1
|
Johnson-Martínez JP, Diener C, Levine AE, Wilmanski T, Suskind DL, Ralevski A, Hadlock J, Magis AT, Hood L, Rappaport N, Gibbons SM. Aberrant bowel movement frequencies coincide with increased microbe-derived blood metabolites associated with reduced organ function. Cell Rep Med 2024; 5:101646. [PMID: 39019013 PMCID: PMC11293344 DOI: 10.1016/j.xcrm.2024.101646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/22/2024] [Accepted: 06/14/2024] [Indexed: 07/19/2024]
Abstract
Bowel movement frequency (BMF) directly impacts the gut microbiota and is linked to diseases like chronic kidney disease or dementia. In particular, prior work has shown that constipation is associated with an ecosystem-wide switch from fiber fermentation and short-chain fatty acid production to more detrimental protein fermentation and toxin production. Here, we analyze multi-omic data from generally healthy adults to see how BMF affects their molecular phenotypes, in a pre-disease context. Results show differential abundances of gut microbial genera, blood metabolites, and variation in lifestyle factors across BMF categories. These differences relate to inflammation, heart health, liver function, and kidney function. Causal mediation analysis indicates that the association between lower BMF and reduced kidney function is partially mediated by the microbially derived toxin 3-indoxyl sulfate (3-IS). This result, in a generally healthy context, suggests that the accumulation of microbiota-derived toxins associated with abnormal BMF precede organ damage and may be drivers of chronic, aging-related diseases.
Collapse
Affiliation(s)
- Johannes P Johnson-Martínez
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA 98109, USA; Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Anne E Levine
- Institute for Systems Biology, Seattle, WA 98109, USA; Seattle Children's Hospital, Seattle, WA 98105, USA
| | | | | | | | - Jennifer Hadlock
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Biomedical Informatics, University of Washington, Seattle, WA 98104 USA
| | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Phenome Health, Seattle, WA 98109, USA; Department of Immunology, University of Washington, Seattle, WA 98195, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA; Center for Phenomic Health, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Noa Rappaport
- Institute for Systems Biology, Seattle, WA 98109, USA; Phenome Health, Seattle, WA 98109, USA; Center for Phenomic Health, Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Maqoud F, Tricarico D, Mallamaci R, Orlando A, Russo F. The Role of Ion Channels in Functional Gastrointestinal Disorders (FGID): Evidence of Channelopathies and Potential Avenues for Future Research and Therapeutic Targets. Int J Mol Sci 2023; 24:11074. [PMID: 37446251 DOI: 10.3390/ijms241311074] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Several gastrointestinal (GI) tract abnormalities, including visceral hypersensitivity, motility, and intestinal permeability alterations, have been implicated in functional GI disorders (FGIDs). Ion channels play a crucial role in all the functions mentioned above. Hormones and natural molecules modulate these channels and represent targets of drugs and bacterial toxins. Mutations and abnormal functional expression of ion channel subunits can lead to diseases called channelopathies. These channelopathies in gastroenterology are gaining a strong interest, and the evidence of co-relationships is increasing. In this review, we describe the correlation status between channelopathies and FGIDs. Different findings are available. Among others, mutations in the ABCC7/CFTR gene have been described as a cause of constipation and diarrhea. Mutations of the SCN5A gene are instead associated with irritable bowel syndrome. In contrast, mutations of the TRPV1 and TRPA genes of the transient receptor potential (TRP) superfamily manifest hypersensitivity and visceral pain in sensory nerves. Recently, mice and humans affected by Cantu syndrome (CS), which is associated with the mutations of the KCNJ8 and ABCC9 genes encoding for the Kir6.1 and SUR2 subunits, showed dysfunction of contractility throughout the intestine and death in the mice after the weaning on solid food. The discovery of a correlation between channelopathies and FIGD opens new avenues for discovering new direct drug targets for specific channelopathies, leading to significant implications for diagnosing and treating functional GI diseases.
Collapse
Affiliation(s)
- Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment University of Bari Aldo Moro, 70125 Bari, Italy
| | - Antonella Orlando
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS "Saverio de Bellis", Castellana Grotte, 70013 Bari, Italy
| |
Collapse
|
3
|
Vijay A, Boyle NR, Kumar SM, Perdew GH, Srinivasan S, Patterson AD. Aryl hydrocarbon receptor activation affects nitrergic neuronal survival and delays intestinal motility in mice. Toxicol Sci 2023; 192:117-128. [PMID: 36782369 PMCID: PMC10025877 DOI: 10.1093/toxsci/kfad014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Despite progress describing the effects of persistent organic pollutants (POPs) on the central nervous system, the effect of POPs on enteric nervous system (ENS) function remains underexplored. We studied the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a POP, and a potent aryl hydrocarbon receptor (AHR) ligand, on the ENS and intestinal motility in mice. C57Bl/6J mice treated with TCDD (2.4 µg/kg body weight) for 8 weeks (once per week) exhibited significant delay in intestinal motility as shown by reduced stool frequency, prolonged intestinal transit time, and a persistence of dye in the jejunum compared to control mice with maximal dye retention in the ileum. TCDD significantly increased Cyp1a1 expression, an AHR target gene, and reduced the total number of neurons and affected nitrergic neurons in cells isolated from WT mice, but not Ahr-/- mice. In immortalized fetal enteric neuronal cells, TCDD-induced nuclear translocation of AHR as well as increased Cyp1a1 expression. AHR activation did not affect neuronal proliferation. However, AHR activation resulted in enteric neuronal toxicity, specifically, nitrergic neurons. Our results demonstrate that TCDD adversely affects nitrergic neurons and thereby contributes to delayed intestinal motility. These findings suggest that AHR signaling in the ENS may play a role in modulating TCDD-induced gastrointestinal pathophysiology.
Collapse
Affiliation(s)
- Anitha Vijay
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nina R Boyle
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Supriya M Kumar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Shanthi Srinivasan
- Department of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta VA Medical Center, Decatur, Georgia, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
4
|
Camilleri M, Zhernakova A, Bozzarelli I, D'Amato M. Genetics of irritable bowel syndrome: shifting gear via biobank-scale studies. Nat Rev Gastroenterol Hepatol 2022; 19:689-702. [PMID: 35948782 DOI: 10.1038/s41575-022-00662-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 12/19/2022]
Abstract
The pathophysiology of irritable bowel syndrome (IBS) is multifactorial and probably involves genetic predisposition and the effect of environmental factors. Unlike other gastrointestinal diseases with a heritable component, genetic research in IBS has been scarce and mostly characterized by small underpowered studies, leading to inconclusive results. The availability of genomic and health-related data from large international cohorts and population-based biobanks offers unprecedented opportunities for long-awaited, well-powered genetic studies in IBS. This Review focuses on the latest advances that provide compelling evidence for the importance of genes involved in the digestion of carbohydrates, ion channel function, neurotransmitters and their receptors, neuronal pathways and the control of gut motility. These discoveries have generated novel information that might be further refined for the identification of predisposed individuals and selection of management strategies for patients. This Review presents a conceptual framework, the advantages and potential limitations of modern genetic research in IBS, and a summary of available evidence.
Collapse
Affiliation(s)
- Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | | | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain. .,Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
5
|
Sugino S, Inoue K, Kobayashi R, Hirose R, Doi T, Harusato A, Dohi O, Yoshida N, Uchiyama K, Ishikawa T, Takagi T, Yasuda H, Konishi H, Hirai Y, Mizushima K, Naito Y, Tsuji T, Okuda T, Kagawa K, Tominaga M, Itoh Y. Association Between the Cool Temperature-dependent Suppression of Colonic Peristalsis and Transient Receptor Potential Melastatin 8 Activation in Both a Randomized Clinical Trial and an Animal Model. J Neurogastroenterol Motil 2022; 28:693-705. [PMID: 36250375 PMCID: PMC9577569 DOI: 10.5056/jnm21198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/29/2021] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background/Aims Several studies have assessed the effect of cool temperature on colonic peristalsis. Transient receptor potential melastatin 8 (TRPM8) is a temperature-sensitive ion channel activated by mild cooling expressed in the colon. We examined the antispasmodic effect of cool temperature on colonic peristalsis in a prospective, randomized, single-blind trial and based on the video imaging and intraluminal pressure of the proximal colon in rats and TRPM8-deficient mice. Methods In the clinical trial, we randomly assigned a total of 94 patients scheduled to undergo colonoscopy to 2 groups: the mildly cool water (n = 47) and control (n = 47) groups. We used 20 mL of 15°C water for the mildly cool water. The primary outcome was the proportion of subjects with improved peristalsis after treatment. In the rodent proximal colon, we evaluated the intraluminal pressure and performed video imaging of the rodent proximal colon with cool water administration into the colonic lumen. Clinical trial registry website (Trial No. UMIN-CTR; UMIN000030725). Results In the randomized controlled trial, after treatment, the proportion of subjects with no peristalsis with cool water was significantly higher than that in the placebo group (44.7% vs 23.4%; P < 0.05). In the rodent colon model, cool temperature water was associated with a significant decrease in colonic peristalsis through its suppression of the ratio of peak frequency (P < 0.05). Cool temperature-treated TRPM8-deficient mice did not show a reduction in colonic peristalsis compared with wild-type mice. Conclusion For the first time, this study demonstrates that cool temperature-dependent suppression of colonic peristalsis may be associated with TRPM8 activation.
Collapse
Affiliation(s)
- Satoshi Sugino
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Ken Inoue
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Reo Kobayashi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Ryohei Hirose
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Toshifumi Doi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Akihito Harusato
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Osamu Dohi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Naohisa Yoshida
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Kazuhiko Uchiyama
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Takeshi Ishikawa
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Hiroaki Yasuda
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Hideyuki Konishi
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Yasuko Hirai
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizushima
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshifumi Tsuji
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Kyoto, Japan
| | - Takashi Okuda
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Kyoto, Japan
| | - Keizo Kagawa
- Department of Gastroenterology and Hepatology, Fukuchiyama City Hospital, Kyoto, Japan
| | - Makoto Tominaga
- Division of Cell Signaling National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Yoshito Itoh
- Department of Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
6
|
Bonfiglio F, Liu X, Smillie C, Pandit A, Kurilshikov A, Bacigalupe R, Zheng T, Nim H, Garcia-Etxebarria K, Bujanda L, Andreasson A, Agreus L, Walter S, Abecasis G, Eijsbouts C, Jostins L, Parkes M, Hughes DA, Timpson N, Raes J, Franke A, Kennedy NA, Regev A, Zhernakova A, Simren M, Camilleri M, D’Amato M. GWAS of stool frequency provides insights into gastrointestinal motility and irritable bowel syndrome. CELL GENOMICS 2021; 1:None. [PMID: 34957435 PMCID: PMC8654685 DOI: 10.1016/j.xgen.2021.100069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Gut dysmotility is associated with constipation, diarrhea, and functional gastrointestinal disorders like irritable bowel syndrome (IBS), although its molecular underpinnings are poorly characterized. We studied stool frequency (defined by the number of bowel movements per day, based on questionnaire data) as a proxy for gut motility in a GWAS meta-analysis including 167,875 individuals from UK Biobank and four smaller population-based cohorts. We identify 14 loci associated with stool frequency (p ≤ 5.0 × 10-8). Gene set and pathway analyses detected enrichment for genes involved in neurotransmitter/neuropeptide signaling and preferentially expressed in enteric motor neurons controlling peristalsis. PheWAS identified pleiotropic associations with dysmotility syndromes and the response to their pharmacological treatment. The genetic architecture of stool frequency correlates with that of IBS, and UK Biobank participants from the top 1% of stool frequency polygenic score distribution were associated with 5× higher risk of IBS with diarrhea. These findings pave the way for the identification of actionable pathological mechanisms in IBS and the dysmotility syndromes.
Collapse
Affiliation(s)
- Ferdinando Bonfiglio
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Xingrong Liu
- Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Anita Pandit
- Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rodrigo Bacigalupe
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Tenghao Zheng
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hieu Nim
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | | | - Luis Bujanda
- Department of Gastrointestinal and Liver Diseases, Biodonostia HRI, San Sebastian, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Universidad del País Vasco (UPV/EHU), San Sebastian, Spain
| | - Anna Andreasson
- Division of Clinical Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Lars Agreus
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Walter
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gonçalo Abecasis
- Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Chris Eijsbouts
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Luke Jostins
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Christ Church, University of Oxford, Oxford, UK
| | - Miles Parkes
- Division of Gastroenterology, Department of Medicine, University of Cambridge, Cambridge, UK
| | - David A. Hughes
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Nicholas Timpson
- MRC Integrative Epidemiology Unit at University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Instituut, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Nicholas A. Kennedy
- IBD Pharmacogenetics, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute, Cambridge, MA, USA
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Magnus Simren
- Dept of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER) and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mauro D’Amato
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Gastrointestinal and Liver Diseases, Biodonostia HRI, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain
| |
Collapse
|
7
|
Holland AM, Bon-Frauches AC, Keszthelyi D, Melotte V, Boesmans W. The enteric nervous system in gastrointestinal disease etiology. Cell Mol Life Sci 2021; 78:4713-4733. [PMID: 33770200 PMCID: PMC8195951 DOI: 10.1007/s00018-021-03812-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/20/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is less established and is often deemed secondary to other insults like intestinal inflammation. However, mounting experimental evidence in recent years indicates that gastrointestinal homeostasis hinges on multifaceted connections between the ENS, and other cellular networks such as the intestinal epithelium, the immune system, and the intestinal microbiome. Derangement of these interactions could underlie gastrointestinal disease onset and elicit variable degrees of abnormal gut function, pinpointing, perhaps unexpectedly, the ENS as a diligent participant in idiopathic but also in inflammatory and cancerous diseases of the gut. In this review, we discuss the latest evidence on the role of the ENS in the pathogenesis of enteric neuropathies, disorders of gut-brain interaction, inflammatory bowel diseases, and colorectal cancer.
Collapse
Affiliation(s)
- Amy Marie Holland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Ana Carina Bon-Frauches
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Daniel Keszthelyi
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Veerle Melotte
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Werend Boesmans
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.
- Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
8
|
Mucosa-Associated Microbiota in Ileoanal Pouches May Contribute to Clinical Symptoms, Particularly Stool Frequency, Independent of Endoscopic Disease Activity. Clin Transl Gastroenterol 2020; 10:1-7. [PMID: 31117112 PMCID: PMC6602764 DOI: 10.14309/ctg.0000000000000038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Pouchitis is a common complication after ileal pouch-anal anastomosis (IPAA). However, there is a poor correlation between symptoms and endoscopic appearance of the pouch, and many patients can have debilitating symptoms in the absence of overt inflammation. It is unknown whether these clinical symptoms are independently associated with the microbiota. The objective of this work was to examine whether the individual clinical components of the pouch activity scoring systems are associated with specific microbiota. METHODS Pouch biopsies from 233 patients (50% male, 100% IPAA/ulcerative colitis) post-IPAA were included. Clinical phenotyping was performed, and patients were classified using both clinical and endoscopic components of the Pouch Activity Scale. Scoring for symptoms examined 24-hour stool frequency, urgency, incontinence, and rectal bleeding as described by the Pouchitis Disease Activity Index Score. RESULTS In the absence of inflammation, an increase in stool frequency reported over 24 hours was associated with a decrease in Bacteroidetes relative abundance, and this was the strongest association found. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis in inflamed groups showed that an increase in 24-hour stool frequency was associated with an increase in biofilm formation. DISCUSSION These findings indicate that in patients with IPAA, the composition of mucosa-associated microbiota of the pouch may contribute to clinical symptoms, particularly stool frequency, independent of endoscopic disease activity.
Collapse
|
9
|
Obata Y, Castaño Á, Boeing S, Bon-Frauches AC, Fung C, Fallesen T, de Agüero MG, Yilmaz B, Lopes R, Huseynova A, Horswell S, Maradana MR, Boesmans W, Vanden Berghe P, Murray AJ, Stockinger B, Macpherson AJ, Pachnis V. Neuronal programming by microbiota regulates intestinal physiology. Nature 2020; 578:284-289. [PMID: 32025031 DOI: 10.1038/s41586-020-1975-8] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Neural control of the function of visceral organs is essential for homeostasis and health. Intestinal peristalsis is critical for digestive physiology and host defence, and is often dysregulated in gastrointestinal disorders1. Luminal factors, such as diet and microbiota, regulate neurogenic programs of gut motility2-5, but the underlying molecular mechanisms remain unclear. Here we show that the transcription factor aryl hydrocarbon receptor (AHR) functions as a biosensor in intestinal neural circuits, linking their functional output to the microbial environment of the gut lumen. Using nuclear RNA sequencing of mouse enteric neurons that represent distinct intestinal segments and microbiota states, we demonstrate that the intrinsic neural networks of the colon exhibit unique transcriptional profiles that are controlled by the combined effects of host genetic programs and microbial colonization. Microbiota-induced expression of AHR in neurons of the distal gastrointestinal tract enables these neurons to respond to the luminal environment and to induce expression of neuron-specific effector mechanisms. Neuron-specific deletion of Ahr, or constitutive overexpression of its negative feedback regulator CYP1A1, results in reduced peristaltic activity of the colon, similar to that observed in microbiota-depleted mice. Finally, expression of Ahr in the enteric neurons of mice treated with antibiotics partially restores intestinal motility. Together, our experiments identify AHR signalling in enteric neurons as a regulatory node that integrates the luminal environment with the physiological output of intestinal neural circuits to maintain gut homeostasis and health.
Collapse
Affiliation(s)
| | | | | | | | - Candice Fung
- Laboratory of Enteric Neuroscience (LENS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | | | - Mercedes Gomez de Agüero
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | | | | | | | | - Werend Boesmans
- Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pieter Vanden Berghe
- Laboratory of Enteric Neuroscience (LENS), Translational Research in Gastrointestinal Disorders (TARGID), Department of Clinical and Experimental Medicine, University of Leuven, Leuven, Belgium
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | | | - Andrew J Macpherson
- Maurice Muller Laboratories (DKF), Universitätsklinik fur Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
10
|
Mazzone A, Gibbons SJ, Eisenman ST, Strege PR, Zheng T, D'Amato M, Ordog T, Fernandez-Zapico ME, Farrugia G. Direct repression of anoctamin 1 ( ANO1) gene transcription by Gli proteins. FASEB J 2019; 33:6632-6642. [PMID: 30802137 DOI: 10.1096/fj.201802373r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Ca2+-activated Cl- channel, anoctamin 1 (Ano1, also known as transmembrane protein 16A) contributes to intestinal pacemaking, fluid secretion, cellular excitability, and tissue development. The human ANO1 promoter contains binding sites for the glioma-associated oncogene (Gli) proteins. We investigated regulation of ANO1 transcription by Gli. ANO1 promoter activity was determined using a luciferase reporter system. Binding and functional effects of Glis on ANO1 transcription and expression were demonstrated by chromatin immunoprecipitation, small interfering RNA knockdown, PCR, immunolabeling, and recordings of Ca2+-activated Cl- currents in human embryonic kidney 293 (HEK293) cells. Results from previous genome-wide association studies were used to test ANO1 promoter polymorphisms for association with disease. Gli1 and Gli2 bound to the promoter and repressed ANO1 transcription. Repression depended on Gli binding to a site close to the ANO1 transcriptional start site. Mutation of this site prevented Gli binding and transcriptional repression. Knockdown of Gli expression and inhibition of Gli activity increased expression of ANO1 RNA and Ca2+-activated Cl- currents in HEK293 cells. A single-nucleotide polymorphism prevented Gli binding and showed association with irritable bowel syndrome. We conclude that Gli1 and Gli2 repress ANO1 by a novel mechanism that is independent of Gli cleavage and that has a role in gastrointestinal function.-Mazzone, A., Gibbons, S. J., Eisenman, S. T., Strege, P. R., Zheng, T., D'Amato, M., Ordog, T., Fernandez-Zapico, M. E., Farrugia, G. Direct repression of anoctamin 1 (ANO1) gene transcription by Gli proteins.
Collapse
Affiliation(s)
- Amelia Mazzone
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon J Gibbons
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Seth T Eisenman
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter R Strege
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Tenghao Zheng
- Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mauro D'Amato
- Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Biodonostia Health Research Institute, San Sebastián, Spain.,Ikerbasque-Basque Science Foundation, San Sebastián, Spain
| | - Tamas Ordog
- Enteric NeuroSciences, Mayo Clinic, Rochester, Minnesota, USA
| | | | | |
Collapse
|
11
|
Bonfiglio F, Henström M, Nag A, Hadizadeh F, Zheng T, Cenit MC, Tigchelaar E, Williams F, Reznichenko A, Ek WE, Rivera NV, Homuth G, Aghdassi AA, Kacprowski T, Männikkö M, Karhunen V, Bujanda L, Rafter J, Wijmenga C, Ronkainen J, Hysi P, Zhernakova A, D'Amato M. A GWAS meta-analysis from 5 population-based cohorts implicates ion channel genes in the pathogenesis of irritable bowel syndrome. Neurogastroenterol Motil 2018; 30:e13358. [PMID: 29673008 DOI: 10.1111/nmo.13358] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Irritable bowel syndrome (IBS) shows genetic predisposition, however, large-scale, powered gene mapping studies are lacking. We sought to exploit existing genetic (genotype) and epidemiological (questionnaire) data from a series of population-based cohorts for IBS genome-wide association studies (GWAS) and their meta-analysis. METHODS Based on questionnaire data compatible with Rome III Criteria, we identified a total of 1335 IBS cases and 9768 asymptomatic individuals from 5 independent European genotyped cohorts. Individual GWAS were carried out with sex-adjusted logistic regression under an additive model, followed by meta-analysis using the inverse variance method. Functional annotation of significant results was obtained via a computational pipeline exploiting ontology and interaction networks, and tissue-specific and gene set enrichment analyses. KEY RESULTS Suggestive GWAS signals (P ≤ 5.0 × 10-6 ) were detected for 7 genomic regions, harboring 64 gene candidates to affect IBS risk via functional or expression changes. Functional annotation of this gene set convincingly (best FDR-corrected P = 3.1 × 10-10 ) highlighted regulation of ion channel activity as the most plausible pathway affecting IBS risk. CONCLUSION & INFERENCES Our results confirm the feasibility of population-based studies for gene-discovery efforts in IBS, identify risk genes and loci to be prioritized in independent follow-ups, and pinpoint ion channels as important players and potential therapeutic targets warranting further investigation.
Collapse
Affiliation(s)
- F Bonfiglio
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, Spain.,Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - M Henström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - A Nag
- Department of Twin Research & Genetic Epidemiology, King's College London, London, England
| | - F Hadizadeh
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - T Zheng
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - M C Cenit
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - E Tigchelaar
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - F Williams
- Department of Twin Research & Genetic Epidemiology, King's College London, London, England
| | - A Reznichenko
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - W E Ek
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Department of Immunology, Genetics and Pathology, Science for Life Laboratory Uppsala, Uppsala University, Uppsala, Sweden
| | - N V Rivera
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - G Homuth
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - A A Aghdassi
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - T Kacprowski
- Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - M Männikkö
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - V Karhunen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Oulu University Hospital, Oulu, Finland.,Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - L Bujanda
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | - J Rafter
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - C Wijmenga
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - J Ronkainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Primary Health Care Center, Tornio, Finland
| | - P Hysi
- Department of Ophthalmology, King's College London, St Thomas' Hospital Campus, London, UK
| | - A Zhernakova
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - M D'Amato
- Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, Spain.,Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,BioCruces Health Research Institute, Bilbao, Spain.,IKERBASQUE, Basque Science Foundation, Bilbao, Spain
| |
Collapse
|
12
|
Bonfiglio F, Zheng T, Garcia-Etxebarria K, Hadizadeh F, Bujanda L, Bresso F, Agreus L, Andreasson A, Dlugosz A, Lindberg G, Schmidt PT, Karling P, Ohlsson B, Simren M, Walter S, Nardone G, Cuomo R, Usai-Satta P, Galeazzi F, Neri M, Portincasa P, Bellini M, Barbara G, Latiano A, Hübenthal M, Thijs V, Netea MG, Jonkers D, Chang L, Mayer EA, Wouters MM, Boeckxstaens G, Camilleri M, Franke A, Zhernakova A, D'Amato M. Female-Specific Association Between Variants on Chromosome 9 and Self-Reported Diagnosis of Irritable Bowel Syndrome. Gastroenterology 2018; 155:168-179. [PMID: 29626450 PMCID: PMC6035117 DOI: 10.1053/j.gastro.2018.03.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/28/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Genetic factors are believed to affect risk for irritable bowel syndrome (IBS), but there have been no sufficiently powered and adequately sized studies. To identify DNA variants associated with IBS risk, we performed a genome-wide association study (GWAS) of the large UK Biobank population-based cohort, which includes genotype and health data from 500,000 participants. METHODS We studied 7,287,191 high-quality single nucleotide polymorphisms in individuals who self-reported a doctor's diagnosis of IBS (cases; n = 9576) compared to the remainder of the cohort (controls; n = 336,499) (mean age of study subjects, 40-69 years). Genome-wide significant findings were further investigated in 2045 patients with IBS from tertiary centers and 7955 population controls from Europe and the United States, and a small general population sample from Sweden (n = 249). Functional annotation of GWAS results was carried out by integrating data from multiple biorepositories to obtain biological insights from the observed associations. RESULTS We identified a genome-wide significant association on chromosome 9q31.2 (single nucleotide polymorphism rs10512344; P = 3.57 × 10-8) in a region previously linked to age at menarche, and 13 additional loci of suggestive significance (P < 5.0×10-6). Sex-stratified analyses revealed that the variants at 9q31.2 affect risk of IBS in women only (P = 4.29 × 10-10 in UK Biobank) and also associate with constipation-predominant IBS in women (P = .015 in the tertiary cohort) and harder stools in women (P = .0012 in the population-based sample). Functional annotation of the 9q31.2 locus identified 8 candidate genes, including the elongator complex protein 1 gene (ELP1 or IKBKAP), which is mutated in patients with familial dysautonomia. CONCLUSIONS In a sufficiently powered GWAS of IBS, we associated variants at the locus 9q31.2 with risk of IBS in women. This observation may provide additional rationale for investigating the role of sex hormones and autonomic dysfunction in IBS.
Collapse
Affiliation(s)
- Ferdinando Bonfiglio
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Tenghao Zheng
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Koldo Garcia-Etxebarria
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Fatemeh Hadizadeh
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Luis Bujanda
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Universidad del País Vasco, San Sebastián, Spain
| | - Francesca Bresso
- Gastoenterology Unit, Tema inflammation and infection, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Agreus
- Division for Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Andreasson
- Division for Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Aldona Dlugosz
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Greger Lindberg
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Peter T Schmidt
- Department of Medicine Solna, Karolinska Institutet, Center for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Pontus Karling
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Bodil Ohlsson
- Lund University, Skåne University Hospital, Department of Internal Medicine, Lund, Sweden
| | - Magnus Simren
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna Walter
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Gerardo Nardone
- Gastroenterology Unit, Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Rosario Cuomo
- Digestive Motility Diseases, Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Paolo Usai-Satta
- SC Gastroenterologia, Azienda Ospedaliera G. Brotzu, Cagliari, Italy
| | | | - Matteo Neri
- Department of Medicine and Aging Sciences and Center for Excellence on Aging, G. D'Annunzio University and Foundation, Chieti, Italy
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica A. Murri, University of Bari Medical School, Bari, Italy
| | - Massimo Bellini
- Gastroenterology Unit, Department of Gastroenterology, University of Pisa, Pisa, Italy
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, St. Orsola, Malpighi Hospital, Bologna, Italy
| | - Anna Latiano
- Division of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico, Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Matthias Hübenthal
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vincent Thijs
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center of Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Daisy Jonkers
- Department of Internal Medicine, Nutrition and Toxicology Research Institute Maastricht, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California
| | - Mira M Wouters
- Translational Research Center for Gastro Intestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for Gastro Intestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, and Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands
| | - Mauro D'Amato
- Unit of Gastrointestinal Genetics, Department of Gastrointestinal and Liver Diseases, Biodonostia Health Research Institute, San Sebastián, Spain; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
13
|
Goodrich JK, Davenport ER, Clark AG, Ley RE. The Relationship Between the Human Genome and Microbiome Comes into View. Annu Rev Genet 2017; 51:413-433. [PMID: 28934590 PMCID: PMC5744868 DOI: 10.1146/annurev-genet-110711-155532] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The body's microbiome, composed of microbial cells that number in the trillions, is involved in human health and disease in ways that are just starting to emerge. The microbiome is assembled at birth, develops with its host, and is greatly influenced by environmental factors such as diet and other exposures. Recently, a role for human genetic variation has emerged as also influential in accounting for interpersonal differences in microbiomes. Thus, human genes may influence health directly or by promoting a beneficial microbiome. Studies of the heritability of gut microbiotas reveal a subset of microbes whose abundances are partly genetically determined by the host. However, the use of genome-wide association studies (GWASs) to identify human genetic variants associated with microbiome phenotypes has proven challenging. Studies to date are small by GWAS standards, and cross-study comparisons are hampered by differences in analytical approaches. Nevertheless, associations between microbes or microbial genes and human genes have emerged that are consistent between human populations. Most notably, higher levels of beneficial gut bacteria called Bifidobacteria are associated with the human lactase nonpersister genotype, which typically confers lactose intolerance, in several different human populations. It is time for the microbiome to be incorporated into studies that quantify interactions among genotype, environment, and the microbiome in order to predict human disease susceptibility.
Collapse
Affiliation(s)
- Julia K Goodrich
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Emily R Davenport
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|