1
|
Zhao J, Hao S, Chen Y, Ye X, Fang P, Hu H. Tauroursodeoxycholic acid liposome alleviates DSS-induced ulcerative colitis through restoring intestinal barrier and gut microbiota. Colloids Surf B Biointerfaces 2024; 236:113798. [PMID: 38377705 DOI: 10.1016/j.colsurfb.2024.113798] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 02/11/2024] [Indexed: 02/22/2024]
Abstract
Ulcerative colitis (UC) is a chronic and progressive inflammatory disease that damages the colonic mucosa and disrupts the intestinal epithelial barrier. The current clinical treatment for UC is mainly chemotherapy, which has the limited effectiveness and severe side effects. It mainly focuses on the treatment of inflammation while neglecting the repair of the intestinal mucosa and the restoration of the microbiota balance. Here, we aimed to address these challenges by using an amphipathic bile acid -tauroursodeoxycholic acid (TUDCA) to replace cholesterol (CHL) in conventional liposomes. We prepared TUDCA/Emodin liposomes by incorporating the hydrophobic drug emodin. The experimental results indicated that TUDCA/Emodin Lip had uniform particle size distribution, good stability, low cytotoxicity, and exhibited good mucus permeability and anti-inflammatory activity in in vitro experiments, and was able to protect cells from oxidative stress. After oral administration, TUDCA/Emodin Lip significantly alleviated the severity of UC. This was evidenced by increased colon length, decreased inflammation and reduced colonic endoplasmic reticulum stress (ERS). Furthermore, TUDCA/Emodin Lip maintained the normal levels of the tight junction proteins Claudin-1 and ZO-1, thereby restoring the integrity of the intestinal barrier. Importantly, TUDCA/Emodin Lip also promoted the ecological restoration of the gut microbiota, increased overall abundance and diversity. Taken together, TUDCA/Emodin Lip can fundamentally restore intestinal homeostasis, this work provides a new, efficient and easily transformable treatment for UC.
Collapse
Affiliation(s)
- Junke Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suqi Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxing Ye
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengchao Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Wang Y, Li J, Wu L, Qin X, Xie C, Gao X. Saikosaponins regulate bile acid excretion in mice liver and ileum by activating farnesoid X receptor and bile acid transporter. Phytother Res 2023; 37:4572-4586. [PMID: 37318212 DOI: 10.1002/ptr.7927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/10/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
Radix Bupleuri exerts effective hepatoprotective and cholagogic effects through its Saikosaponins (SSs) component. Therefore, we attempted to determine the mechanism of saikosaponins used to promote bile excretion by studying their effects on intrahepatic bile flow, focusing on the synthesis, transport, excretion, and metabolism of bile acids. C57BL/6N mice were continuously gavaged with saikosaponin a (SSa), saikosaponin b2 (SSb2 ), or saikosaponin D (SSd) (200 mg/kg) for 14 days. Liver and serum biochemical indices were determined using Enzyme-linked immunosorbent assay (ELISA) kits. In addition, an ultra-performance liquid chromatography-mass spectrometer (UPLC-MS) was used to measure the levels of the 16 bile acids in the liver, gallbladder, and cecal contents. Furthermore, SSs pharmacokinetics and docking between SSs and farnesoid X receptor (FXR)-related proteins were analyzed to investigate the underlying molecular mechanisms. Administration of SSs and Radix Bupleuri alcohol extract (ESS) did not cause significant changes in alanine aminotransferase (ALT), aspartate aminotransferase (AST), or alkaline phosphatase (ALP) levels. Saikosaponin-regulated changes in bile acid (BA) levels in the liver, gallbladder, and cecum were closely related to genes involved in BA synthesis, transport, and excretion in the liver. Pharmacokinetic studies indicated that SSs were characterized by rapid elimination (t1/2 as 0.68-2.47 h), absorption (Tmax as 0.47-0.78 h), and double peaks in the drug-time curves of SSa and SSb2 . A molecular docking study revealed that SSa, SSb2 , and SSd docked well with the 16 protein FXR molecules and target genes (<-5.2 kcal/mol). Collectively, saikosaponins may maintain BA homeostasis in mice by regulating FXR-related genes and transporters in the liver and intestine.
Collapse
Affiliation(s)
- YuKun Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Jing Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Li Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - XueMei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| | - Cen Xie
- State Key Lab Drug Res, Chinese Acad Sci, Shanghai Inst Mat Med, Shanghai, PR China
| | - XiaoXia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, PR China
| |
Collapse
|
3
|
Hua H, Dai M, Luo Y, Lin H, Xu G, Hu X, Xu L, Zhang H, Tang Z, Chang L, Liu A, Yang J. Basal PPARα inhibits bile acid metabolism adaptation in chronic cholestatic model induced by α-naphthylisothiocyanate. Toxicol Lett 2018; 300:31-39. [PMID: 30352267 DOI: 10.1016/j.toxlet.2018.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/26/2018] [Accepted: 10/12/2018] [Indexed: 12/12/2022]
Abstract
Cholestasis is one of the most challenging diseases to be treated in current hepatology. However little is known about the adaptation difference and the underlying mechanism between acute and chronic cholestasis. In this study, wild-type and Pparα-null mice were orally administered diet containing 0.05% ANIT to induce chronic cholestasis. Biochemistry, histopathology and serum metabolome analysis exhibited the similar toxic phenotype between wild-type and Pparα-null mice. Bile acid metabolism was strongly adapted in Pparα-null mice but not in wild-type mice. The Shp and Fxr mRNA was found to be doubled in cholestatic Pparα-null mice compared with the control group. Western blot confirmed the up-regulated expression of FXR in Pparα-null mice treated with ANIT. Inflammation was found to be stronger in Pparα-null mice than those in wild-type mice in chronic cholestasis. These data chain indicated that bile acid metabolism and inflammation signaling were different between wild-type and Pparα-null mice developing chronic cholestasis, although their toxic phenotypes could not be discriminated. So basal PPARα cross-talked with FXR and inhibited bile acid metabolism adaptation in chronic cholestasis.
Collapse
Affiliation(s)
- Huiying Hua
- Medical School of Ningbo University, Ningbo 315211, China
| | - Manyun Dai
- Medical School of Ningbo University, Ningbo 315211, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yishuang Luo
- Medical School of Ningbo University, Ningbo 315211, China
| | - Hante Lin
- Medical School of Ningbo University, Ningbo 315211, China
| | - Gangming Xu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Xiaowei Hu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Liping Xu
- Medical School of Ningbo University, Ningbo 315211, China
| | - Haoyue Zhang
- Medical School of Ningbo University, Ningbo 315211, China
| | - Zhiyuan Tang
- Medical School of Ningbo University, Ningbo 315211, China
| | - Liming Chang
- Medical School of Ningbo University, Ningbo 315211, China
| | - Aiming Liu
- Medical School of Ningbo University, Ningbo 315211, China.
| | - Julin Yang
- Ningbo College of Health Sciences, Ningbo 315100, China.
| |
Collapse
|
4
|
Pereira-Fantini PM, Lapthorne S, Joyce SA, Dellios NL, Wilson G, Fouhy F, Thomas SL, Scurr M, Hill C, Gahan CGM, Cotter PD, Fuller PJ, Hardikar W, Bines JE. Altered FXR signalling is associated with bile acid dysmetabolism in short bowel syndrome-associated liver disease. J Hepatol 2014; 61:1115-25. [PMID: 24999016 DOI: 10.1016/j.jhep.2014.06.025] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 05/27/2014] [Accepted: 06/22/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Despite the mortality associated with liver disease observed in patients with short bowel syndrome (SBS), mechanisms underlying the development of SBS-associated liver disease (SBS-ALD) are poorly understood. This study examines the impact of bacterially-mediated bile acid (BA) dysmetabolism on farnesoid X receptor (FXR) signalling pathways and clinical outcome in a piglet model of SBS-ALD. METHODS 4-week old piglets underwent 75% small bowel resection (SBR) or sham operation. Liver histology and hepatic inflammatory gene expression were examined. Abundance of BA biotransforming bacteria was determined and metabolomic studies detailed the alterations in BA composition of stool, portal serum and bile samples. Gene expression of intestinal and hepatic FXR target genes and small heterodimer partner (SHP) transrepression targets were assessed. RESULTS Histological evidence of SBS-ALD included liver bile duct proliferation, hepatocyte ballooning and fibrosis. Inflammatory gene expression was increased. Microbiota changes included a 10-fold decrease in Clostridium and a two-fold decrease in Bacteroides in SBS-ALD piglets. BA composition was altered and reflected a primary BA dominant composition. Intestinal and hepatic regulation of BA synthesis was characterised by a blunted intestinal FXR activation response and a failure of SHP to repress key hepatic targets. CONCLUSIONS We propose a pathological scenario in which microbial dysbiosis following SBR results in significant BA dysmetabolism and consequent outcomes including steatorrhoea, persistent diarrhoea and liver damage. Furthermore alterations in BA composition may have contributed to the observed disturbance in FXR-mediated signalling pathways. These findings provide an insight into the complex mechanisms mediating the development of liver disease in patients with SBS.
Collapse
Affiliation(s)
- Prue M Pereira-Fantini
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia.
| | - Susan Lapthorne
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | | | - Nicole L Dellios
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Guineva Wilson
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Department of Surgery, Monash Medical Centre, Clayton, Victoria, Australia
| | - Fiona Fouhy
- School of Microbiology, University College Cork, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Sarah L Thomas
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Michelle Scurr
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Colin Hill
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | | | - Paul D Cotter
- Alimentary Pharmabiotic Centre, Cork, Ireland; Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Peter J Fuller
- Prince Henry's Institute for Medical Research, Clayton, Victoria, Australia
| | - Winita Hardikar
- Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia; Gastro and Food Allergy Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | - Julie E Bines
- Intestinal Failure and Clinical Nutrition Research Group, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
PPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis. Nat Commun 2014; 5:4573. [PMID: 25183423 PMCID: PMC4164778 DOI: 10.1038/ncomms5573] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Bile acids play a pivotal role in the pathological development of inflammatory bowel disease (IBD). However, the mechanism of bile acid dysregulation in IBD remains unanswered. Here we show that intestinal peroxisome proliferator-activated receptor α (PPARα)-UDP-glucuronosyltransferases (UGTs) signalling is an important determinant of bile acid homeostasis. Dextran sulphate sodium (DSS)-induced colitis leads to accumulation of bile acids in inflamed colon tissues via activation of the intestinal peroxisome PPARα-UGTs pathway. UGTs accelerate the metabolic elimination of bile acids, and thereby decrease their intracellular levels in the small intestine. Reduced intracellular bile acids results in repressed farnesoid X receptor (FXR)-FGF15 signalling, leading to upregulation of hepatic CYP7A1, thus promoting the de novo bile acid synthesis. Both knockout of PPARα and treatment with recombinant FGF19 markedly attenuate DSS-induced colitis. Thus, we propose that intestinal PPARα-UGTs and downstream FXR-FGF15 signalling play vital roles in control of bile acid homeostasis and the pathological development of colitis. Bile acids have been linked to the development of inflammatory bowel diseases, such as colitis. Here the authors show that bile acid levels in mice are controlled by a circular feedback system involving the nuclear receptors PPARα and FXR, and that this system is dysregulated in colitis.
Collapse
|
6
|
Abstract
Recent insights into the cellular and molecular mechanisms that control the function and regulation of hepatobiliary transport have led to a greater understanding of the physiological significance of bile secretion. Individual carriers for bile acids and other organic anions in both liver and intestine have now been cloned from several species. In addition, complex networks of signals that regulate key enzymes and membrane transporters located in cells that participate in the metabolism or transport of biliary constituents are being unraveled. This knowledge has major implications for the pathogenesis of cholestatic liver diseases. Here, we review recent information on molecular aspects of hepatobiliary secretory function and its regulation in cholestasis. Potential implications of this knowledge for the design of new therapies of cholestatic disorders are also discussed.
Collapse
Affiliation(s)
- Marco Arrese
- Departmento de Gastroenterologi;a, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 347, 8320000 Santiago, Chile.
| | | |
Collapse
|
7
|
Arrese M, Ananthanarayanan M. The bile salt export pump: molecular properties, function and regulation. Pflugers Arch 2004; 449:123-31. [PMID: 15578267 DOI: 10.1007/s00424-004-1311-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 06/16/2004] [Indexed: 12/31/2022]
Abstract
Secretion of bile salts from the hepatocyte into bile is the major driving force for the generation of bile flow. Identification of the bile salt export pump (BSEP, ABCB11) as the main adenosine-triphosphate-dependent bile salt transporter in mammalian liver has led to a greater understanding of the biliary bile salt secretory process and its regulation. The biology and pathobiology of BSEP have been the subject of many recent studies. Thus, it has been recognized that while mutations in the gene encoding BSEP are responsible for a subgroup of progressive familial cholestasis (progressive familial intrahepatic cholestasis subtype 2), a pediatric cholestatic disorder that may progress to cirrhosis, defective expression or function of BSEP may underlie some forms of drug-induced cholestasis. The present review summarizes recent data on the molecular properties and regulation of BSEP, as well as the clinical implications of absent or defective function of this hepatic efflux pump.
Collapse
Affiliation(s)
- Marco Arrese
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 367, 6510260 Santiago, Chile.
| | | |
Collapse
|
8
|
Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, MacKenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 2003. [PMID: 14623915 DOI: 10.1172/jci200318945] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Farnesoid X receptor (FXR) is a bile acid-activated transcription factor that is a member of the nuclear hormone receptor superfamily. Fxr-null mice exhibit a phenotype similar to Byler disease, an inherited cholestatic liver disorder. In the liver, activation of FXR induces transcription of transporter genes involved in promoting bile acid clearance and represses genes involved in bile acid biosynthesis. We investigated whether the synthetic FXR agonist GW4064 could protect against cholestatic liver damage in rat models of extrahepatic and intrahepatic cholestasis. In the bile duct-ligation and alpha-naphthylisothiocyanate models of cholestasis, GW4064 treatment resulted in significant reductions in serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase, as well as other markers of liver damage. Rats that received GW4064 treatment also had decreased incidence and extent of necrosis, decreased inflammatory cell infiltration, and decreased bile duct proliferation. Analysis of gene expression in livers from GW4064-treated cholestatic rats revealed decreased expression of bile acid biosynthetic genes and increased expression of genes involved in bile acid transport, including the phospholipid flippase MDR2. The hepatoprotection seen in these animal models by the synthetic FXR agonist suggests FXR agonists may be useful in the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Yaping Liu
- Nuclear Receptor Functional Analysis, High Thruput Biology, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, MacKenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra- and extrahepatic cholestasis. J Clin Invest 2003; 112:1678-87. [PMID: 14623915 PMCID: PMC281645 DOI: 10.1172/jci18945] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Farnesoid X receptor (FXR) is a bile acid-activated transcription factor that is a member of the nuclear hormone receptor superfamily. Fxr-null mice exhibit a phenotype similar to Byler disease, an inherited cholestatic liver disorder. In the liver, activation of FXR induces transcription of transporter genes involved in promoting bile acid clearance and represses genes involved in bile acid biosynthesis. We investigated whether the synthetic FXR agonist GW4064 could protect against cholestatic liver damage in rat models of extrahepatic and intrahepatic cholestasis. In the bile duct-ligation and alpha-naphthylisothiocyanate models of cholestasis, GW4064 treatment resulted in significant reductions in serum alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase, as well as other markers of liver damage. Rats that received GW4064 treatment also had decreased incidence and extent of necrosis, decreased inflammatory cell infiltration, and decreased bile duct proliferation. Analysis of gene expression in livers from GW4064-treated cholestatic rats revealed decreased expression of bile acid biosynthetic genes and increased expression of genes involved in bile acid transport, including the phospholipid flippase MDR2. The hepatoprotection seen in these animal models by the synthetic FXR agonist suggests FXR agonists may be useful in the treatment of cholestatic liver disease.
Collapse
Affiliation(s)
- Yaping Liu
- Nuclear Receptor Functional Analysis, High Thruput Biology, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|