1
|
Shukla AK, Kumari A, Kumar A. Gut brain regulation using psychobiotics for improved neuropsychological illness. Dev Psychobiol 2023; 65:e22404. [PMID: 37338246 DOI: 10.1002/dev.22404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/21/2023]
Abstract
"Psychobiotics" are a novel class of probiotics that are beneficial to the health and functional efficiency of our brain and psychology. The main hold on command in ill conditions of the brain and psychology is overtaken by these psychobiotic bacteria (a dietary supplement) via the action/determined role of bacterial neurochemicals or neuroactive substances that are released by them in the intestinal epithelium after their ingestion. Although these psychobiotics flourish in the gut of the host consuming them, the effect is widely spread to the brain due to the communication between the gut and the brain via the bidirectional gut-brain axis. The nervous system involved in this directional process includes both the enteric nervous system and the central nervous system. With time, several corroborations have proved the effectiveness of psychobiotics in terms of mental illnesses and brain disorders. In the prevailing situation of the coronavirus pandemic, psychobiotics may serve as an aid because a majority of the population worldwide is already suffering from psychological issues due to changes in lifestyle and dietary habits, and in need of an immediate solution to cope with it. Moreover, the in silico approach is also vital for the development of biological relevance to neurosubstances.
Collapse
Affiliation(s)
- Adarsh Kumar Shukla
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| | - Anita Kumari
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
2
|
Choudhary S, Shanu K, Devi S. Psychobiotics as an Emerging Category of Probiotic Products. PROBIOTICS, PREBIOTICS, SYNBIOTICS, AND POSTBIOTICS 2023:361-391. [DOI: 10.1007/978-981-99-1463-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Pyrrolotriazinone as an Underexplored Scaffold in Drug Discovery. Pharmaceuticals (Basel) 2021; 14:ph14121275. [PMID: 34959675 PMCID: PMC8705011 DOI: 10.3390/ph14121275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
Heterocyclic amino derivatives have been extensively synthesized and validated as potent bioactive compounds, and nowadays, numerous marketed drugs share these scaffolds, from very simple structures (monoamino, monocyclic compounds) to much more complex molecules (polycyclic derivatives with two or more nitrogen atoms within the (fused) rings). In a constant quest for new chemical entities in drug discovery, a few novel heterocycles have emerged in recent years as promising building blocks for the obtainment of bioactive modulators. In this context, pyrrolotriazinones have attracted attention, and some show promising biological activities. Here, we offer an extensive review of pyrrolo[2,1-f][1,2,4]triazin-4(1H)-one and pyrrolo[1,2-d][1,2,4]triazin-4(3H)-one, describing their biological properties en route to drug discovery.
Collapse
|
4
|
Sharma R, Gupta D, Mehrotra R, Mago P. Psychobiotics: The Next-Generation Probiotics for the Brain. Curr Microbiol 2021; 78:449-463. [PMID: 33394083 DOI: 10.1007/s00284-020-02289-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/07/2020] [Indexed: 12/13/2022]
Abstract
Psychobiotics are a special class of probiotics, which deliver mental health benefits to individuals. They differ from conventional probiotics in their ability to produce or stimulate the production of neurotransmitters, short-chain fatty acids, enteroendocrine hormones and anti-inflammatory cytokines. Owing to this potential, psychobiotics have a broad spectrum of applications ranging from mood and stress alleviation to being an adjuvant in therapeutic treatment for various neurodevelopment and neurodegenerative disorders. The common psychobiotic bacteria belong to the family Lactobacilli, Streptococci, Bifidobacteria, Escherichia and Enterococci. The two-way crosstalk between the brain and the gastrointestinal system is influenced by these bacteria. The neurons present in the enteric nervous system interact directly with the neurochemicals produced by microbiota of the gut, thereby influencing the signaling to central nervous system. The present review highlights the scope and advancements made in the field, enlisting numerous commercial psychobiotic products that have flooded the market. In the latter part we discuss the potential concerns with respect to psychobiotics, such as the effects due to withdrawal, compatibility with immunocompromised patients, and the relatively unregulated probiotic market.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, 110096, India.
| | - Deesha Gupta
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, 110096, India
| | - Rekha Mehrotra
- Department of Microbiology, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, 110096, India
| | - Payal Mago
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, New Delhi, India
| |
Collapse
|
5
|
Wu H, Huang Y, Tian X, Zhang Z, Zhang Y, Mao Y, Wang C, Yang S, Liu Y, Zhang W, Ma Z. Preoperative anxiety-induced glucocorticoid signaling reduces GABAergic markers in spinal cord and promotes postoperative hyperalgesia by affecting neuronal PAS domain protein 4. Mol Pain 2020; 15:1744806919850383. [PMID: 31041873 PMCID: PMC6537253 DOI: 10.1177/1744806919850383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Preoperative anxiety is common in patients undergoing elective surgery and is
closely related to postoperative hyperalgesia. In this study, a single prolonged
stress model was used to induce preoperative anxiety-like behavior in rats 24 h
before the surgery. We found that single prolonged stress exacerbated the
postoperative pain and elevated the level of serum corticosterone. Previous
studies have shown that glucocorticoid is associated with synaptic plasticity,
and decreased spinal GABAergic activity can cause hyperalgesia in rodents. Here,
single prolonged stress rats’ lumbar spinal cord showed reduced glutamic acid
decarboxylase-65, glutamic acid decarboxylase-67, GABA type A receptor alpha 1
subunit, and GABA type A receptor gamma 2 subunit, indicating an impairment of
GABAergic system. Furthermore, neuronal PAS domain protein 4 was also reduced in
rats after single prolonged stress stimulation, which has been reported to
promote GABAergic synapse development. Then, intraperitoneal injection of RU486
(a glucocorticoid receptor antagonist) rather than spironolactone (a
mineralocorticoid receptor antagonist) was found to relieve single prolonged
stress-induced hyperalgesia and reverse neuronal PAS domain protein 4 reduction
and the impairment of GABAergic system. Furthermore, overexpressing neuronal PAS
domain protein 4 could also restore the damage of GABAergic system caused by
single prolonged stress while interfering with neuronal PAS domain protein 4
caused an opposite effect. Finally, after stimulation of rat primary spinal cord
neurons with exogenous corticosterone in vitro, neuronal PAS domain protein 4
and GABAergic markers were also downregulated, and RU486 reversed that.
Together, our results demonstrated that preoperative anxiety led to GABAergic
system impairment in spinal cord and thus caused hyperalgesia due to
glucocorticoid-induced downregulation of neuronal PAS domain protein 4.
Collapse
Affiliation(s)
- Hao Wu
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yulin Huang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Xinyu Tian
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Zuoxia Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Ying Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yanting Mao
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Chenchen Wang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Shuai Yang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yue Liu
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Herlihy JD, Reddy S, Shanker A, McCallum R. Cyclic vomiting syndrome: an overview for clinicians. Expert Rev Gastroenterol Hepatol 2019; 13:1137-1143. [PMID: 31702939 DOI: 10.1080/17474124.2019.1691527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Cyclic vomiting syndrome (CVS) is an under recognized entity causing significant impact on patient's lifestyle. CVS is characterized by recurrent episodes of abdominal pain, nausea, and vomiting leading to many emergency department presentations prior to diagnosis. Patients often have lengthy delays in starting appropriate therapy leading to significant physical and financial hardship. Most cases of cyclic vomiting syndrome are reversible by managing risk factors and starting on appropriate treatment.Areas covered: This review covers the diagnostic criteria, pathophysiology, risk factors, and treatment for CVS and provides a valuable resource for clinicians to review and help with managing this challenging syndrome. The latest literature regarding the diagnosis and management of CVS is summarized.Expert Opinion: The direction for future research in CVS and insights to managing CVS are summarized. The role of pain that can be frequently controlled by tricyclic antidepressants and lorazepam suggests a central nervous system (CNS) origin. A standardized treatment regimen for CVS must be implemented as patients do respond to current therapies but there is often a significant delay in initiation of treatment. Reviewed recent data looking at MRI brain changes in patients with CVS that may lead to a better understanding of the pathophysiology of this disease.
Collapse
Affiliation(s)
- J Daniel Herlihy
- Department of Gastroenterology, Texas Tech El Paso University Medical Center, El Paso, TX, USA
| | - Sumana Reddy
- El Paso Medical School, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Aaron Shanker
- Department of Internal Medicine, Texas Tech El Paso University Medical Center, El Paso, TX, USA
| | - Richard McCallum
- Department of Gastroenterology, Texas Tech El Paso University Medical Center, El Paso, TX, USA
| |
Collapse
|
7
|
From Probiotics to Psychobiotics: Live Beneficial Bacteria Which Act on the Brain-Gut Axis. Nutrients 2019; 11:nu11040890. [PMID: 31010014 PMCID: PMC6521058 DOI: 10.3390/nu11040890] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022] Open
Abstract
There is an important relationship between probiotics, psychobiotics and cognitive and behavioral processes, which include neurological, metabolic, hormonal and immunological signaling pathways; the alteration in these systems may cause alterations in behavior (mood) and cognitive level (learning and memory). Psychobiotics have been considered key elements in affective disorders and the immune system, in addition to their effect encompassing the regulation of neuroimmune regulation and control axes (the hypothalamic-pituitary-adrenal axis or HPA, the sympathetic-adrenal-medullary axis or SAM and the inflammatory reflex) in diseases of the nervous system. The aim of this review is to summarize the recent findings about psychobiotics, the brain-gut axis and the immune system. The review focuses on a very new and interesting field that relates the microbiota of the intestine with diseases of the nervous system and its possible treatment, in neuroimmunomodulation area. Indeed, although probiotic bacteria will be concentrated after ingestion, mainly in the intestinal epithelium (where they provide the host with essential nutrients and modulation of the immune system), they may also produce neuroactive substances which act on the brain-gut axis.
Collapse
|
8
|
Tache Y, Larauche M, Yuan PQ, Million M. Brain and Gut CRF Signaling: Biological Actions and Role in the Gastrointestinal Tract. Curr Mol Pharmacol 2018; 11:51-71. [PMID: 28240194 DOI: 10.2174/1874467210666170224095741] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/16/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) pathways coordinate behavioral, endocrine, autonomic and visceral responses to stress. Convergent anatomical, molecular, pharmacological and functional experimental evidence supports a key role of brain CRF receptor (CRF-R) signaling in stress-related alterations of gastrointestinal functions. These include the inhibition of gastric acid secretion and gastric-small intestinal transit, stimulation of colonic enteric nervous system and secretorymotor function, increase intestinal permeability, and visceral hypersensitivity. Brain sites of CRF actions to alter gut motility encompass the paraventricular nucleus of the hypothalamus, locus coeruleus complex and the dorsal motor nucleus while those modulating visceral pain are localized in the hippocampus and central amygdala. Brain CRF actions are mediated through the autonomic nervous system (decreased gastric vagal and increased sacral parasympathetic and sympathetic activities). The activation of brain CRF-R2 subtype inhibits gastric motor function while CRF-R1 stimulates colonic secretomotor function and induces visceral hypersensitivity. CRF signaling is also located within the gut where CRF-R1 activates colonic myenteric neurons, mucosal cells secreting serotonin, mucus, prostaglandin E2, induces mast cell degranulation, enhances mucosal permeability and propulsive motor functions and induces visceral hyperalgesia in animals and humans. CRF-R1 antagonists prevent CRF- and stressrelated gut alterations in rodents while not influencing basal state. DISCUSSION These preclinical studies contrast with the limited clinical positive outcome of CRF-R1 antagonists to alleviate stress-sensitive functional bowel diseases such as irritable bowel syndrome. CONCLUSION The translational potential of CRF-R1 antagonists in gut diseases will require additional studies directed to novel anti-CRF therapies and the neurobiology of brain-gut interactions under chronic stress.
Collapse
Affiliation(s)
- Yvette Tache
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, G Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073. United States
| |
Collapse
|
9
|
Sosanya NM, Trevino AV, Chavez RL, Christy RJ, Cheppudira BP. Sound-stress-induced altered nociceptive behaviors are associated with increased spinal CRFR2 gene expression in a rat model of burn injury. J Pain Res 2017; 10:2135-2145. [PMID: 28979159 PMCID: PMC5589110 DOI: 10.2147/jpr.s144055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sound stress (SS) elicits behavioral changes, including pain behaviors. However, the neuronal mechanisms underlying SS-induced pain behaviors remain to be explored. The current study examined the effects of SS on nociceptive behaviors and changes in expression of the spinal corticotropin-releasing factor (CRF) system in male Sprague Dawley rats with and without thermal pain. We also studied the effects of SS on plasma corticosterone and fecal output. Rats were exposed to 3 days of SS protocol (n = 12/group). Changes in nociceptive behaviors were assessed using thermal and mechanical pain tests. Following the induction of SS, a subgroup of rats (n = 6/group) was inflicted with thermal injury and on day 14 postburn nociceptive behaviors were reassessed. Spinal CRF receptor mRNA expression was analyzed by semiquantitative reverse transcription polymerase chain reaction (RT-PCR). In addition, plasma corticosterone and spinal CRF concentrations were quantified using enzyme-linked immunosorbent assay (ELISA). Increased defecation was observed in SS rats. SS produced transient mechanical allodynia in naive rats, whereas it exacerbated thermal pain in thermally injured rats. Spinal CRFR2 mRNA expression was unaffected by stress or thermal injury alone, but their combined effect significantly increased its expression. SS had no effect on plasma corticosterone and spinal CRF protein in postburn rats. To conclude, SS is capable of exacerbating postburn thermal pain, which is linked to increased CRFR2 gene expression in the spinal cord. Future studies have to delineate whether attenuation of CRFR2 signaling at the spinal level prevents stress-induced exacerbation of burn pain.
Collapse
Affiliation(s)
- Natasha M Sosanya
- United States Army Institute of Surgical Research, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, USA
| | - Alex V Trevino
- United States Army Institute of Surgical Research, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, USA
| | - Roger L Chavez
- United States Army Institute of Surgical Research, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, USA
| | - Robert J Christy
- United States Army Institute of Surgical Research, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, USA
| | - Bopaiah P Cheppudira
- United States Army Institute of Surgical Research, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, USA
| |
Collapse
|
10
|
Ogiso K, Koriyama N, Akao A, Otsuji M, Goto T, Fujisaki N, Minobe M, Kinowaki M, Matsuki S. Type 1 diabetes complicated with uncontrollable adult cyclic vomiting syndrome: a case report. J Diabetes Metab Disord 2015; 14:72. [PMID: 26401489 PMCID: PMC4580314 DOI: 10.1186/s40200-015-0206-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/17/2015] [Indexed: 12/17/2022]
Abstract
We herein describe the case of a 29-year-old woman with type 1 diabetes from 10 years of age who developed adult cyclic vomiting syndrome. Beginning at 25 years of age, she was frequently hospitalized for stress-induced vomiting. Her vomiting episodes developed acutely and remitted after severe vomiting of more than 30 times a day for a few days. The vomiting periods were accompanied by leukocytosis with a predominance of neutrophils, high blood pressure and fever. In addition, it was noted that her levels of both adrenocorticotropic hormone and antidiuretic hormone during the vomiting attacks increased and subsequently dramatically decreased immediately after symptom improvement; therefore, she was diagnosed with adult-type cyclic vomiting syndrome in accordance with the diagnostic criteria of Rome III, a system developed to classify functional gastrointestinal disorders. Though glycemic control had improved with continuous subcutaneous insulin infusion therapy, the vomiting frequency increased due to the failure of drug treatments and general psychotherapy to terminate the vomiting attacks, making discharge difficult and greatly interfering with everyday life. Eventually, hypnotherapy and miniature garden therapy were prescribed, which significantly reduced the vomiting frequency, making it possible to discharge her from inpatient medical care. In the treatment of this patient with type 1 diabetes and adult-type cyclic vomiting syndrome, continuous subcutaneous insulin infusion therapy and comprehensive psychotherapy were effective.
Collapse
Affiliation(s)
- Kazuma Ogiso
- Department of Diabetes and Endocrine Medicine, National Hospital Organization Kagoshima Medical Center, 8-1 Shiroyama-cho, Kagoshima, 892-0853 Japan
| | - Nobuyuki Koriyama
- Department of Diabetes and Endocrine Medicine, National Hospital Organization Kagoshima Medical Center, 8-1 Shiroyama-cho, Kagoshima, 892-0853 Japan
| | - Ayako Akao
- Department of Diabetes and Nursing, National Hospital Organization Kagoshima Medical Center, 8-1 Shiroyama-cho, Kagoshima, 892-0853 Japan
| | - Mayumi Otsuji
- Department of Diabetes and Nursing, National Hospital Organization Kagoshima Medical Center, 8-1 Shiroyama-cho, Kagoshima, 892-0853 Japan
| | - Takahiko Goto
- Department of Diabetes and Nursing, National Hospital Organization Kagoshima Medical Center, 8-1 Shiroyama-cho, Kagoshima, 892-0853 Japan
| | - Natsuko Fujisaki
- Department of Diabetes and Nursing, National Hospital Organization Kagoshima Medical Center, 8-1 Shiroyama-cho, Kagoshima, 892-0853 Japan
| | - Machiko Minobe
- Department of Diabetes and Nursing, National Hospital Organization Kagoshima Medical Center, 8-1 Shiroyama-cho, Kagoshima, 892-0853 Japan
| | - Mayumi Kinowaki
- Department of Diabetes and Clinical Psychologist, National Hospital Organization Kagoshima Medical Center, 8-1 Shiroyama-cho, Kagoshima, 892-0853 Japan
| | - Shigeru Matsuki
- Department of Clinical Psychology, Graduate School of Clinical Psychology, Kagoshima University, 1-21-30 Korimoto, Kagoshima, 890-0065 Japan
| |
Collapse
|
11
|
Ovsyannikov VI, Berezina TP, Shemerovskii KA. Mechanisms of Discoordination of Contractile Activity in the Gastroduodenal Zone during Psychogenic Stress in Rabbits. Bull Exp Biol Med 2015; 159:446-9. [PMID: 26385409 DOI: 10.1007/s10517-015-2987-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 11/26/2022]
Abstract
Inhibition of the contractile activity of the stomach induced by psychogenic stress persisted after blockade of muscarinic and nicotinic cholinergic receptors and α2 and β1/β2-adrenergic receptors. Stress-induced increase in contractile activity in the proximal part of the duodenum persisted during blockade of muscarinic and nicotinic cholinergic receptors, β1/β2-adrenergic receptors. At the same time, blockade of the above cholinergic and adrenergic receptors eliminated the stress-induced increase in contractive activity in the distal part of the duodenum.
Collapse
Affiliation(s)
- V I Ovsyannikov
- Department of Physiology of Visceral Systems, Research Institute of Experimental Medicine, St. Petersburg, Russia.
| | - T P Berezina
- Department of Physiology of Visceral Systems, Research Institute of Experimental Medicine, St. Petersburg, Russia
| | - K A Shemerovskii
- Department of Physiology of Visceral Systems, Research Institute of Experimental Medicine, St. Petersburg, Russia
| |
Collapse
|
12
|
Rivier JE, Rivier CL. Corticotropin-releasing factor peptide antagonists: design, characterization and potential clinical relevance. Front Neuroendocrinol 2014; 35:161-70. [PMID: 24269930 PMCID: PMC3965584 DOI: 10.1016/j.yfrne.2013.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/18/2013] [Accepted: 10/20/2013] [Indexed: 12/19/2022]
Abstract
Elusive for more than half a century, corticotropin-releasing factor (CRF) was finally isolated and characterized in 1981 from ovine hypothalami and shortly thereafter, from rat brains. Thirty years later, much has been learned about the function and localization of CRF and related family members (Urocortins 1, 2 and 3) and their 2 receptors, CRF receptor type 1 (CRFR1) and CRF receptor type 2 (CRFR2). Here, we report the stepwise development of peptide CRF agonists and antagonists, which led to the CRFR1 agonist Stressin1; the long-acting antagonists Astressin2-B which is specific for CRFR2; and Astressin B, which binds to both CRFR1 and CRFR2.This analog has potential for the treatment of CRF-dependent diseases in the periphery, such as irritable bowel syndrome.
Collapse
Affiliation(s)
- Jean E Rivier
- The Salk Institute, The Clayton Foundation Laboratories for Peptide Biology, La Jolla, CA 92037, USA.
| | - Catherine L Rivier
- The Salk Institute, The Clayton Foundation Laboratories for Peptide Biology, La Jolla, CA 92037, USA
| |
Collapse
|
13
|
Triantafillidis JK, Merikas E, Gikas A. Psychological factors and stress in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2013; 7:225-238. [PMID: 23445232 DOI: 10.1586/egh.13.4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The role of psychological distress and personality as predisposing factors for the development of inflammatory bowel disease (IBD) remains controversial. Attempts to investigate the role of psychological factors in IBD exhibited rather conflicting results. Among the studies concerning the effects of stress or depression on the course of IBD, the majority suggest that stress worsened IBD, the rest giving either negative or inconclusive results. However, application of strategies, including avoidance of coping and training patients in problem solving or emotion-oriented, could influence the course of IBD. Large controlled clinical trials are needed in order to clarify the impact of psychological interventions on the quality of life and the course of disease.
Collapse
Affiliation(s)
- John K Triantafillidis
- Department of Gastroenterology, Center for Inflammatory Bowel Disease, Saint Panteleimon General Hospital, Nicea, Greece.
| | | | | |
Collapse
|
14
|
Sakakibara R, Tateno F, Tsuyusaki Y, Kishi M, Uchiyama T, Yamamoto T, Yamanishi T. Psychogenic Urinary Dysfunction in Children and Adults. CURRENT BLADDER DYSFUNCTION REPORTS 2012. [DOI: 10.1007/s11884-012-0144-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Dinan TG, Cryan JF. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 2012; 37:1369-78. [PMID: 22483040 DOI: 10.1016/j.psyneuen.2012.03.007] [Citation(s) in RCA: 378] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 02/06/2023]
Abstract
There is now an expanding volume of evidence to support the view that commensal organisms within the gut play a role in early programming and later responsivity of the stress system. The gut is inhabited by 10¹³-10¹⁴ micro-organisms, which is ten times the number of cells in the human body and contains 150 times as many genes as our genome. It has long been recognised that gut pathogens such as Escherichia coli, if they enter the gut can activate the HPA. However, animals raised in a germ-free environment show exaggerated HPA responses to psychological stress, which normalises with monocolonisation by certain bacterial species including Bifidobacterium infantis. Moreover, increased evidence suggests that animals treated with probiotics have a blunted HPA response. Stress induces increased permeability of the gut allowing bacteria and bacterial antigens to cross the epithelial barrier and activate a mucosal immune response, which in turn alters the composition of the microbiome and leads to enhanced HPA drive. Increasing data from patients with irritable bowel syndrome and major depression indicate that in these syndromes alteration of the HPA may be induced by increased gut permeability. In the case of irritable bowel syndrome the increased permeability can respond to probiotic therapy. Detailed prospective studies in patients with mood disorders examining the gut microbiota, immune parameters and HPA activity are required to throw further light on this emerging area. It is however clear that the gut microbiota must be taken into account when considering the factors regulating the HPA.
Collapse
Affiliation(s)
- Timothy G Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | | |
Collapse
|
16
|
Changes in Contractile Activity of the Duodenum, Jejunum, and Ileum under Conditions of Psychogenic Stress in Rabbits. Bull Exp Biol Med 2011; 151:560-3. [DOI: 10.1007/s10517-011-1382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Kehne JH, Cain CK. Therapeutic utility of non-peptidic CRF1 receptor antagonists in anxiety, depression, and stress-related disorders: evidence from animal models. Pharmacol Ther 2010; 128:460-87. [PMID: 20826181 DOI: 10.1016/j.pharmthera.2010.08.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Accepted: 08/17/2010] [Indexed: 12/19/2022]
Abstract
Adaptive responding to threatening stressors is of fundamental importance for survival. Dysfunctional hyperactivation of corticotropin releasing factor type-1 (CRF(1)) receptors in stress response system pathways is linked to stress-related psychopathology and CRF(1) receptor antagonists (CRAs) have been proposed as novel therapeutic agents. CRA effects in diverse animal models of stress that detect anxiolytics and/or antidepressants are reviewed, with the goal of evaluating their potential therapeutic utility in depression, anxiety, and other stress-related disorders. CRAs have a distinct phenotype in animals that has similarities to, and differences from, those of classic antidepressants and anxiolytics. CRAs are generally behaviorally silent, indicating that CRF(1) receptors are normally in a state of low basal activation. CRAs reduce stressor-induced HPA axis activation by blocking pituitary and possibly brain CRF(1) receptors which may ameliorate chronic stress-induced pathology. In animal models sensitive to anxiolytics and/or antidepressants, CRAs are generally more active in those with high stress levels, conditions which may maximize CRF(1) receptor hyperactivation. Clinically, CRAs have demonstrated good tolerability and safety, but have thus far lacked compelling efficacy in major depressive disorder, generalized anxiety disorder, or irritable bowel syndrome. CRAs may be best suited for disorders in which stressors clearly contribute to the underlying pathology (e.g. posttraumatic stress disorder, early life trauma, withdrawal/abstinence from addictive substances), though much work is needed to explore these possibilities. An evolving literature exploring the genetic, developmental and environmental factors linking CRF(1) receptor dysfunction to stress-related psychopathology is discussed in the context of improving the translational value of current animal models.
Collapse
Affiliation(s)
- John H Kehne
- Translational Neuropharmacology Consulting, LLC, 9710 Traville Gateway Drive #307, Rockville, MD 20850-7408, USA.
| | | |
Collapse
|
18
|
Hoare SRJ. Allosteric modulators of class B G-protein-coupled receptors. Curr Neuropharmacol 2010; 5:168-79. [PMID: 19305799 PMCID: PMC2656815 DOI: 10.2174/157015907781695928] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 04/05/2007] [Indexed: 11/22/2022] Open
Abstract
Class B GPCR’s are activated by peptide ligands, typically 30-40 amino acid residues, that are involved in major physiological functions such as glucose homeostasis (glucagon and glucagon-like peptide 1), calcium homeostasis and bone turnover (parathyroid hormone and calcitonin), and control of the stress axis (corticotropin-releasing factor). Peptide therapeutics have been developed targeting these receptors but development of nonpeptide ligands, enabling oral administration, has proved challenging. Allosteric modulation of these receptors provides a potential route to developing nonpeptide ligands that inhibit, activate, or potentiate activation of these receptors. Here the known mechanisms of allosteric modulators targeting Class B GPCR’s are reviewed, particularly nonpeptide antagonists of the corticotropin-releasing factor 1 receptor and allosteric enhancers of the glucagon-like peptide-1 receptor. Also discussed is the potential for antagonist ligands to operate by competitive inhibition of one of the peptide binding sites, analogous to the Charniere mechanism. These mechanisms are then used to discuss potential strategies and management of pharmacological complexity in the future development of allosteric modulators for Class B GPCR’s.
Collapse
Affiliation(s)
- Sam R J Hoare
- Department of Discovery Biology, Neurocrine Biosciences Inc., San Diego, CA 92130, USA.
| |
Collapse
|
19
|
Abstract
Our digestive tract has an autonomous functioning but also has a bidirectional relation with our brain known as brain-gut interactions. This communication is mediated by the autonomous nervous system, i.e., the sympathetic and parasympathetic nervous systems, with a mixed afferent and efferent component, and the circumventricular organs located outside the blood-brain barrier. The vagus nerve, known as the principal component of the parasympathetic nervous system, is a mixed nerve composed of 90% afferent fibers, which has physiological roles due to its putative vegetative functions. The vagus nerve has also anti-inflammatory properties both through the hypothalamic pituitary adrenal axis (through its afferents) and the cholinergic anti-inflammatory pathway (through its efferents). The sympathetic nervous system has a classical antagonist effect on the parasympathetic nervous system at the origin of an equilibrated sympathovagal balance in normal conditions. The brain is able to integrate inputs coming from the digestive tract inside a central autonomic network organized around the hypothalamus, limbic system and cerebral cortex (insula, prefrontal, cingulate) and in return to modify the autonomic nervous system and the hypothalamic pituitary adrenal axis in the frame of physiological loops. A dysfunction of these brain-gut interactions, favoured by stress, is most likely involved in the pathophysiology of digestive diseases such as irritable bowel syndrome or even inflammatory bowel diseases. A better knowledge of these brain-gut interactions has therapeutic implications in the domain of pharmacology, neurophysiology, behavioural and cognitive management.
Collapse
Affiliation(s)
- B Bonaz
- Clinique universitaire d'hépato-gastroentérologie, CHU de Grenoble, BP 217, 38043 Grenoble cedex 9, France.
| |
Collapse
|
20
|
Hefner J, Klosterhalfen S, Martens U, Enck P. Psychische Faktoren gastrointestinaler Erkrankungen. PSYCHOTHERAPEUT 2010. [DOI: 10.1007/s00278-010-0744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Abstract
There is a bidirectional relation between the central nervous system and the digestive tract, i.e., the brain-gut axis. Numerous data argue for a dysfunction of the brain-gut axis in the pathophysiology of irritable bowel syndrome (IBS). Visceral hypersensitivity is a marker of IBS as well as of an abnormality of the brain-gut axis. This visceral hypersensitivity is peripheral and/or central in origin and may be the consequence of digestive inflammation or an anomaly of the nociceptive message treatment at the spinal and/or supraspinal level. Stress is involved in the genesis and maintenance of IBS. Disturbances of the autonomic nervous system are observed in IBS as a consequence of brain-gut axis dysfunction. The contribution of the neurosciences, in particular brain imaging techniques, has contributed to the better understanding of IBS physiopathology. The better knowledge of brain-gut axis dysfunction has therapeutic implications, either through drugs and/or cognitive and behavioral therapies.
Collapse
Affiliation(s)
- B Bonaz
- Clinique Universitaire d'Hépato-Gastroentérologie et Stress et Interactions neuro-Digestives, Grenoble Institut des Neurosciences (GIN, Centre de Recherche INSERM U836-UJF-CEA-CHU), CHU de Grenoble, BP217, 38043 Grenoble cedex 09, France.
| | | |
Collapse
|
22
|
Berezina TP, Ovsyannikov VI. Mechanism for the inhibition of contractile activity of the gastric antrum and pylorus in rabbits during psychogenic stress. Bull Exp Biol Med 2009; 147:296-300. [PMID: 19529847 DOI: 10.1007/s10517-009-0495-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Psychogenic stress in rabbits (fixation to a frame) was accompanied by the inhibition of contractile activity of the gastric antrum and pylorus. These changes persisted during blockade of muscarinic receptors, nicotinic receptors, alpha(2)-adrenoceptors, and beta(1)/beta(2) adrenoceptors. A stress-induced decrease in gastric motor activity was mediated by the nonadrenergic noncholinergic mechanism. It resulted from the influence of a hormonal stress factor on the stomach, which was probably realized through nonadrenergic inhibitory neurons of the enteric nervous system.
Collapse
Affiliation(s)
- T P Berezina
- Laboratory for Physiology of Digestion, Department for Physiology of Visceral Systems, Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | | |
Collapse
|
23
|
Abstract
Irritable bowel syndrome is not only a digestive motor disorder. It is a multifactorial disease for which many data have highlighted the pathophysiological importance of visceral hypersensitivity in the onset of symptoms, particularly abdominal pain. Hypersensitivity is due either to an afferent neurons disfunction at the enteric nervous system level, either to an abnormal brain-gut axis processing of sensory or nociceptive inputs arising from the gut, at the spinal or supraspinal level. Disturbances of the autonomic nervous system occur in IBS as a consequence of this brain-gut axis dysfunction. Neurological abnormalities may be triggered by inflammation, mast cell dysfunction or increased intestinal permeability while the neuro-immune consequences of stress (mainly chronic) play a major role in the genesis and the maintenance of irritable bowel syndrome. The role of emotions and mood disturbances cannot be omitted in the interpretation the central processing of digestive sensory inputs. Neurosciences, in particular brain imaging techniques, have contributed to this better understanding of irritable bowel syndrome pathophysiology. It is likely to play a major role in the future to improve our knowledge of the brain-gut axis function (mechanisms, neurotransmitters and receptors involved both in normal and pathological conditions). This knowledge is crucial because of the need for updated treatment strategies and new pharmacological and/or cognitive or behavioral therapies.
Collapse
|
24
|
Adeyemo MA, Chang L. New treatments for irritable bowel syndrome in women. ACTA ACUST UNITED AC 2009; 4:605-22; quiz 623. [PMID: 19072463 DOI: 10.2217/17455057.4.6.605] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The estimated prevalence of irritable bowel syndrome (IBS) in Western countries is 7-15%, with a female:male ratio of 2-2.5:1 in IBS patients who seek healthcare services; however, the female predominance is lower in the general population. IBS has a significant impact on health-related quality of life and is associated with a significant healthcare and economic burden. Management of IBS is comprised of general measures and pharmacologic and nonpharmacologic treatment. However, there are ongoing efforts to find more effective therapeutic approaches. As advancements in the understanding of the pathophysiology of IBS continue to grow, new and effective treatments with novel mechanisms of action that have the potential to improve relief of IBS symptoms over current treatments are likely to be developed. This article provides an overview of current and emerging therapies for IBS and also highlights sex and gender differences in clinical trials and treatment response.
Collapse
Affiliation(s)
- Mopelola A Adeyemo
- Center for Neurobiology of Stress, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, 11301 Wilshire Blvd, Building 115, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | | |
Collapse
|
25
|
Taché Y, Brunnhuber S. From Hans Selye's discovery of biological stress to the identification of corticotropin-releasing factor signaling pathways: implication in stress-related functional bowel diseases. Ann N Y Acad Sci 2009; 1148:29-41. [PMID: 19120089 DOI: 10.1196/annals.1410.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selye pioneered the concept of biological stress in 1936, culminating in the identification of the corticotropin-releasing factor (CRF) signaling pathways by Vale's group in the last two decades. The characterization of the 41 amino-acid CRF and other peptide members of the mammalian CRF family, urocortin 1, urocortin 2, and urocortin 3, and the cloning of CRF(1) and CRF(2) receptors, which display distinct affinity for CRF ligands, combined with the development of selective CRF receptor antagonists enable us to unravel the importance of CRF(1) receptor in the stress-related endocrine (activation of pituitary-adrenal axis), behavioral (anxiety/depression, altered feeding), autonomic (activation of sympathetic nervous system), and immune responses. The activation of CRF(1) receptors is also one of the key mechanisms through which various stressors impact the gut to stimulate colonic propulsive motor function and to induce hypersensitivity to colorectal distension as shown by the efficacy of the CRF(1) receptor antagonists in blunting these stress-related components. The importance of CRF(1) signaling pathway in the visceral response to stress in experimental animals provided new therapeutic approaches for treatment of functional bowel disorder such as irritable bowel syndrome, a multifactor functional disorder characterized by altered bowel habits and visceral pain, for which stress has been implicated in the pathophysiology and is associated with anxiety-depression in a subset of patients.
Collapse
Affiliation(s)
- Yvette Taché
- Department of Medicine, University of California, Los Angeles, Los Angeles, California, USA.
| | | |
Collapse
|
26
|
Wald A, Rakel D. Behavioral and complementary approaches for the treatment of irritable bowel syndrome. Nutr Clin Pract 2008; 23:284-92. [PMID: 18595861 DOI: 10.1177/0884533608318677] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common conditions seen in primary care settings. Despite this, there is no consensus as to the pathogenesis of this disorder or a consistently effective therapeutic regimen for many patients. This has encouraged the use of various alternative therapies from behavioral or complementary medicine. This review will address the evidence for alternative therapies, including the following: cognitive behavior therapy, hypnosis, elimination diets based on food antibody testing, nutrition supplements (such as fiber, probiotics, and prebiotics), and, finally, peppermint, l-glutamine, zinc, and cromolyn sodium. The review also explores the evidence for and the therapeutic ramifications of the hypothesis that increased intestinal permeability underlies the symptoms of IBS in many patients, and how a therapeutic plan that addresses nutrition, elimination diets, and nutrition supplements may be useful in restoring the integrity of the gut immune barrier.
Collapse
Affiliation(s)
- Arnold Wald
- Section of GI and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | | |
Collapse
|
27
|
Abell TL, Adams KA, Boles RG, Bousvaros A, Chong SKF, Fleisher DR, Hasler WL, Hyman PE, Issenman RM, Li BUK, Linder SL, Mayer EA, McCallum RW, Olden K, Parkman HP, Rudolph CD, Taché Y, Tarbell S, Vakil N. Cyclic vomiting syndrome in adults. Neurogastroenterol Motil 2008; 20:269-84. [PMID: 18371009 DOI: 10.1111/j.1365-2982.2008.01113.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyclic vomiting syndrome (CVS) was initially described in children but can occur in all age groups. Cyclic vomiting syndrome is increasingly recognized in adults. However, the lack of awareness of CVS in adults has led to small numbers of diagnosed patients and a paucity of published data on the causes, diagnosis and management of CVS in adults. This article is a state-of-knowledge overview on CVS in adults and is intended to provide a framework for management and further investigations into CVS in adults.
Collapse
Affiliation(s)
- T L Abell
- University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Research on gut-brain interactions has increased over the last decade and has brought about a number of new topics beyond "classical" subjects, such as "stress" and "personality", which have dominated the psychosomatic literature on gastrointestinal disorders over the past century. These novel topics include brain imaging of intestinal functions, placebo responses in gastroenterology, learning of gastrointestinal symptoms, quality of life in patients with intestinal complaints, and psychotherapy and familial aggregation of functional intestinal disorders. Currently, these new topics appear with a frequency of 1% to 3% in leading gastroenterological journals, either as data presentation or review papers. Increasing focus underlines the importance of enhancing our understanding on how the psyche and the brain communicate in order to better meet the needs of our patients.
Collapse
Affiliation(s)
- Paul Enck
- University Hospitals Tubingen, Department of Internal Medicine VI, Psychosomatic Medicine and Psychotherapy, Osianderstrasse 5, Tubingen 72076, Germany.
| | | | | |
Collapse
|
29
|
Ohman L, Simrén M. New insights into the pathogenesis and pathophysiology of irritable bowel syndrome. Dig Liver Dis 2007; 39:201-15. [PMID: 17267314 DOI: 10.1016/j.dld.2006.10.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/20/2006] [Accepted: 10/25/2006] [Indexed: 02/08/2023]
Abstract
The pathogenesis and pathophysiology of irritable bowel syndrome is complex and still incompletely known. Potential pathogenetic factors include genes, infectious events, psychological symptoms and other loosely defined environmental factors. Both alterations at the central and peripheral level are thought to contribute to the symptoms of irritable bowel syndrome, including psychosocial factors, abnormal gastrointestinal motility and secretion, and visceral hypersensitivity. Today irritable bowel syndrome is viewed upon as a disorder of dysregulation of the so-called brain-gut axis, involving abnormal function in the enteric, autonomic and/or central nervous systems, with peripheral abnormalities probably dominating in some patients and disturbed central processing of signals from the periphery in others. Lines of evidence also suggest that inflammation within the gastrointestinal tract may be of great importance in at least subgroups of irritable bowel syndrome patients. To conclude, a complex picture of the pathogenesis and pathophysiology of irritable bowel syndrome is emerging, with interactions between several different alterations resulting in the divergent symptom pattern in these patients.
Collapse
Affiliation(s)
- L Ohman
- Department of Internal Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | |
Collapse
|
30
|
Novel mechanisms to treat depression and anxiety: Will neuropeptide antagonists succeed? ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddstr.2006.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Whorwell PJ, Altringer L, Morel J, Bond Y, Charbonneau D, O'Mahony L, Kiely B, Shanahan F, Quigley EMM. Efficacy of an encapsulated probiotic Bifidobacterium infantis 35624 in women with irritable bowel syndrome. Am J Gastroenterol 2006; 101:1581-90. [PMID: 16863564 DOI: 10.1111/j.1572-0241.2006.00734.x] [Citation(s) in RCA: 516] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Probiotic bacteria exhibit a variety of properties, including immunomodulatory activity, which are unique to a particular strain. Thus, not all species will necessarily have the same therapeutic potential in a particular condition. We have preliminary evidence that Bifidobacterium infantis 35624 may have utility in irritable bowel syndrome (IBS). OBJECTIVES This study was designed to confirm the efficacy of the probiotic bacteria B. infantis 35624 in a large-scale, multicenter, clinical trial of women with IBS. A second objective of the study was to determine the optimal dosage of probiotic for administration in an encapsulated formulation. METHODS After a 2-wk baseline, 362 primary care IBS patients, with any bowel habit subtype, were randomized to either placebo or freeze-dried, encapsulated B. infantis at a dose of 1 x 10(6), 1 x 10(8), or 1 x 10(10), cfu/mL for 4 wk. IBS symptoms were monitored daily and scored on to a 6-point Likert scale with the primary outcome variable being abdominal pain or discomfort. A composite symptom score, the subject's global assessment of IBS symptom relief, and measures of quality of life (using the IBS-QOL instrument) were also recorded. RESULTS B. infantis 35624 at a dose of 1 x 10(8) cfu was significantly superior to placebo and all other bifidobacterium doses for the primary efficacy variable of abdominal pain as well as the composite score and scores for bloating, bowel dysfunction, incomplete evacuation, straining, and the passage of gas at the end of the 4-wk study. The improvement in global symptom assessment exceeded placebo by more than 20% (p < 0.02). Two other doses of probiotic (1 x 10(6) and 1 x 10(10)) were not significantly different from placebo; of these, the 1 x 10(10) dose was associated with significant formulation problems. No significant adverse events were recorded. CONCLUSIONS B. infantis 35624 is a probiotic that specifically relieves many of the symptoms of IBS. At a dosage level of 1 x 10(8) cfu, it can be delivered by a capsule making it stable, convenient to administer, and amenable to widespread use. The lack of benefits observed with the other dosage levels of the probiotic highlight the need for clinical data in the final dosage form and dose of probiotic before these products should be used in practice.
Collapse
Affiliation(s)
- Peter J Whorwell
- Department of Medicine, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
33
|
Affiliation(s)
- Douglas A Drossman
- Division of Gastroenterology and Hepatology, UNC Center for Functional GI and Motility Disorders, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7080, USA.
| |
Collapse
|
34
|
Million M, Wang L, Wang Y, Adelson DW, Yuan PQ, Maillot C, Coutinho SV, Mcroberts JA, Bayati A, Mattsson H, Wu V, Wei JY, Rivier J, Vale W, Mayer EA, Taché Y. CRF2 receptor activation prevents colorectal distension induced visceral pain and spinal ERK1/2 phosphorylation in rats. Gut 2006; 55:172-81. [PMID: 15985561 PMCID: PMC1856510 DOI: 10.1136/gut.2004.051391] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Activation of corticotropin releasing factor 1 (CRF1) receptors is involved in stress related responses and visceral pain, while activation of CRF2 receptors dampens the endocrine and some behavioural stress responses. We hypothesised that CRF2 receptor activation may influence visceral pain induced by colorectal distension (CRD) in conscious rats, and assessed the possible sites and mechanisms of action. METHODS Male Sprague-Dawley rats were exposed to CRDs (60 mm Hg, 10 minutes twice, with a 10 minute rest interval). Visceromotor responses (VMR) were measured by electromyography or visual observation. Spinal (L6-S1) extracellular signal regulated kinase 1/2 (ERK 1/2) activation following in vivo CRD and CRF2 receptor gene expression in the T13-S1 dorsal root ganglia (DRG) and spinal cord were determined. Inferior splanchnic afferent (ISA) activity to CRD (0.4 ml, 20 seconds) was assessed by electrophysiological recording in an in vitro ISA nerve-inferior mesenteric artery (intra-arterial)-colorectal preparation. RESULTS In controls, VMR to the second CRD was mean 31 (SEM 4)% higher than that of the first (p<0.05). The selective CRF2 agonist, human urocortin 2 (hUcn 2, at 10 and 20 microg/kg), injected intravenous after the first distension, prevented sensitisation and reduced the second response by 8 (1)% and 30 (5)% (p<0.05) compared with the first response, respectively. RT-PCR detected CRF2 receptor gene expression in the DRG and spinal cord. CRD (60 mm Hg for 10 minutes) induced phosphorylation of ERK 1/2 in neurones of lumbosacral laminae I and IIo and the response was dampened by intravenous hUcn 2. CRD, in vitro, induced robust ISA spike activity that was dose dependently blunted by hUcn 2 (1-3 microg, intra-arterially). The CRF2 receptor antagonist, astressin2-B (200 microg/kg subcutaneously or 20 microg intra-arterially) blocked the hUcn 2 inhibitory effects in vivo and in vitro. CONCLUSIONS Peripheral injection of hUcn 2 blunts CRD induced visceral pain, colonic afferent, and spinal L6-S1 ERK 1/2 activity through CRF2 receptor activation in rats.
Collapse
Affiliation(s)
- M Million
- CURE/Digestive Diseases Research Center, Department of Medicine, University of California Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Activation of corticotropin releasing hormone (CRH) receptor 2 (CRH-R2) reduces visceral sensitivity induced by colorectal distension in conscious rats. This finding is relevant to the increased interest in the potential use of therapeutic agents that act on CRH receptors in the treatment of irritable bowel syndrome.
Collapse
Affiliation(s)
- S Fukudo
- Department of Behavioural Medicine, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | | | | | | |
Collapse
|
36
|
Kosoyan HP, Grigoriadis DE, Taché Y. The CRF(1) receptor antagonist, NBI-35965, abolished the activation of locus coeruleus neurons induced by colorectal distension and intracisternal CRF in rats. Brain Res 2005; 1056:85-96. [PMID: 16095571 DOI: 10.1016/j.brainres.2005.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 07/08/2005] [Accepted: 07/13/2005] [Indexed: 12/30/2022]
Abstract
Corticotropin-releasing factor (CRF) receptors have been reported to play a role in tonic colorectal distension (CRD)-induced activation of locus coeruleus (LC) neurons. We examined the influence of repeated phasic CRDs and intracisternal (ic) CRF on the spontaneous discharge rate of LC neurons in chloral hydrate-anesthetized rats and the role of CRF receptors using the nonselective CRF(1)/CRF(2) antagonist, astressin, and the water-soluble CRF(1) receptor antagonist, NBI-35965. Two consecutive phasic CRDs (43.7 +/- 1.1 mm Hg, 30 s each) at a 10-min interval increased LC activity to 184.9 +/- 15% and 171.9 +/- 12.2%, respectively. There was no difference in magnitude, onset (within 1 s), and duration (5-7 min) of the LC responses between the 1st and 2nd CRDs. CRF (300 ng/rat, ic) injected 10 min after the 2nd CRD increased LC activity to 191.1 +/- 11.2%. Astressin (3 mug, ic) completely blocked the 2nd CRD- and ic CRF-induced LC activation. Neither ic vehicle nor astressin influenced basal LC neuronal activity. NBI-35965 (10 mg/kg, iv) prevented the 2nd CRD- and ic CRF-induced LC neuronal activation, while at 5 mg significantly reduced the LC response to the 2nd CRD by 80%, but did not block that of ic CRF injected 30 min later. These findings indicate a primary role of brain CRF interacting with CRF(1) receptors in mediating the activation of LC neurons in response to a phasic CRD within the nociceptive range (>40 mm Hg). This activation may have relevance to irritable bowel syndrome characterized by lower pain threshold to CRD and hypervigilance to colonic input.
Collapse
Affiliation(s)
- Hovsep P Kosoyan
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences and Women's Health, Veterans Affairs Medical Center, Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
37
|
Million M, Maillot C, Adelson DA, Nozu T, Gauthier A, Rivier J, Chrousos GP, Bayati A, Mattsson H, Taché Y. Peripheral injection of sauvagine prevents repeated colorectal distension-induced visceral pain in female rats. Peptides 2005; 26:1188-95. [PMID: 15949637 DOI: 10.1016/j.peptides.2005.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Revised: 01/31/2005] [Accepted: 02/01/2005] [Indexed: 01/26/2023]
Abstract
We investigated the effects of peripheral injection of sauvagine, a CRF2>CRF1 receptor (corticotropin-releasing factor) agonist compared with CRF, on two sets of tonic colorectal distension (CRDs 30, 40, 50 mmHg, 3-min on/off)-induced visceromotor response (VMR) measured as area under the curve (AUC) of abdominal muscle contraction in conscious female rats. Sauvagine (10 or 20 microg/kg, s.c.) abolished the 226.7+/-64.3% and 90.4+/-38.1% increase in AUC to the 2nd CRD compared with the 1st CRD (performed 30 min before) in female Fisher and Sprague-Dawley (SD) rats, respectively. CRF had no effect while the CRF1 antagonist, antalarmin (20 mg/kg, s.c.), alone or with sauvagine, blocked the enhanced response to the 2nd CRD, performed 60 min after the 1st CRD, and reduced further the AUC by 33.5+/-23.3% and 63.5+/-7.2%, respectively in Fisher rats. These data suggest that peripheral CRF2 receptor activation exerts antinociceptive effects on CRD-induced visceral pain, whereas CRF1 contributes to visceral sensitization.
Collapse
Affiliation(s)
- Mulugeta Million
- Center for Neurovisceral Sciences and Women's Health, Division of Digestive Diseases, Department of Medicine, University of California Los Angeles, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|