1
|
Hu Y, Tuo B. The function of chloride channels in digestive system disease (Review). Int J Mol Med 2025; 55:99. [PMID: 40314091 PMCID: PMC12045473 DOI: 10.3892/ijmm.2025.5540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/11/2025] [Indexed: 05/03/2025] Open
Abstract
Cation channels have been extensively studied in the context of digestive disorders, but comparatively little attention has been given to anions and their associated channels. Chloride ions, the most abundant anions in the human body, act as signaling molecules, modulating cellular behavior and playing a key role in regulating multiorgan physiological and pathophysiological mechanisms. The intra‑ and extracellular distributions of chloride ions are primarily controlled by various chloride channels and transporters. Currently, these chloride channels are classified into several groups: The chloride channels family, cystic fibrosis transmembrane conductance regulator, calcium‑activated chloride channels, volume‑regulated anion channels, proton‑activated chloride channels and ligand‑gated anion channels. This review aims to summarize the roles of chloride ion channels and transporter proteins in digestive system diseases, providing a theoretical basis for future research and offering potential new strategies for disease treatment.
Collapse
Affiliation(s)
- Yanxia Hu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Wang MQ, Wang B, Yang X, Zhang QC, Wang XY, Dong YF. ClC-3-depedent polarization of microglia protects against cerebral ischemic injury in mice. Int Immunopharmacol 2025; 155:114618. [PMID: 40209312 DOI: 10.1016/j.intimp.2025.114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Polarization of microglia has attracted great attention in ischemic stroke. Emerging evidence suggests that chloride channel 3 (ClC-3) is involved in inflammatory responses and stroke. However, the link between ClC-3 and polarization of microglia in ischemic stroke remains unclear. Herein, we found both cerebral ischemia and oxygen-glucose deprivation (OGD) induced a significant upregulation of ClC-3 in microglia. While knockdown of ClC-3 markedly increased nuclear factor kappa B (NF-κB) and CD86, and decreased CD206 in BV-2 cells under OGD conditions, facilitating them to shift into a M1-like phenotype. Furthermore, ClC-3 knockout significantly aggravated infarct volume and neurological deficits, accompanied by increased activated microglia in the peri-infarct area 1 day after cerebral ischemia. By contrast, ClC-3 overexpression obviously suppressed nuclear translocation of NF-κB, decreased OGD-induced elevated mRNA levels of TNF-α, IL-1β and IL-10, and enhanced M2-like markers (Arg1, CD206, and TREM2) in microglia, leading to alleviated infarct volume and neurological deficits. While ClC-3 overexpression could not reverse a transformation from M1-like phenotype to M2-like polarization in presence of lipopolysaccharide (LPS) and interferon gamma (IFNγ) treatment for 24 h. Collectively, our findings indicate that ClC-3-dependent polarization of microglia is critically important for protecting against cerebral ischemia injury, suggesting ClC-3 is a promising therapeutic target for ischemic stroke.
Collapse
Affiliation(s)
- Meng-Qing Wang
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Wang
- Department of Radiotherapy, Nanjing Chest Hospital, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Xu Yang
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi-Chun Zhang
- Department of Clinical Pharmacy and Toxicity, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu-Yang Wang
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yin-Feng Dong
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Wan Y, Guo S, Zhen W, Xu L, Chen X, Liu F, Shen Y, Liu S, Hu L, Wang X, Ye F, Wang Q, Wen H, Yang F. Structural basis of adenine nucleotides regulation and neurodegenerative pathology in ClC-3 exchanger. Nat Commun 2024; 15:6654. [PMID: 39107281 PMCID: PMC11303396 DOI: 10.1038/s41467-024-50975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
The ClC-3 chloride/proton exchanger is both physiologically and pathologically critical, as it is potentiated by ATP to detect metabolic energy level and point mutations in ClC-3 lead to severe neurodegenerative diseases in human. However, why this exchanger is differentially modulated by ATP, ADP or AMP and how mutations caused gain-of-function remains largely unknow. Here we determine the high-resolution structures of dimeric wildtype ClC-3 in the apo state and in complex with ATP, ADP and AMP, and the disease-causing I607T mutant in the apo and ATP-bounded state by cryo-electron microscopy. In combination with patch-clamp recordings and molecular dynamic simulations, we reveal how the adenine nucleotides binds to ClC-3 and changes in ion occupancy between apo and ATP-bounded state. We further observe I607T mutation induced conformational changes and augments in current. Therefore, our study not only lays the structural basis of adenine nucleotides regulation in ClC-3, but also clearly indicates the target region for drug discovery against ClC-3 mediated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yangzhuoqun Wan
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Shuangshuang Guo
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Wenxuan Zhen
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Lizhen Xu
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Xiaoying Chen
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Fangyue Liu
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Shen
- Department of Neurobiology and Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuangshuang Liu
- Core Facilities, Zhejiang University School of Medicine, Hangzhou, China
| | - Lidan Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | | | | | | | - Han Wen
- DP Technology, Beijing, China.
- Institute for Advanced Algorithms Research, Shanghai, China.
- State Key Laboratory of Medical Proteomics, Shanghai, China.
- AI for Science Institute, Beijing, China.
- National Key Laboratory of Lead Druggability Research, Beijing, China.
| | - Fan Yang
- Department of Biophysics and Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Sun J, Chen M, Hu Z, Xu N, Wang W, Ping Z, Zhu J, Sun D, Zhu Z, Li H, Ge X, Luo L, Zhou W, Bai R, Xu Z, Sheng J. Ribonuclease 4 functions as an intestinal antimicrobial protein to maintain gut microbiota and metabolite homeostasis. Nat Commun 2024; 15:5778. [PMID: 38987259 PMCID: PMC11237007 DOI: 10.1038/s41467-024-50223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Antimicrobial proteins contribute to host-microbiota interactions and are associated with inflammatory bowel disease (IBD), but our understanding on antimicrobial protein diversity and functions remains incomplete. Ribonuclease 4 (Rnase4) is a potential antimicrobial protein with no known function in the intestines. Here we find that RNASE4 is expressed in intestinal epithelial cells (IEC) including Paneth and goblet cells, and is detectable in human and mouse stool. Results from Rnase4-deficient mice and recombinant protein suggest that Rnase4 kills Parasutterella to modulate intestinal microbiome, thereby enhancing indoleamine-2,3-dioxygenase 1 (IDO1) expression and subsequently kynurenic and xanthurenic acid production in IECs to reduce colitis susceptibility. Furthermore, deceased RNASE4 levels are observed in the intestinal tissues and stool from patients with IBD, correlating with increased stool Parasutterella. Our results thus implicate Rnase4 as an intestinal antimicrobial protein regulating gut microbiota and metabolite homeostasis, and as a potential diagnostic biomarker and therapeutic target for IBD.
Collapse
Affiliation(s)
- Jun Sun
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Muxiong Chen
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhen Hu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ningqin Xu
- Division of Health Sciences, Hangzhou Normal University, Hangzhou, 310015, China
| | - Wenguang Wang
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zejun Ping
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jiayi Zhu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Desen Sun
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhehao Zhu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Hangyu Li
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiaolong Ge
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Liang Luo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei Zhou
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Rongpan Bai
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 310012, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
5
|
m6A modification in inflammatory bowel disease provides new insights into clinical applications. Biomed Pharmacother 2023; 159:114298. [PMID: 36706633 DOI: 10.1016/j.biopha.2023.114298] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) results from a complex interplay between genetic predisposition, environmental factors, and gut microbes. The role of N6-methyladenosine (m6A) methylation in the pathogenesis of IBD has attracted increasing attention. m6A modification not only regulates intestinal mucosal immunity and intestinal barrier function, but also affects apoptosis and autophagy in intestinal epithelial cells. Additionally, m6A modification participated in the interaction between gut microbes and the host, providing a novel direction to explore the molecular mechanisms of IBD and the theoretical basis for specific microorganism-oriented prevention and treatment measures. m6A regulators are expected to be biomarkers for predicting the prognosis of IBD patients. m6A methylation may be utilized as a novel target in the management of IBD. This review focused on the recent advances in how m6A modification causes the initiation and development of IBD, and provided new insights into optimal prevention and treatment measures for IBD.
Collapse
|
6
|
Lin Z, Lin X, Lai Y, Han C, Fan X, Tang J, Mo S, Su J, Liang S, Shang J, Lv X, Guo S, Pang R, Zhou J, Zhang T, Zhang F. Ponatinib modulates the metabolic profile of obese mice by inhibiting adipose tissue macrophage inflammation. Front Pharmacol 2022; 13:1040999. [DOI: 10.3389/fphar.2022.1040999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity-induced metabolic syndrome is a rapidly growing conundrum, reaching epidemic proportions globally. Chronic inflammation in obese adipose tissue plays a key role in metabolic syndrome with a series of local and systemic effects such as inflammatory cell infiltration and inflammatory cytokine secretion. Adipose tissue macrophages (ATM), as one of the main regulators in this process, are particularly crucial for pharmacological studies on obesity-related metabolic syndrome. Ponatinib, a multi-targeted tyrosine kinase inhibitor originally used to treat leukemia, has recently been found to improve dyslipidemia and atherosclerosis, suggesting that it may have profound effect on metabolic syndrome, although the mechanisms underlying have not yet been revealed. Here we discovered that ponatinib significantly improved insulin sensitivity in leptin deficient obese mice. In addition to that, ponatinib treatment remarkably ameliorated high fat diet-induced hyperlipidemia and inhibited ectopic lipid deposition in the liver. Interestingly, although ponatinib did not reduce but increase the weight of white adipose tissue (WAT), it remarkably suppressed the inflammatory response in WAT and preserved its function. Mechanistically, we showed that ponatinib had no direct effect on hepatocyte or adipocyte but attenuated free fatty acid (FFA) induced macrophage transformation from pro-inflammatory to anti-inflammatory phenotype. Moreover, adipocytes co-cultured with FFA-treated macrophages exhibited insulin resistance, while pre-treat these macrophages with ponatinib can ameliorate this process. These results suggested that the beneficial effects of ponatinib on metabolic disorders are achieved by inhibiting the inflammatory phenotypic transformation of ATMs, thereby maintaining the physiological function of adipose tissue under excessive obesity. The data here not only revealed the novel therapeutic function of ponatinib, but also provided a theoretical basis for the application of multi-target tyrosine kinase inhibitors in metabolic diseases.
Collapse
|
7
|
Huang LY, Ma JY, Song JX, Xu JJ, Hong R, Fan HD, Cai H, Wang W, Wang YL, Hu ZL, Shen JG, Qi SH. Ischemic accumulation of succinate induces Cdc42 succinylation and inhibits neural stem cell proliferation after cerebral ischemia/reperfusion. Neural Regen Res 2022; 18:1040-1045. [PMID: 36254990 PMCID: PMC9827777 DOI: 10.4103/1673-5374.355821] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ischemic accumulation of succinate causes cerebral damage by excess production of reactive oxygen species. However, it is unknown whether ischemic accumulation of succinate affects neural stem cell proliferation. In this study, we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery. We found that succinate levels increased in serum and brain tissue (cortex and hippocampus) after ischemia/reperfusion injury. Oxygen-glucose deprivation and reoxygenation stimulated primary neural stem cells to produce abundant succinate. Succinate can be converted into diethyl succinate in cells. Exogenous diethyl succinate inhibited the proliferation of mouse-derived C17.2 neural stem cells and increased the infarct volume in the rat model of cerebral ischemia/reperfusion injury. Exogenous diethyl succinate also increased the succinylation of the Rho family GTPase Cdc42 but repressed Cdc42 GTPase activity in C17.2 cells. Increasing Cdc42 succinylation by knockdown of the desuccinylase Sirt5 also inhibited Cdc42 GTPase activity in C17.2 cells. Our findings suggest that ischemic accumulation of succinate decreases Cdc42 GTPase activity by induction of Cdc42 succinylation, which inhibits the proliferation of neural stem cells and aggravates cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ju-Yun Ma
- College of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jin-Xiu Song
- College of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing-Jing Xu
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Rui Hong
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hai-Di Fan
- College of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Heng Cai
- College of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wan Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yan-Ling Wang
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhao-Li Hu
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jian-Gang Shen
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,School of Chinese Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Su-Hua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,College of Pharmacology, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Su-Hua Qi, .
| |
Collapse
|
8
|
Zhang J, Cen L, Zhang X, Tang C, Chen Y, Zhang Y, Yu M, Lu C, Li M, Li S, Lin B, Zhang T, Song X, Yu C, Wu H, Shen Z. MPST deficiency promotes intestinal epithelial cell apoptosis and aggravates inflammatory bowel disease via AKT. Redox Biol 2022; 56:102469. [PMID: 36126419 PMCID: PMC9486620 DOI: 10.1016/j.redox.2022.102469] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND & AIMS Excessive inflammatory responses and oxidative stress are considered the main characteristics of inflammatory bowel disease (IBD). Endogenous hydrogen sulfide (H2S) has been reported to show anti-inflammatory activity in IBD. The main aim of this study was to explore the role of 3-mercaptopyruvate sulfurtransferase (MPST), a key enzyme that regulates endogenous H2S biosynthesis, in IBD. METHODS Colonic MPST expression was evaluated in mice and patients with IBD. Various approaches were used to explore the concrete mechanism underlying MPST regulation of the progression of colitis through in vivo and in vitro models. RESULTS MPST expression was markedly decreased in colonic samples from patients with ulcerative colitis (UC) or Crohn's disease (CD) and from mice treated with DSS. MPST deficiency significantly aggravated the symptoms of murine colitis, exacerbated inflammatory responses and apoptosis, and inhibited epithelium stem cell-derived organoid formation in an H2S-independent manner. Consistently, when HT29 cells were treated with TNF-α, inhibition of MPST significantly increased the expression of proinflammatory cytokines, the amount of ROS and the prevalence of apoptosis, whereas overexpression of MPST markedly improved these effects. RNA-seq analysis showed that MPST might play a role in regulating apoptosis through AKT signaling. Mechanistically, MPST directly interacted with AKT and reduced the phosphorylation of AKT. Additionally, MPST expression was positively correlated with AKT expression in human IBD samples. In addition, overexpression of AKT rescued IEC apoptosis caused by MPST deficiency, while inhibition of AKT significantly aggravated it. CONCLUSIONS MPST protects the intestines from inflammation most likely by regulating the AKT/apoptosis axis in IECs. Our results may provide a novel therapeutic strategy for the treatment of colitis.
Collapse
Affiliation(s)
- Jie Zhang
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Li Cen
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaofen Zhang
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chenxi Tang
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yishu Chen
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yuwei Zhang
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Mengli Yu
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chao Lu
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Meng Li
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Sha Li
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Bingru Lin
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tiantian Zhang
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xin Song
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Chaohui Yu
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhe Shen
- The Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
9
|
Kouyoumdzian NM, Kim G, Rudi MJ, Rukavina Mikusic NL, Fernández BE, Choi MR. Clues and new evidences in arterial hypertension: unmasking the role of the chloride anion. Pflugers Arch 2022; 474:155-176. [PMID: 34966955 DOI: 10.1007/s00424-021-02649-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
The present review will focus on the role of chloride anion in cardiovascular disease, with special emphasis in the development of hypertensive disease and vascular inflammation. It is known that acute and chronic overload of sodium chloride increase blood pressure and have pro-inflammatory and pro-fibrotic effects on different target organs, but it is unknown how chloride may influence these processes. Chloride anion is the predominant anion in the extracellular fluid and its intracellular concentration is dynamically regulated. As the queen of the electrolytes, it is of crucial importance to understand the physiological mechanisms that regulate the cellular handling of this anion including the different transporters and cellular chloride channels, which exert a variety of functions, such as regulation of cellular proliferation, differentiation, migration, apoptosis, intracellular pH and cellular redox state. In this article, we will also review the relationship between dietary, serum and intracellular chloride and how these different sources of chloride in the organism are affected in hypertension and their impact on cardiovascular disease. Additionally, we will discuss the approach of potential strategies that affect chloride handling and its potential effect on cardiovascular system, including pharmacological blockade of chloride channels and non-pharmacological interventions by replacing chloride by another anion.
Collapse
Affiliation(s)
- Nicolás Martín Kouyoumdzian
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.
| | - Gabriel Kim
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Julieta Rudi
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Marcelo Roberto Choi
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de La Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| |
Collapse
|
10
|
Huang J, Sheng X, Zhuo Z, Xiao D, Wu K, Wan G, Chen H. ClC-c regulates the proliferation of intestinal stem cells via the EGFR signalling pathway in Drosophila. Cell Prolif 2021; 55:e13173. [PMID: 34952996 PMCID: PMC8780901 DOI: 10.1111/cpr.13173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives Adult stem cells uphold a delicate balance between quiescent and active states, which is crucial for tissue homeostasis. Whereas many signalling pathways that regulate epithelial stem cells have been reported, many regulators remain unidentified. Materials and Methods Flies were used to generate tissue‐specific gene knockdown and gene knockout. qRT‐PCR was used to assess the relative mRNA levels. Immunofluorescence was used to determine protein localization and expression patterns. Clonal analyses were used to observe the phenotype. RNA‐seq was used to screen downstream mechanisms. Results Here, we report a member of the chloride channel family, ClC‐c, which is specifically expressed in Drosophila intestinal stem/progenitor cells and regulates intestinal stem cell (ISC) proliferation under physiological conditions and upon tissue damage. Mechanistically, we found that the ISC loss induced by the depletion of ClC‐c in intestinal stem/progenitor cells is due to inhibition of the EGFR signalling pathway. Conclusion Our findings reveal an ISC‐specific function of ClC‐c in regulating stem cell maintenance and proliferation, thereby providing new insights into the functional links among the chloride channel family, ISC proliferation and tissue homeostasis.
Collapse
Affiliation(s)
- Jinping Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Sheng
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhangpeng Zhuo
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Danqing Xiao
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Kun Wu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gang Wan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Deng Z, Zhao Y, Ma Z, Zhang M, Wang H, Yi Z, Tuo B, Li T, Liu X. Pathophysiological role of ion channels and transporters in gastrointestinal mucosal diseases. Cell Mol Life Sci 2021; 78:8109-8125. [PMID: 34778915 PMCID: PMC8629801 DOI: 10.1007/s00018-021-04011-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/10/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022]
Abstract
The incidence of gastrointestinal (GI) mucosal diseases, including various types of gastritis, ulcers, inflammatory bowel disease and GI cancer, is increasing. Therefore, it is necessary to identify new therapeutic targets. Ion channels/transporters are located on cell membranes, and tight junctions (TJs) affect acid-base balance, the mucus layer, permeability, the microbiota and mucosal blood flow, which are essential for maintaining GI mucosal integrity. As ion channel/transporter dysfunction results in various GI mucosal diseases, this review focuses on understanding the contribution of ion channels/transporters to protecting the GI mucosal barrier and the relationship between GI mucosal disease and ion channels/transporters, including Cl-/HCO3- exchangers, Cl- channels, aquaporins, Na+/H+ exchangers, and K+ channels. Here, we provide novel prospects for the treatment of GI mucosal diseases.
Collapse
Affiliation(s)
- Zilin Deng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Yingying Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiqiang Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
12
|
Mu H, Mu L, Gao J. Suppression of CLC-3 reduces the proliferation, invasion and migration of colorectal cancer through Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun 2020; 533:1240-1246. [PMID: 33069359 DOI: 10.1016/j.bbrc.2020.09.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE In the present study, we attempted to explore the role of chloride channel 3 (CLC-3) in colorectal cancer (CRC) and its related mechanism. METHODS First, the expression level of CLC-3 in CRC tumor tissues and cell lines were measured by RT-qPCR, immunohistochemistry or western blot analysis. CLC-3 expression knockdown in CRC cells was achieved by siRNA transfection. The effect of CLC-3 silence on cell viability, cell cycle, invasion and migration of CRC was estimated by CCK8, flow cytometry based cell cycle assay, and transwell assay, respectively. In order to investigate whether Wnt/β-catenin signaling was perturbed by CLC-3 knockdown, CLC-3 knockdown cells were treated with pathway activator LiCl, followed by the measurement of the expressions of pathway related genes, cell viability, cell cycle, metastasis ability. RESULTS The expression of CLC-3 was gradually increased from normal adjacent tissues to CRC tumor tissues, and the increase in tumor tissues was related to TNM stages. CLC-3 was overexpressed in four CRC cell lines (HCT116, SW480, LoVo and SW620), compared with NCM460 cells. CLC-3 knockdown significantly reduced cell proliferation, invasion and migration ability, reflected by declined cell viability, arrested G0/G1 cell cycle, decreased invasion and migration ability. In contrast, the declined cell proliferation, invasion and migration of LoVo and SW620 cells induced by CLC-3 knockdown were reversed by the addition of Wnt/β-catenin activator LiCl. CONCLUSION CLC-3 contributed to the CRC development and metastasis through Wnt/β-catenin signaling pathway. CLC-3 could be proposed as the candidate target for CRC treatment.
Collapse
Affiliation(s)
- Hailian Mu
- Department of Gastroenterology, Linyi People's Hospital, Wo Hushan Road, Lanshan District, Linyi City, Shandong, 276002, China
| | - Linjun Mu
- Department of Gastroenterology, Weifang People's Hospital, Shandong, China
| | - Jianfei Gao
- Department of Intensive Care Unit, Linyi People's Hospital, Wo Hushan Road, Lanshan District, Linyi City, Shandong, 276002, China.
| |
Collapse
|
13
|
Zhang M, Li T, Zhu J, Tuo B, Liu X. Physiological and pathophysiological role of ion channels and transporters in the colorectum and colorectal cancer. J Cell Mol Med 2020; 24:9486-9494. [PMID: 32662230 PMCID: PMC7520301 DOI: 10.1111/jcmm.15600] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
The incidence of colorectal cancer has increased annually, and the pathogenesis of this disease requires further investigation. In normal colorectal tissues, ion channels and transporters maintain the water-electrolyte balance and acid/base homeostasis. However, dysfunction of these ion channels and transporters leads to the development and progression of colorectal cancer. Therefore, this review focuses on the progress in understanding the roles of ion channels and transporters in the colorectum and in colorectal cancer, including aquaporins (AQPs), Cl- channels, Cl- / HCO 3 - exchangers, Na+ / HCO 3 - transporters and Na+ /H+ exchangers. The goal of this review is to promote the identification of new targets for the treatment and prognosis of colorectal cancer.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| | - Taolang Li
- Department of Thyroid and Breast SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Jiaxing Zhu
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| | - Biguang Tuo
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| | - Xuemei Liu
- Department of GastroenterologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- Digestive Disease Institute of Guizhou ProvinceZunyiChina
| |
Collapse
|
14
|
Bai R, Sun D, Chen M, Shi X, Luo L, Yao Z, Liu Y, Ge X, Gao X, Hu GF, Zhou W, Sheng J, Xu Z. Myeloid cells protect intestinal epithelial barrier integrity through the angiogenin/plexin-B2 axis. EMBO J 2020; 39:e103325. [PMID: 32510170 DOI: 10.15252/embj.2019103325] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022] Open
Abstract
Communication between myeloid cells and epithelium plays critical role in maintaining intestinal epithelial barrier integrity. Myeloid cells interact with intestinal epithelial cells (IECs) by producing various mediators; however, the molecules mediating their crosstalk remain incompletely understood. Here, we report that deficiency of angiogenin (Ang) in mouse myeloid cells caused impairment of epithelial barrier integrity, leading to high susceptibility to DSS-induced colitis. Mechanistically, myeloid cell-derived angiogenin promoted IEC survival and proliferation through plexin-B2-mediated production of tRNA-derived stress-induced small RNA (tiRNA) and transcription of ribosomal RNA (rRNA), respectively. Moreover, treatment with recombinant angiogenin significantly attenuated the severity of experimental colitis. In human samples, the expression of angiogenin was significantly down-regulated in patients with inflammatory bowel disease (IBD). Collectively, we identified, for the first time to our knowledge, a novel mediator of myeloid cell-IEC crosstalk in maintaining epithelial barrier integrity, suggesting that angiogenin may serve as a new preventive agent and therapeutic target for IBD.
Collapse
Affiliation(s)
- Rongpan Bai
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Desen Sun
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Muxiong Chen
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoliang Shi
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Luo
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengrong Yao
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaxin Liu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Ge
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangwei Gao
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guo-Fu Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Wei Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine, and Cancer Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.,Program in Molecular and Cellular Biology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Guo J, Liu X, Zhang T, Lin X, Hong Y, Yu J, Wu Q, Zhang F, Wu Q, Shang J, Lv X, Ou J, Zhou J, Pang R, Tang B, Liang S. Hepatocyte TMEM16A Deletion Retards NAFLD Progression by Ameliorating Hepatic Glucose Metabolic Disorder. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903657. [PMID: 32440483 PMCID: PMC7237841 DOI: 10.1002/advs.201903657] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent form of chronic liver disease, and the mechanisms underpinning its pathogenesis have not been completely established. Transmembrane member 16A (TMEM16A), a component of the Ca2+-activated chloride channel (CaCC), has recently been implicated in metabolic events. Herein, TMEM16A is shown to be responsible for CaCC activation in hepatocytes and is increased in liver tissues of mice and patients with NAFLD. Hepatocyte-specific ablation of TMEM16A in mice ameliorates high-fat diet-induced obesity, hepatic glucose metabolic disorder, steatosis, insulin resistance, and inflammation. In contrast, hepatocyte-specific TMEM16A transgenic mice exhibit the opposite phenotype. Mechanistically, hepatocyte TMEM16A interacts with vesicle-associated membrane protein 3 (VAMP3) to induce its degradation, suppressing the formation of the VAMP3/syntaxin 4 and VAMP3/synaptosome-associated protein 23 complexes. This leads to the impairment of hepatic glucose transporter 2 (GLUT2) translocation and glucose uptake. Notably, VAMP3 overexpression restrains the functions of hepatocyte TMEM16A in blocking GLUT2 translocation and promoting lipid deposition, insulin resistance, and inflammation. In contrast, VAMP3 knockdown reverses the beneficial effects of TMEM16A downregulation. This study demonstrates a role for TMEM16A in NAFLD and suggests that inhibition of hepatic TMEM16A or disruption of TMEM16A/VAMP3 interaction may provide a new potential therapeutic strategy for NAFLD.
Collapse
Affiliation(s)
- Jia‐Wei Guo
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Xiu Liu
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Ting‐Ting Zhang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Xiao‐Chun Lin
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Yu Hong
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Jie Yu
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Qin‐Yan Wu
- Department of GastroenterologyThe First People's Hospital of FoshanFoshan528000China
| | - Fei‐Ran Zhang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Qian‐Qian Wu
- Key Laboratory of Metabolic Cardiovascular Diseases Research of National Health CommissionNingxia Medical UniversityYinchuan750004China
| | - Jin‐Yan Shang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Xiao‐Fei Lv
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Jing‐Song Ou
- Division of Cardiac SurgeryThe Key Laboratory of Assisted CirculationMinistry of HealthThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- National‐Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular DiseasesThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Jia‐Guo Zhou
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
- Program of Kidney and Cardiovascular DiseaseThe Fifth Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
- Department of CardiologySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
- Guangdong Province Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Rui‐Ping Pang
- Guangdong Province Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
- Department of PhysiologyPain Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| | - Bao‐Dong Tang
- Department of GastroenterologyThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510080China
| | - Si‐Jia Liang
- Department of PharmacologyCardiac and Cerebral Vascular Research CenterZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhou510080China
| |
Collapse
|
16
|
Zhang J, Xu M, Zhou W, Li D, Zhang H, Chen Y, Ning L, Zhang Y, Li S, Yu M, Chen Y, Zeng H, Cen L, Zhou T, Zhou X, Lu C, Yu C, Li Y, Sun J, Kong X, Shen Z. Deficiency in the anti-apoptotic protein DJ-1 promotes intestinal epithelial cell apoptosis and aggravates inflammatory bowel disease via p53. J Biol Chem 2020; 295:4237-4251. [PMID: 32075910 PMCID: PMC7105307 DOI: 10.1074/jbc.ra119.010143] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/11/2020] [Indexed: 12/31/2022] Open
Abstract
Parkinson disease autosomal recessive, early onset 7 (PARK7 or DJ-1) is involved in multiple physiological processes and exerts anti-apoptotic effects on multiple cell types. Increased intestinal epithelial cell (IEC) apoptosis and excessive activation of the p53 signaling pathway is a hallmark of inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). However, whether DJ-1 plays a role in colitis is unclear. To determine whether DJ-1 deficiency is involved in the p53 activation that results in IEC apoptosis in colitis, here we performed immunostaining, real-time PCR, and immunoblotting analyses to assess DJ-1 expression in human UC and CD samples. In the inflamed intestines of individuals with IBD, DJ-1 expression was decreased and negatively correlated with p53 expression. DJ-1 deficiency significantly aggravated colitis, evidenced by increased intestinal inflammation and exacerbated IEC apoptosis. Moreover, DJ-1 directly interacted with p53, and reduced DJ-1 levels increased p53 levels both in vivo and in vitro and were associated with decreased p53 degradation via the lysosomal pathway. We also induced experimental colitis with dextran sulfate sodium in mice and found that compared with DJ-1-/- mice, DJ-1-/-p53-/- mice have reduced apoptosis and inflammation and increased epithelial barrier integrity. Furthermore, pharmacological inhibition of p53 relieved inflammation in the DJ-1-/- mice. In conclusion, reduced DJ-1 expression promotes inflammation and IEC apoptosis via p53 in colitis, suggesting that the modulation of DJ-1 expression may be a potential therapeutic strategy for managing colitis.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Min Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weihua Zhou
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Dejian Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hong Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yi Chen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Longgui Ning
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuwei Zhang
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Sha Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Mengli Yu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yishu Chen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hang Zeng
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Li Cen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Tianyu Zhou
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chao Lu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Youming Li
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Jing Sun
- Department of Gastroenterology, Rui Jin Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China.
| | - Xiaoni Kong
- Institute of Clinical Immunology, Department of Liver Diseases, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
17
|
Meng Q, Wu W, Pei T, Xue J, Xiao P, Sun L, Li L, Liang D. miRNA-129/FBW7/NF-κB, a Novel Regulatory Pathway in Inflammatory Bowel Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:731-740. [PMID: 31945730 PMCID: PMC6965515 DOI: 10.1016/j.omtn.2019.10.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/14/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
Abstract
F-box and WD repeat domain-containing protein 7 (FBW7) has been documented to be implicated in nuclear factor κB (NF-κB) signaling and inflammation, but its role in the pathogenesis of inflammatory bowel disease (IBD) remains unknown. FBW7 was increased both in colon tissues from IBD patients and trinitrobenzene sulphonic acid (TNBS)-induced colitis mice. Immunoprecipitation assay identified that FBW7 as a novel inhibitor of κBα (IκBα)-binding partner. FBW7 upregulation promoted IκBα ubiquitin-dependent degradation, NF-κB activation, and subsequent intestinal inflammation in intestinal epithelial cells, whereas inhibition of FBW7 produced the opposite effects. Computational analysis revealed that microRNA-129 (miR-129) directly targets at 3' UTR of FBW7. The miR-129-suppressed proteasome pathway mediated the degradation of IκBα by negatively regulating FBW7. The in vivo study demonstrated that upregulation of miR-129 ameliorated intestinal inflammation in TNBS-induced colitis mice through inhibition of the NF-κB signaling pathway. In conclusion, FBW7 is a novel E3 ubiquitin ligase for IκBα and thereby leads to NF-κB activation and inflammation. miR-129 negatively regulates FBW7 expression, resulting in secondary inhibition of the NF-κB pathway and amelioration of intestinal inflammation. Our findings provide new insight into the development of therapeutic strategies for the treatment of IBD.
Collapse
Affiliation(s)
- Qinghui Meng
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China.
| | - Weihua Wu
- Department of Endocrinology, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Tiemin Pei
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China.
| | - Junlin Xue
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Peng Xiao
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Liang Sun
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Long Li
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Desen Liang
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| |
Collapse
|
18
|
Ma MM, Jin CC, Huang XL, Sun L, Zhou H, Wen XJ, Huang XQ, Du JY, Sun HS, Ren ZX, Liu J, Guan YY, Zhao XM, Wang GL. Clcn3 deficiency ameliorates high-fat diet-induced obesity and adipose tissue macrophage inflammation in mice. Acta Pharmacol Sin 2019; 40:1532-1543. [PMID: 31165783 PMCID: PMC7470880 DOI: 10.1038/s41401-019-0229-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Obesity induces accumulation of adipose tissue macrophages (ATMs) and ATM-driven inflammatory responses that promote the development of glucose and lipid metabolism disorders. ClC-3 chloride channel/antiporter, encoded by the Clcn3, is critical for some basic cellular functions. Our previous work has shown significant alleviation of type 2 diabetes in Clcn3 knockout (Clcn3−/−) mice. In the present study we investigated the role of Clcn3 in high-fat diet (HFD)-induced obesity and ATM inflammation. To establish the mouse obesity model, both Clcn3−/− mice and wild-type mice were fed a HFD for 4 or 16 weeks. The metabolic parameters were assessed and the abdominal total adipose tissue was scanned using computed tomography. Their epididymal fat pad tissue and adipose tissue stromal vascular fraction (SVF) cells were isolated for analyses. We found that the HFD-fed Clcn3−/− mice displayed a significant decrease in obesity-induced body weight gain and abdominal visceral fat accumulation as well as an improvement of glucose and lipid metabolism as compared with HFD-fed wild-type mice. Furthermore, the Clcn3 deficiency significantly attenuated HFD-induced ATM accumulation, HFD-increased F4/80+ CD11c+ CD206− SVF cells as well as HFD-activated TLR-4/NF-κB signaling in epididymal fat tissue. In cultured human THP-1 macrophages, adenovirus-mediated transfer of Clcn3 specific shRNA inhibited, whereas adenovirus-mediated cDNA overexpression of Clcn3 enhanced lipopolysaccharide-induced activation of NF-κB and TLR-4. These results demonstrate a novel role for Clcn3 in HFD-induced obesity and ATM inflammation.
Collapse
|
19
|
Convallatoxin protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB signaling through activation of PPARγ. Pharmacol Res 2019; 147:104355. [DOI: 10.1016/j.phrs.2019.104355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/14/2023]
|
20
|
Zhu XH, Lang HD, Wang XL, Hui SC, Zhou M, Kang C, Yi L, Mi MT, Zhang Y. Synergy between dihydromyricetin intervention and irinotecan chemotherapy delays the progression of colon cancer in mouse models. Food Funct 2019; 10:2040-2049. [PMID: 30907395 DOI: 10.1039/c8fo01756e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is the third highest cause of cancer-related death and the main option for prolonged survival is chemotherapeutic intervention. There is increasing interest in dietary intervention using natural agents to enhance the sensitivity of such invasive chemical treatment. In this study, the chemotherapeutic efficacy of dihydromyricetin (DMY) intervention on treatments involving irinotecan (CPT-11) or gemcitabine (GM) was evaluated in an AOM/DSS-induced colitis-associated colon cancer model and a Min (Apc Min/+) mice model. Our data showed that DMY could promote the CPT-11 effect both in the mouse model of AOM/DSS and Apc Min/+ cancer and had no influence on the GM effect. In AOM/DSS cancer, tumors were sensitive to 100 mg kg-1 DMY chemotherapy under 100 mg kg-1 or 200 mg kg-1 CPT-11. DMY-driven CPT-11 chemotherapy induced enhanced IgG levels and the reduction of Fusobacterium abundance in the gut. In the Min model, CPT-11 with 20 mg kg-1 DMY prevented tumor formation but not with 100 mg kg-1 DMY. Mechanically, chloride ion-dependent CFTR, CLCN4, and CLIC4 signaling are not involved in DMY mediated chemotherapeutic colon tumorigenesis. These results suggested that a suitable dose of DMY could act as a coadjuvant to CPT-11 chemotherapy.
Collapse
Affiliation(s)
- Xiao-Hui Zhu
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University, Chongqing Key Laboratory of Nutrition and Food Safety, Chongqing Medical Nutrition Research Center, Chongqing, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lactobacillus casei protects dextran sodium sulfate- or rapamycin-induced colonic inflammation in the mouse. Eur J Nutr 2019; 59:1443-1451. [PMID: 31123864 DOI: 10.1007/s00394-019-02001-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/16/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE Human colon inflammation is associated with changes in the diverse and abundant microorganisms in the gut. As important beneficial microbes, Lactobacillus contributes to the immune responses and intestinal integrity that may alleviate experimental colitis. However, the mechanisms underlying probiotic benefits have not been fully elucidated. METHODS Dextran sodium sulfate or rapamycin-challenged mice were used as model for colon inflammation evaluation. Histological scores of the colon, levels of colonic myeloperoxidase, serum tumor necrosis factor-α and interleukin-6 were assessed as inflammatory markers and the gut microbiota profiles of each mouse were studied. RESULTS We found that Lactobacillus casei Zhang (LCZ) can prevent experimental colitis and rapamycin-induced inflammation in intestinal mucosa by improving histological scores, decreasing host inflammatory cytokines, modulating gut-dominated bacteria, enhancing cystic fibrosis transmembrane conductance regulator (CFTR) expression and downregulating the expression of p-STAT3 (phosphorylated signal transducer and activator of transcription 3) or Akt/NF-κB (AKT serine/threonine kinase and nuclear factor kappa B). CONCLUSION Our results suggest that LCZ may provide effective prevention against colitis.
Collapse
|
22
|
Su Y, Yuan J, Zhang F, Lei Q, Zhang T, Li K, Guo J, Hong Y, Bu G, Lv X, Liang S, Ou J, Zhou J, Luo B, Shang J. MicroRNA-181a-5p and microRNA-181a-3p cooperatively restrict vascular inflammation and atherosclerosis. Cell Death Dis 2019; 10:365. [PMID: 31064980 PMCID: PMC6504957 DOI: 10.1038/s41419-019-1599-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/20/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
MicroRNAs have emerged as important post-transcriptional regulators of gene expression and are involved in diverse diseases and cellular process. Decreased expression of miR-181a has been observed in the patients with coronary artery disease, but its function and mechanism in atherogenesis is not clear. This study was designed to determine the roles of miR-181a-5p, as well as its passenger strand, miR-181a-3p, in vascular inflammation and atherogenesis. We found that the levels of both miR-181a-5p and miR-181a-3p are decreased in the aorta plaque and plasma of apoE−/− mice in response to hyperlipidemia and in the plasma of patients with coronary artery disease. Rescue of miR-181a-5p and miR-181a-3p significantly retards atherosclerotic plaque formation in apoE−/− mice. MiR-181a-5p and miR-181a-3p have no effect on lipid metabolism but decrease proinflammatory gene expression and the infiltration of macrophage, leukocyte and T cell into the lesions. In addition, gain-of-function and loss-of-function experiments show that miR-181a-5p and miR-181a-3p inhibit adhesion molecule expression in HUVECs and monocytes-endothelial cell interaction. MiR-181a-5p and miR-181a-3p cooperatively receded endothelium inflammation compared with single miRNA strand. Mechanistically, miR-181a-5p and miR-181a-3p prevent endothelial cell activation through blockade of NF-κB signaling pathway by targeting TAB2 and NEMO, respectively. In conclusion, these findings suggest that miR-181a-5p and miR-181a-3p are both antiatherogenic miRNAs. MiR-181a-5p and miR-181a-3p mimetics retard atherosclerosis progression through blocking NF-κB activation and vascular inflammation by targeting TAB2 and NEMO, respectively. Therefore, restoration of miR-181a-5p and miR-181a-3p may represent a novel therapeutic approach to manage atherosclerosis.
Collapse
Affiliation(s)
- Yingxue Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China.,Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jiani Yuan
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Feiran Zhang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Qingqing Lei
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Tingting Zhang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Kai Li
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jiawei Guo
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Yu Hong
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Guolong Bu
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Xiaofei Lv
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Sijia Liang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China
| | - Jingsong Ou
- Division of Cardiac Surgery, The First Affiliated Hospital, 510080, Guangzhou, China
| | - Jiaguo Zhou
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, 510080, Guangzhou, China.,Program of Kidney and Cardiovascular Disease, The Fifth Affiliated Hospital, 510080, Guangzhou, China.,Department of Cardiology, Sun Yat-sen Memorial Hospital, 510080, Guangzhou, China
| | - Bin Luo
- Department of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, 510080, Guangzhou, China.
| | - Jinyan Shang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, 510080, Guangzhou, China.
| |
Collapse
|
23
|
Yang C, He L, Chen G, Ning Z, Xia Z. LRRC8A potentiates temozolomide sensitivity in glioma cells via activating mitochondria-dependent apoptotic pathway. Hum Cell 2019; 32:41-50. [PMID: 30426452 DOI: 10.1007/s13577-018-0221-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023]
Abstract
Chloride (Cl-), a primary anion in the extracellular fluid, plays an important role in a variety of physiological and pathological processes, such as cell apoptosis and proliferation. However, the information about Cl- in cancer cell apoptosis and chemoresistance is poorly understood. In the present study, we found that temozolomide (TMZ) treatment led to a decrease in intracellular concentration of Cl- ([Cl-]i) in both U87 and TMZ-resistant U87/R glioma cells. The decrease in [Cl-]i was more noticeable in U87 cells than in U87/R cells. Moreover, the expression of LRRC8A was reduced in U87/R cells compared with U87 cells. LRRC8A downregulation inhibited TMZ, induced the decrease in [Cl-]i and abolished the difference of [Cl-]i between U87 cells and U87/R cells. Knockdown of LRRC8A using small interfering RNA attenuated TMZ-induced U87 cell growth inhibition and apoptosis, while overexpression of LRRC8A by adenoviral infection enhanced the effect of TMZ on U87 and U87/R cell viability and apoptosis. Furthermore, LRRC8A downregulation inhibited TMZ-induced mitochondria-dependent apoptosis, including elevated Bcl-2 expression, reduced Bax expression, cytochrome c release, and caspase nine and caspase three activation. On the contrary, upregulation of LRRC8A augmented the activation of mitochondria-dependent apoptotic pathway in U87 and U87/R cells. In conclusion, this study demonstrates that LRRC8A potentiates TMZ-induced glioma cell apoptosis via promoting mitochondria-dependent apoptosis, suggesting that LRRC8A can be represented as a novel target for drug resistance treatment in glioma cells.
Collapse
Affiliation(s)
- Chao Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, 58th Zhongshan Road II, Guangzhou, 510089, China
| | - Longshuang He
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Gaofei Chen
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, 510089, China
| | - Zeqian Ning
- Department of Neurosurgery, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China
| | - Zhibai Xia
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, 58th Zhongshan Road II, Guangzhou, 510089, China.
| |
Collapse
|
24
|
Huang LY, Li YJ, Li PP, Li HC, Ma P. Aggravated intestinal apoptosis by ClC-3 deletion is lethal to mice endotoxemia. Cell Biol Int 2018; 42:1445-1453. [PMID: 29972266 DOI: 10.1002/cbin.11025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/01/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Lin-Yan Huang
- School of Medical Technology; Xuzhou Medical University; 209 Tongshan Rd Xuzhou Jiangsu 221004 P.R. China
| | - Yu-Jie Li
- School of Medical Technology; Xuzhou Medical University; 209 Tongshan Rd Xuzhou Jiangsu 221004 P.R. China
| | - Peng-Peng Li
- Department of Medical Laboratory; The Affiliated Hospital of Xuzhou Medical University; No.99 Huaihai West Road Xuzhou Jiangsu 221000 P.R. China
| | - Hong-Chun Li
- School of Medical Technology; Xuzhou Medical University; 209 Tongshan Rd Xuzhou Jiangsu 221004 P.R. China
| | - Ping Ma
- School of Medical Technology; Xuzhou Medical University; 209 Tongshan Rd Xuzhou Jiangsu 221004 P.R. China
- Department of Medical Laboratory; The Affiliated Hospital of Xuzhou Medical University; No.99 Huaihai West Road Xuzhou Jiangsu 221000 P.R. China
| |
Collapse
|
25
|
Zhang Y, Kang C, Wang XL, Zhou M, Chen MT, Zhu XH, Liu K, Wang B, Zhang QY, Zhu JD, Mi MT. Dietary Factors Modulate Colonic Tumorigenesis Through the Interaction of Gut Microbiota and Host Chloride Channels. Mol Nutr Food Res 2018; 62. [DOI: 10.1002/mnfr.201700554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/04/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yong Zhang
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Chao Kang
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Xiao-lan Wang
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Min Zhou
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Meng-ting Chen
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Xiao-hui Zhu
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Kai Liu
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Bin Wang
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Qian-yong Zhang
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Jun-dong Zhu
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| | - Man-tian Mi
- Research center for Nutrition and Food safety; Institute of Military Preventive Medicine; Third Military Medical University; Chongqing Key Laboratory of Nutrition and Food safety; Chongqing Medical Nutrition Research Center; Chongqing P.R. China
| |
Collapse
|
26
|
Wang L, Xie H, Xu L, Liao Q, Wan S, Yu Z, Lin D, Zhang B, Lv Z, Wu Z, Sun X. rSj16 Protects against DSS-Induced Colitis by Inhibiting the PPAR-α Signaling Pathway. Theranostics 2017; 7:3446-3460. [PMID: 28912887 PMCID: PMC5596435 DOI: 10.7150/thno.20359] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/17/2017] [Indexed: 12/14/2022] Open
Abstract
Background: Epidemiologic studies and animal model experiments have shown that parasites have significant modulatory effects on autoimmune disorders, including inflammatory bowel disease (IBD). Recombinant Sj16 (rSj16), a 16-kDa secreted protein of Schistosoma japonicum (S.japonicum) produced by Escherichia coli (E. coli), has been shown to have immunoregulatory effects in vivo and in vitro. In this study, we aimed to determine the effects of rSj16 on dextran sulfate sodium (DSS)-induced colitis. Methods: DSS-induced colitis mice were treated with rSj16. Body weight loss, disease activity index (DAI), myeloperoxidase (MPO) activity levels, colon lengths, macroscopic scores, histopathology findings, inflammatory cytokine levels and regulatory T cell (Treg) subset levels were examined. Moreover, the differential genes expression after treated with rSj16 were sequenced, analyzed and identified. Results: rSj16 attenuated clinical activity of DSS-induced colitis mice, diminished pro-inflammatory cytokine production, up-regulated immunoregulatory cytokine production and increased Treg percentages in DSS-induced colitis mice. Moreover, DSS-induced colitis mice treated with rSj16 displayed changes in the expression levels of specific genes in the colon and show the crucial role of peroxisome proliferator activated receptor α (PPAR-α) signaling pathway. PPAR-α activation diminished the therapeutic effects of rSj16 in DSS-induced colitis mice, indicating that the PPAR-α signaling pathway plays a crucial role in DSS-induced colitis development. Conclusions: rSj16 has protective effects on DSS-induced colitis, effects mediated mainly by PPAR-α signaling pathway inhibition. The findings of this study suggest that rSj16 may be useful as a therapeutic agent and that PPAR-α may be a new therapeutic target in the treatment of IBD.
Collapse
Affiliation(s)
- Lifu Wang
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Hui Xie
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Lian Xu
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Qi Liao
- Department of Preventive Medicine, School of Medicine, Ningbo University, Zhejiang, Ningbo 315211, China
| | - Shuo Wan
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Zilong Yu
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Datao Lin
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Beibei Zhang
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Zhiyue Lv
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Zhongdao Wu
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| | - Xi Sun
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, Guangdong 510080, China
- Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong 510080, China
| |
Collapse
|
27
|
Zhang Y, Ma C, Zhao J, Xu H, Hou Q, Zhang H. Lactobacillus casei Zhang and vitamin K2 prevent intestinal tumorigenesis in mice via adiponectin-elevated different signaling pathways. Oncotarget 2017; 8:24719-24727. [PMID: 28445967 PMCID: PMC5421882 DOI: 10.18632/oncotarget.15791] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
The incidence of colon cancer has increased considerably and the intestinal microbiota participate in the development of colon cancer. We showed that the L. casei Zhang or vitamin K2 (Menaquinone-7) intervention significantly alleviated intestinal tumor burden in mice. This was associated with increased serum adiponectin levels in both treatments. But osteocalcin level was only increased by L. casei Zhang. Furthermore, the anti-carcinogenic actions of L. casei Zhang were mediated by hepatic Chloride channel-3(CLCN3)/Nuclear Factor Kappa B(NF-κB) and intestinal Claudin15/Chloride intracellular channel 4(CLIC4)/Transforming Growth Factor Beta(TGF-β) signaling, while the vitamin K2 effect involved a hepatic Vitamin D Receptor(VDR)-phosphorylated AMPK signaling pathway. Fecal DNA sequencing by the Pacbio RSII method revealed there was significantly lower Helicobacter apodemus, Helicobacter mesocricetorum, Allobaculum stercoricanis and Adlercreutzia equolifaciens following both interventions compared to the model group. Moreover, different caecum acetic acid and butyric acid levels and enrichment of other specific microbes also determined the activity of the different regulatory pathways. Together these data show that L. casei Zhang and Vitamin K2 can suppress gut risk microbes and promote beneficial microbial metabolites to reduce colonic tumor development in mice.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Chen Ma
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Jie Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
| |
Collapse
|
28
|
Poroca DR, Pelis RM, Chappe VM. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies. Front Pharmacol 2017; 8:151. [PMID: 28386229 PMCID: PMC5362633 DOI: 10.3389/fphar.2017.00151] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 02/04/2023] Open
Abstract
The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl- transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl- ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation. ClC proteins function as either Cl- channels or Cl-/H+ exchangers, although all ClC proteins share the same basic architecture. ClC channels have two gating mechanisms: a relatively well-studied fast gating mechanism, and a slow gating mechanism, which is poorly defined. ClCs are involved in a wide range of physiological processes, including regulation of resting membrane potential in skeletal muscle, facilitation of transepithelial Cl- reabsorption in kidneys, and control of pH and Cl- concentration in intracellular compartments through coupled Cl-/H+ exchange mechanisms. Several inherited diseases result from C1C gene mutations, including myotonia congenita, Bartter's syndrome (types 3 and 4), Dent's disease, osteopetrosis, retinal degeneration, and lysosomal storage diseases. This review summarizes general features, known or suspected, of ClC structure, gating and physiological functions. We also discuss biophysical properties of mammalian ClCs that are directly involved in the pathophysiology of several human inherited disorders, or that induce interesting phenotypes in animal models.
Collapse
Affiliation(s)
- Diogo R Poroca
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| | - Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax NS, Canada
| | - Valérie M Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| |
Collapse
|
29
|
Zhao HM, Han F, Xu R, Huang XY, Cheng SM, Huang MF, Yue HY, Wang X, Zou Y, Xu HL, Liu DY. Therapeutic effect of curcumin on experimental colitis mediated by inhibiting CD8 +CD11c + cells. World J Gastroenterol 2017; 23:1804-1815. [PMID: 28348486 PMCID: PMC5352921 DOI: 10.3748/wjg.v23.i10.1804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/25/2016] [Accepted: 01/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To verify whether curcumin (Cur) can treat inflammatory bowel disease by regulating CD8+CD11c+ cells.
METHODS We evaluated the suppressive effect of Cur on CD8+CD11c+ cells in spleen and Peyer’s patches (PPs) in colitis induced by trinitrobenzene sulfonic acid. Mice with colitis were treated by 200 mg/kg Cur for 7 d. On day 8, the therapeutic effect of Cur was evaluated by visual assessment and histological examination, while co-stimulatory molecules of CD8+CD11c+ cells in the spleen and PPs were measured by flow cytometry. The levels of interleukin (IL)-10, interferon (IFN)-γ and transforming growth factor (TGF)-β1 in spleen and colonic mucosa were determined by ELISA.
RESULTS The disease activity index, colon weight, weight index of colon and histological score of experimental colitis were obviously decreased after Cur treatment, while the body weight and colon length recovered. After treatment with Cur, CD8+CD11c+ cells were decreased in the spleen and PPs, and the expression of major histocompatibility complex II, CD205, CD40, CD40L and intercellular adhesion molecule-1 was inhibited. IL-10, IFN-γ and TGF-β1 levels were increased compared with those in mice with untreated colitis.
CONCLUSION Cur can effectively treat experimental colitis, which is realized by inhibiting CD8+CD11c+ cells.
Collapse
|
30
|
Zhao HM, Xu R, Huang XY, Cheng SM, Huang MF, Yue HY, Wang X, Zou Y, Lu AP, Liu DY. Curcumin Suppressed Activation of Dendritic Cells via JAK/STAT/SOCS Signal in Mice with Experimental Colitis. Front Pharmacol 2016; 7:455. [PMID: 27932984 PMCID: PMC5122716 DOI: 10.3389/fphar.2016.00455] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
Dendritic cells (DCs) play a pivotal role as initiators in the pathogenesis of inflammatory bowel disease and are regulated by the JAK/STAT/SOCS signaling pathway. As a potent anti-inflammatory compound, curcumin represents a viable treatment alternative or adjunctive therapy in the management of chronic inflammatory bowel disease (IBD). The mechanism of curcumin treated IBD on DCs is not completely understood. In the present study, we explored the mechanism of curcumin treated experimental colitis by observing activation of DCs via JAK/STAT/SOCS signaling pathway in colitis mice. Experimental colitis was induced by 2, 4, 6-trinitrobenzene sulfonic acid. After 7 days treatment with curcumin, its therapeutic effect was verified by decreased colonic weight, histological scores, and remitting pathological injury. Meanwhile, the levels of major histocompatibility complex class II and DC costimulatory molecules (CD83, CD28, B7-DC, CD40, CD40 L, and TLR2) were inhibited and followed the up-regulated levels of IL-4, IL-10, and IFN-γ, and down-regulated GM-CSF, IL-12p70, IL-15, IL-23, and TGF-β1. A key finding was that the phosphorylation of the three members (JAK2, STAT3, and STAT6) of the JAK/STAT/SOCS signaling pathway was inhibited, and the three downstream proteins (SOCS1, SOCS3, and PIAS3) from this pathway were highly expressed. In conclusion, curcumin suppressed the activation of DCs by modulating the JAK/STAT/SOCS signaling pathway to restore immunologic balance to effectively treat experimental colitis.
Collapse
Affiliation(s)
- Hai-Mei Zhao
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Rong Xu
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Xiao-Ying Huang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Shao-Min Cheng
- School of Basic Medical Sciences, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Min-Fang Huang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Hai-Yang Yue
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Xin Wang
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Yong Zou
- Department of Postgraduate, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| | - Ai-Ping Lu
- School of Chinese Medicine, Hong Kong Baptist University Kowloon Tong, China
| | - Duan-Yong Liu
- Science and Technology College, Jiangxi University of Traditional Chinese Medicine Nanchang, China
| |
Collapse
|
31
|
Tang BD, Xia X, Lv XF, Yu BX, Yuan JN, Mai XY, Shang JY, Zhou JG, Liang SJ, Pang RP. Inhibition of Orai1-mediated Ca 2+ entry enhances chemosensitivity of HepG2 hepatocarcinoma cells to 5-fluorouracil. J Cell Mol Med 2016; 21:904-915. [PMID: 27878958 PMCID: PMC5387165 DOI: 10.1111/jcmm.13029] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/29/2016] [Indexed: 11/27/2022] Open
Abstract
Increasing evidence supports that activation of store-operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5-FU induces hepatocarcinoma cell death through regulating Ca2+ -dependent autophagy. [Ca2+ ]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5-fluorouracil (5-FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5-FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5-FU-induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5-FU-activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5-FU-induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5-FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5-FU sensitivity for hepatocarcinoma treatment and blockade of Orai1-mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5-FU treatment.
Collapse
Affiliation(s)
- Bao-Dong Tang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Xia
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Fei Lv
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Bei-Xin Yu
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Ni Yuan
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yi Mai
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jin-Yan Shang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Si-Jia Liang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Rui-Ping Pang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
32
|
Pang RP, Xie MX, Yang J, Shen KF, Chen X, Su YX, Yang C, Tao J, Liang SJ, Zhou JG, Zhu HQ, Wei XH, Li YY, Qin ZH, Liu XG. Downregulation of ClC-3 in dorsal root ganglia neurons contributes to mechanical hypersensitivity following peripheral nerve injury. Neuropharmacology 2016; 110:181-189. [DOI: 10.1016/j.neuropharm.2016.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 01/18/2023]
|
33
|
Liu CZ, Li XY, Du RH, Gao M, Ma MM, Li FY, Huang EW, Sun HS, Wang GL, Guan YY. Endophilin A2 Influences Volume-Regulated Chloride Current by Mediating ClC-3 Trafficking in Vascular Smooth Muscle Cells. Circ J 2016; 80:2397-2406. [PMID: 27760895 DOI: 10.1253/circj.cj-16-0793] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
BACKGROUND Previous research has demonstrated that ClC-3 is responsible for volume-regulated Cl-current (ICl.vol) in vascular smooth muscle cells (VSMCs). However, it is still not clear whether and how ClC-3 is transported to cell membranes, resulting in alteration ofICl.vol. METHODS AND RESULTS Volume-regulated chloride current (ICl.vol) was recorded by whole-cell patch clamp recording, and Western blotting and co-immunoprecipitation were performed to examine protein expression and protein-protein interaction. Live cell imaging was used to observe ClC-3 transporting. The results showed that an overexpression of endophilin A2 could increaseICl.vol, while endophilin A2 knockdown decreasedICl.vol. In addition, the SH3 domain of endophilin A2 mediated its interaction with ClC-3 and promotes ClC-3 transportation from the cytoplasm to cell membranes. The regulation of ClC-3 channel activity was also verified in basilar arterial smooth muscle cells (BASMCs) isolated from endophilin A2 transgenic mice. Moreover, endophilin A2 increase VSMCs proliferation induced by endothelin-1 or hypo-osmolarity. CONCLUSIONS The present study identified endophilin A2 as a ClC-3 channel partner, which serves as a new ClC-3 trafficking insight in regulatingICl.volin VSMCs. This study provides a new mechanism by which endophilin A2 regulates ClC-3 channel activity, and sheds light on how ClC-3 is transported to cell membranes to play its critical role as a chloride channel in VSMCs function, which may be involved in cardiovascular diseases. (Circ J 2016; 80: 2397-2406).
Collapse
Affiliation(s)
- Can-Zhao Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Although the association between inflammatory bowel disease (IBD) and oral hygiene has been noticed before, there has been little research on prolonged fluoride exposure as a possible risk factor. In the presented cases, exposure to fluoride seems indirectly associated with higher incidence of IBD. Fluoride toxicology and epidemiology documents frequent unspecific chronic gastrointestinal symptoms and intestinal inflammation. Efflux genes that confer resistance to environmental fluoride may select for IBD associated gut microbiota and therefore be involved in the pathogenesis. Together these multidisciplinary results argue for further investigation on the hypothesis of fluoride as a risk factor for IBD.
Collapse
Affiliation(s)
| | - Bjørn Moum
- b Department of Gastroenterology , Oslo University Hospital Ullevaal & University of Oslo , Oslo , Norway
| |
Collapse
|
35
|
Zhao HM, Xu R, Huang XY, Cheng SM, Huang MF, Yue HY, Wang X, Zou Y, Lu AP, Liu DY. Curcumin improves regulatory T cells in gut-associated lymphoid tissue of colitis mice. World J Gastroenterol 2016; 22:5374-5383. [PMID: 27340353 PMCID: PMC4910658 DOI: 10.3748/wjg.v22.i23.5374] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/29/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the probable pathway by which curcumin (Cur) regulates the function of Treg cells by observing the expression of costimulatory molecules of dendritic cells (DCs).
METHODS: Experimental colitis was induced by administering 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)/ethanol solution. Forty male C57BL/6 mice were randomly divided into four groups: normal, TNBS + Cur, TNBS + mesalazine (Mes) and TNBS groups. The mice in the TNBS + Cur and TNBS +Mes groups were treated with Cur and Mes, respectively, while those in the TNBS group were treated with physiological saline for 7 d. After treatment, the curative effect of Cur was evaluated by colonic weight, colonic length, weight index of the colon, and histological observation and score. The levels of CD4+CD25+Foxp3+ T cells (Treg cells) and costimulatory molecules of DCs were measured by flow cytometry. Also, related cytokines were analyzed by enzyme-linked immunosorbent assay.
RESULTS: Cur alleviated inflammatory injury of the colonic mucosa, decreased colonic weigh and histological score, and restored colonic length. The number of Treg cells was increased, while the secretion of TNF-α, IL-2, IL-6, IL-12 p40, IL-17 and IL-21 and the expression of costimulatory molecules (CD205, CD54 [ICAM-1], TLR4, CD252[OX40 L], CD256 [RANK] and CD254 [RANK L]) of DCs were notably inhibited in colitis mice treated with Cur.
CONCLUSION: Cur potentially modulates activation of DCs to enhance the suppressive functions of Treg cells and promote the recovery of damaged colonic mucosa in inflammatory bowel disease.
Collapse
|
36
|
Guan YT, Huang YQ, Wu JB, Deng ZQ, Wang Y, Lai ZY, Wang HB, Sun XX, Zhu YL, Du MM, Zhu LY, Chen LX, Wang LW. Overexpression of chloride channel-3 is associated with the increased migration and invasion ability of ectopic endometrial cells from patients with endometriosis. Hum Reprod 2016; 31:986-98. [PMID: 26965430 DOI: 10.1093/humrep/dew034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/07/2016] [Indexed: 12/21/2022] Open
Abstract
STUDY QUESTION Is chloride channel-3 (ClC-3) involved in regulating the biological behavior of endometrial stromal cells (ESCs)? SUMMARY ANSWER ClC-3 promotes endometriotic cell migration and invasion. WHAT IS KNOWN ALREADY ClC-3 plays a significant role in the migration and invasion of various kinds of cells. STUDY DESIGN, SIZE, DURATION An ITALIC! in vitro investigation of the effect of ClC-3 on the migration and invasion of ectopic ESCs from patients with endometriosis. PARTICIPANTS/MATERIALS, SETTING, METHODS The ectopic and eutopic endometrial samples from 43 female patients with endometriosis and the endometrial samples from 39 non-endometriotic female patients were collected. Primary cells from these samples were isolated and cultured. Real-time RT-PCR, immunohistochemistry and western blot were used to detect the expression of ClC-3 and matrix metalloproteinase 9 (MMP-9). Small interfering RNA (siRNA) technology was employed to knock down ClC-3 expression. The migration and invasion ability of ESCs was measured by the transwell assay with uncoated or Matrigel-coated membranes. MAIN RESULTS AND THE ROLE OF CHANCE The expression of ClC-3 mRNA and proteins was significantly up-regulated in the ectopic tissues from endometriotic patients, while that in the eutopic endometrial tissues of the same patients did not significantly differ from that in non-endometriotic patients. The migration and invasion ability and MMP-9 expression was increased in the ESCs from ectopic endometrial tissues. The knockdown of ClC-3 expression by ClC-3 siRNA inhibited ESC migration and invasion and attenuated the expression of MMP-9. ClC-3 expression level was well-correlated to the clinical characteristics and symptoms of endometriosis patients, including infertility, dysmenorrhea, chronic pelvic pain, dyspareunia and diameter of endometriosis lesion. LIMITATIONS, REASONS FOR CAUTION Further studies are needed to examine the regulatory mechanism of estrogen on ClC-3 expression of ESCs. WIDER IMPLICATIONS OF THE FINDINGS ClC-3 is involved in the migration and invasion processes of ESCs and can regulate MMP-9 expression. Up-regulation of ClC-3 expression may contribute to endometriosis development by regulating MMP-9 expression. STUDY FUNDING/COMPETING INTERESTS This work was supported by the National Natural Science Foundation of China (81173064, 81272223, 81273539), the Ministry of Education of China (20124401110009), the Natural Science Foundation of Guangdong Province (S2011010001589) and the Science and Technology Programs of Guangdong (2013B051000059), Guangzhou (2013J500015) and Dongguan (2011108102006). The authors have no conflict of interest.
Collapse
Affiliation(s)
- Yu-tao Guan
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Yan-qing Huang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jia-bao Wu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zhi-qin Deng
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Yuan Wang
- Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China
| | - Zhou-yi Lai
- Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China
| | - Hai-bo Wang
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Xiao-xue Sun
- Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China
| | - Ya-li Zhu
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Miao-miao Du
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Lin-yan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China
| | - Li-xin Chen
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China
| | - Li-wei Wang
- Department of Pathophysiology, Medical College, Jinan University, Guangzhou, China Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China
| |
Collapse
|
37
|
RamaKrishnan AM, Sankaranarayanan K. Understanding autoimmunity: The ion channel perspective. Autoimmun Rev 2016; 15:585-620. [PMID: 26854401 DOI: 10.1016/j.autrev.2016.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Ion channels are integral membrane proteins that orchestrate the passage of ions across the cell membrane and thus regulate various key physiological processes of the living system. The stringently regulated expression and function of these channels hold a pivotal role in the development and execution of various cellular functions. Malfunction of these channels results in debilitating diseases collectively termed channelopathies. In this review, we highlight the role of these proteins in the immune system with special emphasis on the development of autoimmunity. The role of ion channels in various autoimmune diseases is also listed out. This comprehensive review summarizes the ion channels that could be used as molecular targets in the development of new therapeutics against autoimmune disorders.
Collapse
Affiliation(s)
| | - Kavitha Sankaranarayanan
- AU-KBC Research Centre, Madras Institute of Technology, Anna University, Chrompet, Chennai 600 044, India.
| |
Collapse
|
38
|
Ma MM, Lin CX, Liu CZ, Gao M, Sun L, Tang YB, Zhou JG, Wang GL, Guan YY. Threonine532 phosphorylation in ClC-3 channels is required for angiotensin II-induced Cl(-) current and migration in cultured vascular smooth muscle cells. Br J Pharmacol 2016; 173:529-44. [PMID: 26562480 DOI: 10.1111/bph.13385] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/11/2015] [Accepted: 10/25/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Angiotensin II (AngII) induces migration and growth of vascular smooth muscle cell (VSMC), which is responsible for vascular remodelling in some cardiovascular diseases. Ang II also activates a Cl(-) current, but the underlying mechanism is not clear. EXPERIMENTAL APPROACH The A10 cell line and primary cultures of VSMC from control, ClC-3 channel null mice and WT mice made hypertensive with AngII infusions were used. Techniques employed included whole-cell patch clamp, co-immunoprecipitation, site-specific mutagenesis and Western blotting, KEY RESULTS In VSMC, AngII induced Cl(-) currents was carried by the chloride ion channel ClC-3. This current was absent in VSMC from ClC-3 channel null mice. The AngII-induced Cl(-) current involved interactions between ClC-3 channels and Rho-kinase 2 (ROCK2), shown by N- or C-terminal truncation of ClC-3 protein, ROCK2 siRNA and co-immunoprecipitation assays. Phosphorylation of ClC-3 channels at Thr(532) by ROCK2 was critical for AngII-induced Cl(-) current and VSMC migration. The ClC-3 T532D mutant (mutation of Thr(532) to aspartate), mimicking phosphorylated ClC-3 protein, significantly potentiated AngII-induced Cl(-) current and VSMC migration, while ClC-3 T532A (mutation of Thr(532) to alanine) had the opposite effects. AngII-induced cell migration was markedly decreased in VSMC from ClC-3 channel null mice that was insensitive to Y27632, an inhibitor of ROCK2. In addition, AngII-induced cerebrovascular remodelling was decreased in ClC-3 null mice, possibly by the ROCK2 pathway. CONCLUSIONS AND IMPLICATIONS ClC-3 protein phosphorylation at Thr(532) by ROCK2 is required for AngII-induced Cl(-) current and VSMC migration that are involved in AngII-induced vascular remodelling in hypertension.
Collapse
Affiliation(s)
- Ming-Ming Ma
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Cai-Xia Lin
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Can-Zhao Liu
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Min Gao
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Lu Sun
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yong-Bo Tang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Guan-Lei Wang
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
39
|
Deficiency of Group VIA Phospholipase A2 (iPLA2β) Renders Susceptibility for Chemical-Induced Colitis. Dig Dis Sci 2015; 60:3590-602. [PMID: 26182903 DOI: 10.1007/s10620-015-3807-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Inflammatory bowel disease results from a combination of dysfunction of intestinal epithelial barrier and dysregulation of mucosal immune system. iPLA2β has multiple homeostatic functions and shown to play a role in membrane remodeling, cell proliferation, monocyte chemotaxis, and apoptosis. The latter may render chronic inflammation and susceptibility for acute injury. AIMS We aim to evaluate whether an inactivation of iPLA2β would enhance the pathogenesis of experimental colitis induced by dextran sodium sulfate. METHODS iPLA2β-null male mice were administered dextran sodium sulfate in drinking water for 7 days followed by normal water for 3 days. At day 10, mice were killed, and harvested colon and ileum were subjected for evaluation by histology, immunohistochemistry, and quantitative RT-PCR. RESULTS Dextran sodium sulfate administration caused a significant increase in histological scores and cleaved caspase 3 (+) apoptosis concomitant with a decrease in colon length and crypt cell Ki67 (+) proliferation in iPLA2β-null mice in a greater extent than in control littermates. This sensitization by iPLA2β deficiency was associated with an increase in accumulation of F4/80 (+) macrophages, and expression of proinflammatory cytokines and chemokines, while the number of mucin-containing goblet cells and mucus layer thickness was decreased. Some of these abnormalities were also observed in the ileum. CONCLUSIONS An inactivation of iPLA2β exacerbated pathogenesis of experimental colitis by promoting intestinal epithelial cell apoptosis, inhibiting crypt cell regeneration, and causing damage to mucus barrier allowing an activation of innate immune response. Thus, iPLA2β may represent a susceptible gene for the development of inflammatory bowel disease.
Collapse
|
40
|
Pharmaceutical Activation or Genetic Absence of ClC-2 Alters Tight Junctions During Experimental Colitis. Inflamm Bowel Dis 2015; 21:2747-57. [PMID: 26332307 DOI: 10.1097/mib.0000000000000550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND We have previously reported that the ClC-2 chloride channel has an important role in regulation of tight junction barrier function during experimental colitis, and the pharmaceutical ClC-2 activator lubiprostone initiates intestinal barrier repair in ischemic-injured intestine. Thus, we hypothesized that pharmaceutical ClC-2 activation would have a protective and therapeutic effect in murine models of colitis, which would be absent in ClC-2 mice. METHODS We administered lubiprostone to wild-type or ClC-2 mice with dextran sulfate sodium (DSS) or 2, 4, 5-trinitrobenzene sulfonic acid-induced colitis. We determined the severity of colitis and assessed intestinal permeability. Selected tight junction proteins were analyzed by Western blotting and immunofluorescence/confocal microscopy, whereas proliferative and differentiated cells were examined with special staining and immunohistochemistry. RESULTS Oral preventive or therapeutic administration of lubiprostone significantly reduced the severity of colitis and reduced intestinal permeability in both DSS and trinitrobenzene sulfonic acid-induced colitis. Preventive treatment with lubiprostone induced significant recovery of the expression and distribution of selected sealing tight junction proteins in mice with DSS-induced colitis. In addition, lubiprostone reduced crypt proliferation and increased the number of differentiated epithelial cells. Alternatively, when lubiprostone was administered to ClC-2 mice, the protective effect against DSS colitis was limited. CONCLUSIONS This study suggests a central role for ClC-2 in restoration of barrier function and tight junction architecture in experimental murine colitis, which can be therapeutically targeted with lubiprostone.
Collapse
|
41
|
Jiang XG, Jiang MX, Wang F. Abnormal epithelial cell energy metabolism influences pathogenesis of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2015; 23:4393-4398. [DOI: 10.11569/wcjd.v23.i27.4393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Etiology and pathogenesis of inflammatory bowel disease (IBD) are not clear, but colonic mucosal damage is known to be a critical factor. In recent decades, many studies suggest that interfering with the energy metabolism of epithelial tissue could result in the widening of intestinal epithelial cell gap, increased bacterial translocation across the epithelium, decreased mucus secretion, and intestinal mucosal barrier dysfunction. Bacteria and antigens adhere to the intestinal mucosa, enter into the lamina propria, activate inflammation, and initiate the pathogenesis of IBD. The lack of energy fuel butyrate and mitochondrial dysfunction are the causes of abnormal energy metabolism of the intestinal epithelium. Improving energy metabolism and protection of mitochondrial function can alleviate the seriousness of IBD, reduce recurrence, and provides a new strategy for the treatment of IBD.
Collapse
|
42
|
ClC-3 deficiency protects preadipocytes against apoptosis induced by palmitate in vitro and in type 2 diabetes mice. Apoptosis 2014; 19:1559-70. [DOI: 10.1007/s10495-014-1021-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|