are needed to elucidate the underlying AD's pathology. Although the uses of cerebrospinal fluid and positron emission tomography are widely accepted methods for detecting AD's pathology, their clinical applications are limited by their high costs and invasiveness, particularly in low-income areas in China. Therefore, to improve the early detection of Alzheimer's disease (AD) pathology through cost-effective screening methods, a panel of 45 neurologists, psychiatrists and gerontologists was invited to establish a formal consensus on the screening of pAD in China. The supportive evidence and grades of recommendations are based on a systematic literature review and focus group discussion. National meetings were held to allow participants to review, vote and provide their expert opinions to reach a consensus. A majority (two-thirds) decision was used for questions for which consensus could not be reached. Recommended screening methods are presented in this publication, including neuropsychological assessment, peripheral biomarkers and brain imaging. In addition, a general workflow for screening pAD in China is established, which will help clinicians identify individuals at high risk and determine therapeutic targets.
Collapse
Affiliation(s)
- Lin Huang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinjie Li
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Lu
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengfeng Pan
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Cui
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ya Miao
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianlu Chen
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yatian Li
- Shanghai BestCovered, Shanghai, China
| | | | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianping Jia
- Department of Neurology, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Cao Y, Zhu G, Feng C, Chen J, Gan W, Ma Y, Hu Y, Dhana K, Voortman T, Shen J, Li T, Zheng Y, Yuan C, Zong G. Cardiovascular risk burden, dementia risk and brain structural imaging markers: a study from UK Biobank. Gen Psychiatr 2024; 37:e101209. [PMID: 38292861 PMCID: PMC10826560 DOI: 10.1136/gpsych-2023-101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024] Open
Abstract
Background Cardiovascular risk burden is associated with dementia risk and neurodegeneration-related brain structure, while the role of genetics and incident cardiovascular disease (CVD) remains unclear. Aims To examine the association of overall cardiovascular risk burden with the risk of major dementia subtypes and volumes of related brain regions in a large sample, and to explore the role of genetics and CVD onset. Methods A prospective study among 354 654 participants free of CVD and dementia (2006-2010, mean age 56.4 years) was conducted within the UK Biobank, with brain magnetic resonance imaging (MRI) measurement available for 15 104 participants since 2014. CVD risk burden was evaluated by the Framingham General Cardiovascular Risk Score (FGCRS). Dementia diagnosis was ascertained from inpatient and death register data. Results Over a median 12.0-year follow-up, 3998 all-cause dementia cases were identified. Higher FGCRS was associated with increased all-cause dementia risk after adjusting for demographic, major lifestyle, clinical factors and the polygenic risk score (PRS) of Alzheimer's disease. Comparing the high versus low tertile of FGCRS, the odds ratios (ORs) and 95% confidence intervals (CIs) were 1.26 (1.12 to 1.41) for all-cause dementia, 1.67 (1.33 to 2.09) for Alzheimer's disease and 1.53 (1.07 to 2.16) for vascular dementia (all ptrend<0.05). Incident stroke and coronary heart disease accounted for 14% (95% CI: 9% to 21%) of the association between FGCRS and all-cause dementia. Interactions were not detected for FGCRS and PRS on the risk of any dementia subtype. We observed an 83% (95% CI: 47% to 128%) higher all-cause dementia risk comparing the high-high versus low-low FGCRS-PRS category. For brain volumes, higher FGCRS was associated with greater log-transformed white matter hyperintensities, smaller cortical volume and smaller grey matter volume. Conclusions Our findings suggest that the positive association of cardiovascular risk burden with dementia risk also applies to major dementia subtypes. The association of cardiovascular risk burden with all-cause dementia is largely independent of CVD onset and genetic predisposition to dementia.
Collapse
Affiliation(s)
- Yaying Cao
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang, China
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Gaohong Zhu
- Department of Nuclear Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chengwu Feng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Jing Chen
- Neurology Department, Zhongshan Hospital Affiliated with Fudan University, Shanghai, China
| | - Wei Gan
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Yuan Ma
- Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Klodian Dhana
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Jie Shen
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ting Li
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Public Health Safety, School of Public Health, Fudan University, Shanghai, China
| | - Changzheng Yuan
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
10
|
Wu X, Yan Y, Hu P, Wang L, Wu Y, Wu P, Geng Z, Xiao G, Zhou S, Ji G, Qiu B, Wei L, Tian Y, Liu H, Wang K. Effects of a periodic intermittent theta burst stimulation in Alzheimer's disease. Gen Psychiatr 2024; 37:e101106. [PMID: 38274292 PMCID: PMC10806514 DOI: 10.1136/gpsych-2023-101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/07/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Previous studies have demonstrated that excitatory repetitive transcranial magnetic stimulation (rTMS) can improve the cognitive function of patients with Alzheimer's disease (AD). Intermittent theta burst stimulation (iTBS) is a novel excitatory rTMS protocol for brain activity stimulation with the ability to induce long-term potentiation-like plasticity and represents a promising treatment for AD. However, the long-term effects of iTBS on cognitive decline and brain structure in patients with AD are unknown. AIMS We aimed to explore whether repeating accelerated iTBS every three months could slow down the cognitive decline in patients with AD. METHODS In this randomised, assessor-blinded, controlled trial, iTBS was administered to the left dorsolateral prefrontal cortex (DLPFC) of 42 patients with AD for 14 days every 13 weeks. Measurements included the Montreal Cognitive Assessment (MoCA), a comprehensive neuropsychological battery, and the grey matter volume (GMV) of the hippocampus. Patients were evaluated at baseline and after follow-up. The longitudinal pipeline of the Computational Anatomy Toolbox for SPM was used to detect significant treatment-related changes over time. RESULTS The iTBS group maintained MoCA scores relative to the control group (t=3.26, p=0.013) and reduced hippocampal atrophy, which was significantly correlated with global degeneration scale changes. The baseline Mini-Mental State Examination (MMSE) score, apolipoprotein E genotype and Clinical Dementia Rating were indicative of MoCA scores at follow-up. Moreover, the GMV of the left (t=0.08, p=0.996) and right (t=0.19, p=0.977) hippocampus were maintained in the active group but significantly declined in the control group (left: t=4.13, p<0.001; right: t=5.31, p<0.001). GMV change in the left (r=0.35, p=0.023) and right (r=0.36, p=0.021) hippocampus across the intervention positively correlated with MoCA changes; left hippocampal GMV change was negatively correlated with global degeneration scale (r=-0.32, p=0.041) changes. CONCLUSIONS DLPFC-iTBS may be a feasible and easy-to-implement non-pharmacological intervention to slow down the progressive decline of overall cognition and quality of life in patients with AD, providing a new AD treatment option. TRIAL REGISTRATION NUMBER NCT04754152.
Collapse
Affiliation(s)
- Xingqi Wu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| | - Yibing Yan
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| | - Panpan Hu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| | - Lu Wang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| | - Yue Wu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Pan Wu
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| | - Zhi Geng
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| | - Guixian Xiao
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shanshan Zhou
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| | - Gongjun Ji
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Ling Wei
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
| | - Yanghua Tian
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| | - Hesheng Liu
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kai Wang
- Department of Neurology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
11
|
Hao Y, Tian W, Xie B, Fu X, Wang S, Yang Y. The Causal Relationship between Genetically Predicted Biological Aging, Alzheimer's Disease and Cognitive Function: A Mendelian Randomisation Study. J Prev Alzheimers Dis 2024; 11:1826-1833. [PMID: 39559894 DOI: 10.14283/jpad.2024.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Aging is one of the most important risk factors for Alzheimer's disease (AD). Biological aging is a better indicator of the body's functional state than age (chronological aging). Leukocyte telomere length (LTL) and epigenetic clocks constructed from DNA methylation patterns have emerged as reliable markers of biological aging. Recent studies have shown that it may be possible to slow down or even reverse biological aging, offering promising prospects for treating AD. Several observational studies have reported an association between biological aging, AD, and cognitive function, but the causality behind this association and the effects of different biological aging markers on AD risk and cognitive function remain unclear. Therefore, we explored the causal relationship between them by Mendelian randomization (MR) study. Inverse-variance weighted (IVW) method is the most dominant analytical method in MR studies, which is a weighted average of estimates from different genotype combinations, and this weighted average provides an overall estimate of the causal effect. The results of the IVW analyses showed that HannumAge acceleration and LTL shortening were able to increase the risk of late-onset AD (LOAD), but not early-onset AD (EOAD). Excellent prospective memory and fluid intelligence are potentially protective against GrimAge acceleration. GrimAge acceleration and HorvathAge acceleration increase the risk of LOAD through effects on LTL. Our findings provide important insights into the role of biological aging in the pathogenesis of AD, while also highlighting the interplay of different biological aging markers and their complexity in different AD subtypes.
Collapse
Affiliation(s)
- Y Hao
- Yu Yang, Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin 130021, China.
| | | | | | | | | | | |
Collapse
|