1
|
Bye BA, Jack JL, Pierce A, Walsh RM, Eades AE, Chalise P, Olou A, VanSaun MN. Combined Omipalisib and MAPK Inhibition Suppress PDAC Growth. Cancers (Basel) 2025; 17:1152. [PMID: 40227649 PMCID: PMC11987824 DOI: 10.3390/cancers17071152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
Background: Oncogenic KRAS mutations are nearly ubiquitous in pancreatic ductal adenocarcinoma (PDAC), yet therapeutic attempts to target KRAS, as well as downstream MAPK pathway effectors, have shown limited clinical success. While KRAS canonically drives MAPK signaling via RAF-MEK-ERK, it is also known to play a role in PI3K-AKT signaling. Methods: Our therapeutic study targeted the PI3K pathway with the drug Omipalisib (p110α/β/δ/γ and mTORC1/2 inhibitor) in combination with two different MAPK pathway inhibitors: Trametinib (MEK1/2 inhibitor) or SHP099-HCL (SHP099; SHP2 inhibitor). Western blot analysis demonstrated that the application of Trametinib or SHP099 alone selectively blocked ERK phosphorylation (pERK) but failed to suppress phosphorylated AKT (pAKT). Conversely, Omipalisib alone successfully inhibited pAKT but failed to suppress pERK. Therefore, we hypothesized that a combination therapeutic comprised of Omipalisib with either Trametinib or SHP099 would inhibit two prominent mitogenic pathways, MAPK and PI3K-AKT, and effectively suppress PDAC growth. Results: In vitro studies demonstrated that, in several cell lines, both Omipalisib/Trametinib and Omipalisib/SHP099 combination therapeutic strategies were more effective than treatment with each drug individually at reducing proliferation, colony formation, and cell migration compared to vehicle controls. In vivo oral administration of combined Omipalisib/Trametinib treatment was significantly more effective than Omipalisib/SHP099 in reducing implanted tumor growth, and the Omipalisib/Trametinib treatment more effectively reduced tumor progression and prolonged survival in an aggressive genetically engineered mouse model of PDAC than either Omipalisib or Trametinib alone. Conclusions: Altogether, our data support a rationale for a dual treatment strategy targeting both PI3K and MAPK pathways in pancreatic cancers.
Collapse
Affiliation(s)
- Bailey A. Bye
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Jarrid L. Jack
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Alexandra Pierce
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Richard McKinnon Walsh
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Austin E. Eades
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Appolinaire Olou
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Michael N. VanSaun
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
2
|
Chambers CR, Watakul S, Schofield P, Howell AE, Zhu J, Tran AMH, Kuepper N, Reed DA, Murphy KJ, Channon LM, Pereira BA, Tyma VM, Lee V, Trpceski M, Henry J, Melenec P, Abdulkhalek L, Nobis M, Metcalf XL, Ritchie S, Cadell A, Stoehr J, Magenau A, Chacon-Fajardo D, Chitty JL, O’Connell S, Zaratzian A, Tayao M, Da Silva A, Lyons RJ, Goldstein LD, Dale A, Rookyard A, Connolly A, Crossett B, Tran YTH, Kaltzis P, Vennin C, Dinevska M, Croucher DR, Samra J, Mittal A, Weatheritt RJ, Philp A, Del Monte-Nieto G, Zhang L, Enriquez RF, Cox TR, Shi YCC, Pinese M, Waddell N, Sim HW, Chtanova T, Wang Y, Joshua AM, Chantrill L, Evans TRJ, Gill AJ, Morton JP, Pajic M, Christ D, Herzog H, Timpson P, Herrmann D. Targeting the NPY/NPY1R signaling axis in mutant p53-dependent pancreatic cancer impairs metastasis. SCIENCE ADVANCES 2025; 11:eadq4416. [PMID: 40073121 PMCID: PMC11900870 DOI: 10.1126/sciadv.adq4416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025]
Abstract
Pancreatic cancer (PC) is a highly metastatic malignancy. More than 80% of patients with PC present with advanced-stage disease, preventing potentially curative surgery. The neuropeptide Y (NPY) system, best known for its role in controlling energy homeostasis, has also been shown to promote tumorigenesis in a range of cancer types, but its role in PC has yet to be explored. We show that expression of NPY and NPY1R are up-regulated in mouse PC models and human patients with PC. Moreover, using the genetically engineered, autochthonous KPR172HC mouse model of PC, we demonstrate that pancreas-specific and whole-body knockout of Npy1r significantly decreases metastasis to the liver. We identify that treatment with the NPY1R antagonist BIBO3304 significantly reduces KPR172HC migratory capacity on cell-derived matrices. Pharmacological NPY1R inhibition in an intrasplenic model of PC metastasis recapitulated the results of our genetic studies, with BIBO3304 significantly decreasing liver metastasis. Together, our results reveal that NPY/NPY1R signaling is a previously unidentified antimetastatic target in PC.
Collapse
Affiliation(s)
- Cecilia R. Chambers
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Supitchaya Watakul
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Peter Schofield
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Anna E. Howell
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Jessie Zhu
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Alice M. H. Tran
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Nadia Kuepper
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Daniel A. Reed
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Kendelle J. Murphy
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Lily M. Channon
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Brooke A. Pereira
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Victoria M. Tyma
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Victoria Lee
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Michael Trpceski
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Jake Henry
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Pauline Melenec
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Lea Abdulkhalek
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Max Nobis
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Xanthe L. Metcalf
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Shona Ritchie
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Antonia Cadell
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Janett Stoehr
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Astrid Magenau
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Diego Chacon-Fajardo
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Jessica L. Chitty
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Savannah O’Connell
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Anaiis Zaratzian
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Michael Tayao
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Andrew Da Silva
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Ruth J. Lyons
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Leonard D. Goldstein
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Data Science Platform, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ashleigh Dale
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Alexander Rookyard
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Angela Connolly
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, University of Sydney, Sydney, New South Wales, Australia
| | - Yen T. H. Tran
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Peter Kaltzis
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Claire Vennin
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Marija Dinevska
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | | | | | - David R. Croucher
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Jaswinder Samra
- Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
| | - Anubhav Mittal
- Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
| | - Robert J. Weatheritt
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Andrew Philp
- Centre for Healthy Ageing, Centenary Institute, Sydney, New South Wales, Australia
- School of Sport, Exercise and Rehabilitation Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Gonzalo Del Monte-Nieto
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Lei Zhang
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Thomas R. Cox
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Yan-Chuan C. Shi
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Mark Pinese
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Hao-Wen Sim
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Tatyana Chtanova
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Yingxiao Wang
- Department of Bioengineering & Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Anthony M. Joshua
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Lorraine Chantrill
- Department of Medical Oncology and Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Thomas R. Jeffry Evans
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Anthony J. Gill
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- Royal North Shore Hospital, St Leonards, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Jennifer P. Morton
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, UK
| | - Marina Pajic
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Translational Oncology Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
| | - Daniel Christ
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- Immune Biotherapies Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Herbert Herzog
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
- St. Vincent’s Centre for Applied Medical Research, Darlinghurst, Sydney, New South Wales, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| | - David Herrmann
- Cancer Ecosystems Program, Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales (UNSW), Kensington, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Notoya G, Kishikawa T, Yasugi K, Iwata T, Seimiya T, Miyabayashi K, Takahashi R, Yamamoto K, Ijichi H, Otsuka M, Fujishiro M. WWP1 inhibition suppresses the proliferation of pancreatic cancer cells by regulating the PI3K-AKT pathway. J Gastroenterol 2025; 60:370-384. [PMID: 39656237 PMCID: PMC11880106 DOI: 10.1007/s00535-024-02192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/23/2024] [Indexed: 02/07/2025]
Abstract
BACKGROUND The proto-oncogene WWP1 is overexpressed in various cancers and contributes to tumor growth and poor prognosis. Recently, WWP1 inhibition was reported to suppress tumor development and cell proliferation by activating the PTEN function. However, the expression profiles and clinical significance of WWP1 in pancreatic ductal adenocarcinoma (PDAC) tissues remain undetermined. Therefore, this study aimed to evaluate the WWP1 expression in PDAC and investigate the therapeutic potential of WWP1 inhibition. METHODS Cellular proliferation assays were performed using a doxycycline-inducible shWWP1 expression system. Transcriptome analyses were conducted to identify the altered pathways in WWP1-depleted cells. PTEN ubiquitination by WWP1 was confirmed using immunoprecipitation assays. In vivo xenograft and drug screening assays were performed to evaluate the clinical significance of WWP1 inhibition. RESULTS WWP1 was significantly upregulated in PDAC tissues and associated with poor prognosis. WWP1 depletion significantly reduced the proliferation of PDAC cell lines, correlating with the suppression of the PI3K-AKT pathway. Mechanistically, as reported in other cancer types, PTEN is a target of WWP1 in PDAC cells. PTEN silencing abrogated the growth-inhibitory effects in WWP1-depleted cells, suggesting that the anti-tumor effects of WWP1 inhibition are mediated through PTEN activation. In vivo xenograft studies confirmed that WWP1 depletion substantially inhibited tumor growth. Moreover, drug screening assays revealed that WWP1 depletion had an additive effect with the PI3K-AKT pathway inhibitors on hindering tumor growth. CONCLUSION WWP1 inhibition enhances the anti-tumor effects of PI3K-AKT pathway inhibitors through PTEN activation. Thus, WWP1 could be a potential therapeutic target in PDAC.
Collapse
Grants
- 22K15390 Ministry of Education, Culture, Sports, Science and Technology
- 22K19517 Ministry of Education, Culture, Sports, Science and Technology
- 21H02893 Ministry of Education, Culture, Sports, Science and Technology
- 22H02828 Ministry of Education, Culture, Sports, Science and Technology
- JP23ck0106807 Japan Agency for Medical Research and Development
- Mochida Memorial Foundation for Medical and Pharmaceutical Research
- Kobayashi Foundation for Cancer Research
- The University of Tokyo
Collapse
Affiliation(s)
- Genso Notoya
- Department of Endoscopy and Endoscopic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Kengo Yasugi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takuma Iwata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takahiro Seimiya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Koji Miyabayashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryota Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
- Clinical Nutrition Center, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
4
|
Ouissam AJ, Hind C, Sami Aziz B, Said A. Inhibition of the PI3K/AKT/mTOR pathway in pancreatic cancer: is it a worthwhile endeavor? Ther Adv Med Oncol 2024; 16:17588359241284911. [PMID: 39399412 PMCID: PMC11468005 DOI: 10.1177/17588359241284911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Pancreatic cancer (PC) is an aggressive disease that is challenging to treat and is associated with a high mortality rate. The most common type of PC is pancreatic ductal adenocarcinoma (PDAC), and the existing treatment options are insufficient for PDAC patients. Due to the complexity and heterogeneity of PDAC, personalized medicine is necessary for effectively treating this illness. To achieve this, it is essential to understand the mechanism of PDAC carcinogenesis. Targeted therapies are a promising strategy to improve patient outcomes. Aberrant activation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signaling pathway plays a crucial role in PC pathogenesis, from initiation to progression. This review provides a comprehensive overview of the current state of knowledge regarding the PI3K pathway in PDAC, summarizes clinical data on PI3K pathway inhibition in PDAC, and explores potential effective combinations that are a promising direction requiring further investigation in PDAC.
Collapse
Affiliation(s)
- Al Jarroudi Ouissam
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Chibani Hind
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Brahmi Sami Aziz
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| | - Afqir Said
- Department of Medical Oncology, Mohammed VI University Hospital, Oujda, Morocco
- Faculty of Medicine and Pharmacy, Mohammed Ist University, Oujda, Morocco
| |
Collapse
|
5
|
Rauth S, Malafa M, Ponnusamy MP, Batra SK. Emerging Trends in Gastrointestinal Cancer Targeted Therapies: Harnessing Tumor Microenvironment, Immune Factors, and Metabolomics Insights. Gastroenterology 2024; 167:867-884. [PMID: 38759843 PMCID: PMC11793124 DOI: 10.1053/j.gastro.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024]
Abstract
Gastrointestinal (GI) cancers are the leading cause of new cancer cases and cancer-related deaths worldwide. The treatment strategies for patients with GI tumors have focused on oncogenic molecular profiles associated with tumor cells. Recent evidence has demonstrated that the tumor cell functions are modulated by its microenvironment, compromising fibroblasts, extracellular matrices, microbiome, immune cells, and the enteric nervous system. Along with the tumor microenvironment components, alterations in key metabolic pathways have emerged as a hallmark of tumor cells. From these perspectives, this review will highlight the functions of different cellular components of the GI tumor microenvironment and their implications for treatment. Furthermore, we discuss the major metabolic reprogramming in GI tumor cells and how understanding metabolic rewiring could lead to new therapeutic strategies. Finally, we briefly summarize the targeted agents currently being studied in GI cancers. Understanding the complex interplay between tumor cell-intrinsic and -extrinsic factors during tumor progression is critical for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center at Omaha, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center at Omaha, Omaha, Nebraska.
| |
Collapse
|
6
|
Xie CK, Liao CY, Lin HY, Wu YD, Lu FC, Huang XX, Wang ZW, Li G, Lin CF, Hu JF, Chen YH, Li QW, Chen LQ, Chen HX, Chen S. Sulindac (K-80003) with nab-paclitaxel and gemcitabine overcomes drug-resistant pancreatic cancer. Mol Cancer 2024; 23:215. [PMID: 39350121 PMCID: PMC11441089 DOI: 10.1186/s12943-024-02128-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
The Nab-paclitaxel combined with gemcitabine (AG) regimen is the main chemotherapy regimen for pancreatic cancer, but drug resistance often occurs. Currently, the ability to promote sensitization in drug-resistant cases is an important clinical issue, and the strategy of repurposing conventional drugs is a promising strategy. This study aimed to identify a classic drug that targets chemotherapy resistance's core signaling pathways and combine it with the AG regimen to enhance chemosensitivity. We also aimed to find reliable predictive biomarkers of drug combination sensitivity. Using RNA sequencing, we found that abnormal PI3K/Akt pathway activation plays a central role in mediating resistance to the AG regimen. Subsequently, through internal and external verification of randomly selected AG-resistant patient-derived organoid (PDO) and PDO xenograft models, we discovered for the first time that the classic anti-inflammatory drug sulindac K-80003, an inhibitor of the PI3K/Akt pathway that we focused on, promoted sensitization in half (14/28) of AG-resistant pancreatic ductal adenocarcinoma cases. Through RNA-sequencing, multiplex immunofluorescent staining, and immunohistochemistry experiments, we identified cFAM124A as a novel biomarker through which sulindac K-80003 promotes AG sensitization. Its role as a sensitization marker is explained via the following mechanism: cFAM124A enhances both the mRNA expression of cathepsin L and the activity of the cathepsin L enzyme. This dual effect stimulates the cleavage of RXRα, leading to large amounts of truncated RXRα, which serves as a direct target of K-80003. Consequently, this process results in the pathological activation of the PI3K/Akt pathway. In summary, our study provides a new treatment strategy and novel biological target for patients with drug-resistant pancreatic cancer.
Collapse
Affiliation(s)
- Cheng-Ke Xie
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
- Fuzhou University, Fuzhou, 350001, China
| | - Hong-Yi Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yong-Ding Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Feng-Chun Lu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiao-Xiao Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
- Fuzhou University, Fuzhou, 350001, China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
- Fuzhou University, Fuzhou, 350001, China
| | - Ge Li
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Cai-Feng Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
- Fuzhou University, Fuzhou, 350001, China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Yin-Hao Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China
| | - Qiao-Wei Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China
- Fujian Provincial Center for Geriatrics, Fuzhou, 350001, China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, China
| | - Li-Qun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
- Institute of Applied Genomics, Fuzhou University, Fuzhou, 350108, China.
| | - Hui-Xing Chen
- Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
- Fujian Medical University Cancer Center, Fuzhou, 350001, China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, China.
- Department of Hepatobiliary Pancreatic Surgery, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, 350001, China.
- Fuzhou University, Fuzhou, 350001, China.
- Fujian Provincial Center for Geriatrics, Fuzhou, 350001, China.
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, China.
| |
Collapse
|
7
|
Chen L, Niu W, Zang H, Qiu Y. DTX3L Accelerates Pancreatic cancer Progression via FAK/PI3K/AKT Axis. Biochem Genet 2024; 62:814-830. [PMID: 37460862 DOI: 10.1007/s10528-023-10451-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/06/2023] [Indexed: 04/20/2024]
Abstract
DTX3L (Deltex E3 ubiquitin ligase 3 L) is an E3 ubiquitin ligase, a member of the deltex family. It is also known as B-lymphoma and BAL-associated protein (BBAP). DTX3L has been proven to play an important role in various tumor development; however, its role in pancreatic cancer remains unknown. So, we analyzed the DTX3L expression in pancreatic cancer based on the TCGA database and verified it in our samples by qRT‑PCR and western blot. We identified that DTX3L was highly expressed in pancreatic cancer, and its expression level was significantly negatively correlated with patients' survival. Using CCK8, colony formation, transwell, and wound healing assays, we found that upregulated DTX3L promotes pancreatic cancer cell proliferation, invasion, and migration. Mechanically, DTX3L combined with EGFR (epidermal growth factor receptor) and prevented the ubiquitination degradation of it. Upregulated EGFR activated the FAK/PI3K/Akt pathway and promoted the progression of pancreatic cancer. Moreover, we found that DTX3L can weaken pancreatic cancer cells' sensitivity to chemotherapy using the orthotopic implant tumor model. In conclusion, DTX3L accelerates pancreatic cancer progression by EGFR dependent FAK/PI3K/Akt pathway activation and may become a potential target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Liang Chen
- Department of Hepatobiliary Pancreatic Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China
- Department of Hepatobiliary Surgery, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 Hai'Er Xiang North Road, Nantong, 226001, Jiangsu Province, China
- Department of Hepatobiliary Pancreatic Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Wenyang Niu
- Department of Hepatobiliary Surgery, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 Hai'Er Xiang North Road, Nantong, 226001, Jiangsu Province, China
| | - Hong Zang
- Department of Hepatobiliary Surgery, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 Hai'Er Xiang North Road, Nantong, 226001, Jiangsu Province, China.
| | - Yudong Qiu
- Department of Hepatobiliary Pancreatic Center, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321 Zhongshan Road, Nanjing, 210008, Jiangsu Province, China.
- Department of Hepatobiliary Pancreatic Center, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China.
| |
Collapse
|
8
|
Tan P, Cai S, Huang Z, Li M, Liu S, Chen J, Fu W, Zhao L. E3 ubiquitin ligase FBXW11 as a novel inflammatory biomarker is associated with immune infiltration and NF-κB pathway activation in pancreatitis and pancreatic cancer. Cell Signal 2024; 116:111033. [PMID: 38182068 DOI: 10.1016/j.cellsig.2024.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND Pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) is an aggressive disease with an overall poor prognosis. Pancreatitis is a major risk factor for the development of PDAC. Due to the lack of reliable and accurate biomarkers, the diagnosis, treatment, and prognosis of PDAC face great challenges. It is of great significance to elucidate the pathogenesis of PDAC and explore novel inflammatory biomarkers. METHODS We identified E3 ubiquitin ligases associated with pancreatic inflammation by combining multiple GEO datasets and UbiNet 2.0, and integrating the WGCNA algorithm and Limma R package. A risk score model for PDAC patients was established by using LASSO regression. We investigated the correlation between FBXW11 and immune cell infiltration using CIBERSORT, mMCP-counter, ImmuCellAI-mouse, QUANTISEQ, and TIMER algorithms, based on GEO, ArrayExpress, and TCGA datasets. We used Ubibrowser 2.0 to predict potential substrates for FBXW11. WikiPathway, MSigDB Hallmark, and Elsevier pathway analysis of FBXW11 key substrates were also performed using the EnrichR database. We detected protein expression through IHC, immunofluorescence, and western blot in the cerulein-induced acute pancreatitis mouse model. RESULTS We first identified that FBXW11 exhibited a clear tendency to gradually increase in normal, pancreatitis, and PDAC patients. The validation analysis revealed that the FBXW11 protein exhibited significantly high expression in cerulein-induced acute pancreatitis mice, with its distribution primarily observed in the cytoplasm. Simultaneously, we developed a risk model utilizing the genes associated with FBXW11 to forecast the outcome of patients with PDAC and the likelihood of pancreatitis advancing to pancreatic cancer. Functional analysis showed that FBXW11, as a novel inflammatory biomarker, had a significant positive correlation with macrophage infiltration and the NF-κB signaling pathway. Finally, the western blot assay of the NF-κB signaling pathway in pancreatic tissues demonstrated that high activation of NF-κB was correlated with high expression of FBXW11. CONCLUSIONS Our research not only provides evidence for FBXW11 as a novel inflammatory biomarker but also provides new insights into the research and clinical treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Tan
- Department of Cell Biology and Genetics, Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710000, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shuang Cai
- Department of Cell Biology and Genetics, Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710000, China
| | - Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Mo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shenglu Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jiatong Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Wenguang Fu
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.; Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics, Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710000, China.
| |
Collapse
|
9
|
Jiménez DJ, Javed A, Rubio-Tomás T, Seye-Loum N, Barceló C. Clinical and Preclinical Targeting of Oncogenic Pathways in PDAC: Targeted Therapeutic Approaches for the Deadliest Cancer. Int J Mol Sci 2024; 25:2860. [PMID: 38474109 DOI: 10.3390/ijms25052860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. It is commonly diagnosed in advanced stages and therapeutic interventions are typically constrained to systemic chemotherapy, which yields only modest clinical outcomes. In this review, we examine recent developments in targeted therapy tailored to address distinct molecular pathway alteration required for PDAC. Our review delineates the principal signaling pathways and molecular mechanisms implicated in the initiation and progression of PDAC. Subsequently, we provide an overview of prevailing guidelines, ongoing investigations, and prospective research trajectories related to targeted therapeutic interventions, drawing insights from randomized clinical trials and other pertinent studies. This review focus on a comprehensive examination of preclinical and clinical data substantiating the efficacy of these therapeutic modalities, emphasizing the potential of combinatorial regimens and novel therapies to enhance the quality of life for individuals afflicted with PDAC. Lastly, the review delves into the contemporary application and ongoing research endeavors concerning targeted therapy for PDAC. This synthesis serves to bridge the molecular elucidation of PDAC with its clinical implications, the evolution of innovative therapeutic strategies, and the changing landscape of treatment approaches.
Collapse
Affiliation(s)
- Diego J Jiménez
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Aadil Javed
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ndioba Seye-Loum
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Hospital Universitari Son Espases, 07120 Palma de Mallorca, Spain
| |
Collapse
|
10
|
Tan YQ, Sun B, Zhang X, Zhang S, Guo H, Basappa B, Zhu T, Sethi G, Lobie PE, Pandey V. Concurrent inhibition of pBADS99 synergistically improves MEK inhibitor efficacy in KRAS G12D-mutant pancreatic ductal adenocarcinoma. Cell Death Dis 2024; 15:173. [PMID: 38409090 PMCID: PMC10897366 DOI: 10.1038/s41419-024-06551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Therapeutic targeting of KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) has remained a significant challenge in clinical oncology. Direct targeting of KRAS has proven difficult, and inhibition of the KRAS effectors have shown limited success due to compensatory activation of survival pathways. Being a core downstream effector of the KRAS-driven p44/42 MAPK and PI3K/AKT pathways governing intrinsic apoptosis, BAD phosphorylation emerges as a promising therapeutic target. Herein, a positive association of the pBADS99/BAD ratio with higher disease stage and worse overall survival of PDAC was observed. Homology-directed repair of BAD to BADS99A or small molecule inhibition of BADS99 phosphorylation by NCK significantly reduced PDAC cell viability by promoting cell cycle arrest and apoptosis. NCK also abrogated the growth of preformed colonies of PDAC cells in 3D culture. Furthermore, high-throughput screening with an oncology drug library to identify potential combinations revealed a strong synergistic effect between NCK and MEK inhibitors in PDAC cells harboring either wild-type or mutant-KRAS. Mechanistically, both mutant-KRAS and MEK inhibition increased the phosphorylation of BADS99 in PDAC cells, an effect abrogated by NCK. Combined pBADS99-MEK inhibition demonstrated strong synergy in reducing cell viability, enhancing apoptosis, and achieving xenograft stasis in KRAS-mutant PDAC. In conclusion, the inhibition of BADS99 phosphorylation enhances the efficacy of MEK inhibition, and their combined inhibition represents a mechanistically based and potentially effective therapeutic strategy for the treatment of KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Yan Qin Tan
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, 519087, Guangdong, People's Republic of China
| | - Bowen Sun
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xi Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Shuwei Zhang
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Hui Guo
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, 570006, Mysore, India
| | - Tao Zhu
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
- Hefei National Laboratory for Physical Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, People's Republic of China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Peter E Lobie
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
- Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, People's Republic of China.
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering and Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
11
|
Gu A, Li J, Wu JA, Li MY, Liu Y. Exploration of Dan-Shen-Yin against pancreatic cancer based on network pharmacology combined with molecular docking and experimental validation. CURRENT RESEARCH IN BIOTECHNOLOGY 2024; 7:100228. [DOI: 10.1016/j.crbiot.2024.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
|
12
|
Singh S, Kaushik AC, Gupta H, Jhinjharia D, Sahi S. Identification of Prognostic Markers and Potential Therapeutic Targets using Gene Expression Profiling and Simulation Studies in Pancreatic Cancer. Curr Comput Aided Drug Des 2024; 20:955-973. [PMID: 37711100 DOI: 10.2174/1573409920666230914100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) has a 5-year relative survival rate of less than 10% making it one of the most fatal cancers. A lack of early measures of prognosis, challenges in molecular targeted therapy, ineffective adjuvant chemotherapy, and strong resistance to chemotherapy cumulatively make pancreatic cancer challenging to manage. OBJECTIVE The present study aims to enhance understanding of the disease mechanism and its progression by identifying prognostic biomarkers, potential drug targets, and candidate drugs that can be used for therapy in pancreatic cancer. METHODS Gene expression profiles from the GEO database were analyzed to identify reliable prognostic markers and potential drug targets. The disease's molecular mechanism and biological pathways were studied by investigating gene ontologies, KEGG pathways, and survival analysis to understand the strong prognostic power of key DEGs. FDA-approved anti-cancer drugs were screened through cell line databases, and docking studies were performed to identify drugs with high affinity for ARNTL2 and PIK3C2A. Molecular dynamic simulations of drug targets ARNTL2 and PIK3C2A in their native state and complex with nilotinib were carried out for 100 ns to validate their therapeutic potential in PDAC. RESULTS Differentially expressed genes that are crucial regulators, including SUN1, PSMG3, PIK3C2A, SCRN1, and TRIAP1, were identified. Nilotinib as a candidate drug was screened using sensitivity analysis on CCLE and GDSC pancreatic cancer cell lines. Molecular dynamics simulations revealed the underlying mechanism of the binding of nilotinib with ARNTL2 and PIK3C2A and the dynamic perturbations. It validated nilotinib as a promising drug for pancreatic cancer. CONCLUSION This study accounts for prognostic markers, drug targets, and repurposed anti-cancer drugs to highlight their usefulness for translational research on developing novel therapies. Our results revealed potential and prospective clinical applications in drug targets ARNTL2, EGFR, and PI3KC2A for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Samvedna Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | | | - Himanshi Gupta
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Divya Jhinjharia
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Shakti Sahi
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
13
|
Aliakbarian M, Ferns GA, Shabestari MM, Ahmadzadeh AM, Abdollahzade A, Rahimi H, Khodashahi R, Arjmand MH. Elucidating the Role of Pro-renin Receptors in Pancreatic Ductal Adenocarcinoma Progression: A Novel Therapeutic Target in Cancer Therapy. Curr Cancer Drug Targets 2024; 24:881-889. [PMID: 38279719 DOI: 10.2174/0115680096279288231205105904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 01/28/2024]
Abstract
Pancreatic cancer is a highly aggressive malignancy with a very poor prognosis. The 5- year survival in these patients is very low, and most patients develop drug resistance to current therapies, so additional studies are needed to identify the potential role of new drug targets for the treatment of pancreatic cancer. Recent investigations have been performed regarding the roles of pro-renin receptors (PRR) in the initiation and development of cancers. PRR is a component of the local renin-angiotensin system (RAS). Local tissue RAS has been known in diverse organ systems, including the pancreas. Various investigations have implicated that PRRs are associated with the upregulation of various signaling pathways, like the renin-angiotensin system pathway, PI3K/Akt/mTOR, and the Wnt-signaling pathways, to contribute to pathological conditions, including cancer. In this review, we presented an overview of the role of PRR in the progression of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Mohsen Aliakbarian
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Department of Biochemistry, Division of Medical, Brighton & Sussex Medical School, Brighton, UK
| | | | - Amir Mahmoud Ahmadzadeh
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Radiology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aref Abdollahzade
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hoda Rahimi
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rozita Khodashahi
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad-Hassan Arjmand
- Transplant Research Center, Clinical Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Oketch DJA, Giulietti M, Piva F. Copy Number Variations in Pancreatic Cancer: From Biological Significance to Clinical Utility. Int J Mol Sci 2023; 25:391. [PMID: 38203561 PMCID: PMC10779192 DOI: 10.3390/ijms25010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, characterized by high tumor heterogeneity and a poor prognosis. Inter- and intra-tumoral heterogeneity in PDAC is a major obstacle to effective PDAC treatment; therefore, it is highly desirable to explore the tumor heterogeneity and underlying mechanisms for the improvement of PDAC prognosis. Gene copy number variations (CNVs) are increasingly recognized as a common and heritable source of inter-individual variation in genomic sequence. In this review, we outline the origin, main characteristics, and pathological aspects of CNVs. We then describe the occurrence of CNVs in PDAC, including those that have been clearly shown to have a pathogenic role, and further highlight some key examples of their involvement in tumor development and progression. The ability to efficiently identify and analyze CNVs in tumor samples is important to support translational research and foster precision oncology, as copy number variants can be utilized to guide clinical decisions. We provide insights into understanding the CNV landscapes and the role of both somatic and germline CNVs in PDAC, which could lead to significant advances in diagnosis, prognosis, and treatment. Although there has been significant progress in this field, understanding the full contribution of CNVs to the genetic basis of PDAC will require further research, with more accurate CNV assays such as single-cell techniques and larger cohorts than have been performed to date.
Collapse
Affiliation(s)
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
15
|
Chahbaoui N, Khamouli S, Alaqarbeh M, Belaidi S, Sinha L, Chtita S, Bouachrine M. Identification of novel curcumin derivatives against pancreatic cancer: a comprehensive approach integrating 3D-QSAR pharmacophore modeling, virtual screening, and molecular dynamics simulations. J Biomol Struct Dyn 2023; 42:12021-12039. [PMID: 37811784 DOI: 10.1080/07391102.2023.2266502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Pancreatic cancer, known as the "silent killer," poses a daunting challenge in cancer therapy. The dysregulation of the PI3Kα signaling pathway in pancreatic cancer has attracted considerable interest as a promising target for therapeutic intervention. In this regard, the use of curcumin derivatives as inhibitors of PI3Kα has emerged, providing a novel and promising avenue for developing effective treatments for this devastating disease. Computational approaches were employed to explore this potential and investigate 58 curcumin derivatives with cytotoxic activity against the Panc-1 cell line. Our approach involved ligand-based pharmacophore modeling and atom-based 3D-QSAR analysis. The resulting QSAR model derived from the best-fitted pharmacophore hypothesis (AAHRR_1) demonstrated remarkable performance with high correlation coefficients (R2) of 0.990 for the training set and 0.977 for the test set. The cross-validation coefficient (Q2) of 0.971 also validated the model's predictive power. Tropsha's recommended criteria, including the Y-randomization test, were employed to ensure its reliability. Furthermore, an enrichment study was conducted to evaluate the model's performance in identifying active compounds. AAHRR_1 was used to screen a curated PubChem database of curcumin-related compounds. Two molecules (CID156189304 and CID154728220) exhibited promising pharmacokinetic properties and higher docking scores than Alpelisib, warranting further investigation. Extensive molecular dynamics simulations provided crucial insights into the conformational dynamics within the binding site, validating their stability and behavior. These findings contribute to our understanding of the potential therapeutic effectiveness of these compounds as PI3Kα inhibitors in pancreatic cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Narimene Chahbaoui
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra, Biskra, Algeria
| | - Saida Khamouli
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra, Biskra, Algeria
| | - Marwa Alaqarbeh
- Basic Science Department, Prince Al Hussein Bin Abdullah II Academy for Civil Protection, Al-Balqa Applied University, Al-Salt, Jordan
| | - Salah Belaidi
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, University of Biskra, Biskra, Algeria
| | - Leena Sinha
- Physics Department, University of Lucknow, Lucknow, India
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
- Superior School of Technology - Khenifra (EST-Khenifra), University of Sultan Moulay Sliman, Khenifra, Morocco
| |
Collapse
|
16
|
Jafari S, Ravan M, Karimi-Sani I, Aria H, Hasan-Abad AM, Banasaz B, Atapour A, Sarab GA. Screening and identification of potential biomarkers for pancreatic cancer: An integrated bioinformatics analysis. Pathol Res Pract 2023; 249:154726. [PMID: 37591067 DOI: 10.1016/j.prp.2023.154726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
Pancreatic cancer is one of the highly invasive and the seventh most common cause of death among cancers worldwide. To identify essential genes and the involved mechanisms in pancreatic cancer, we used bioinformatics analysis to identify potential biomarkers for pancreatic cancer management. Gene expression profiles of pancreatic cancer patients and normal tissues were screened and downloaded from The Cancer Genome Atlas (TCGA) bioinformatics database. The Differentially expressed genes (DEGs) were identified among gene expression signatures of normal and pancreatic cancer, using R software. Then, enrichment analysis of the DEGs, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, was performed by an interactive and collaborative HTML5 gene list enrichment analysis tool (enrichr) and ToppGene. The protein-protein interaction (PPI) network was also constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and ToppGenet web based tool followed by identifying hub genes of the top 100 DEGs in pancreatic cancer using Cytoscape software. Over 2000 DEGs with variable log2 fold (LFC) were identified among 34,706 genes. Principal component analysis showed that the top 20 DEGs, including H1-4, H1-5, H4C3, H4C2, RN7SL2, RN7SL3, RN7SL4P, RN7SKP80, SCARNA12, SCARNA10, SCARNA5, SCARNA7, SCARNA6, SCARNA21, SCARNA9, SCARNA13, SNORA73B, SNORA53, SNORA54 might distinguish pancreatic cancer from normal tissue. GO analysis showed that the top DEGs have more enriched in the negative regulation of gene silencing, negative regulation of chromatin organization, negative regulation of chromatin silencing, nucleosome positioning, regulation of chromatin silencing, and nucleosomal DNA binding. KEGG analysis identified an association between pancreatic cancer and systemic lupus erythematosus, alcoholism, neutrophil extracellular trap formation, and viral carcinogenesis. In PPI network analysis, we found that the different types of histone-encoding genes are involved as hub genes in the carcinogenesis of pancreatic cancer. In conclusion, our bioinformatics analysis identified genes that were significantly related to the prognosis of pancreatic cancer patients. These genes and pathways could serve as new potential prognostic markers and be used to develop treatments for pancreatic cancer patients.
Collapse
Affiliation(s)
- Somayeh Jafari
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ravan
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahar Banasaz
- Internal Medicine Department, Babol University of Medical Sciences, Babol, Iran.
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamreza Anani Sarab
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
17
|
Ashok Kumar P, Serinelli S, Zaccarini DJ, Huang R, Danziger N, Janovitz T, Basnet A, Sivapiragasam A, Graziano S, Ross JS. Genomic landscape of clinically advanced KRAS wild-type pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:1169586. [PMID: 37404765 PMCID: PMC10315669 DOI: 10.3389/fonc.2023.1169586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/07/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction KRAS mutation is a common occurrence in Pancreatic Ductal Adenocarcinoma (PDA) and is a driver mutation for disease development and progression. KRAS wild-type PDA may constitute a distinct molecular and clinical subtype. We used the Foundation one data to analyze the difference in Genomic Alterations (GAs) that occur in KRAS mutated and wild-type PDA. Methods Comprehensive genomic profiling (CGP) data, tumor mutational burden (TMB), microsatellite instability (MSI) and PD-L1 by Immunohistochemistry (IHC) were analyzed. Results and discussion Our cohort had 9444 cases of advanced PDA. 8723 (92.37%) patients had KRAS mutation. 721 (7.63%) patients were KRAS wild-type. Among potentially targetable mutations, GAs more common in KRAS wild-type included ERBB2 (mutated vs wild-type: 1.7% vs 6.8%, p <0.0001), BRAF (mutated vs wild-type: 0.5% vs 17.9%, p <0.0001), PIK3CA (mutated vs wild-type: 2.3% vs 6.5%, p <0.001), FGFR2 (mutated vs wild-type: 0.1% vs 4.4%, p <0.0001), ATM (mutated vs wild-type: 3.6% vs 6.8%, p <0.0001). On analyzing untargetable GAs, the KRAS mutated group had a significantly higher percentage of TP53 (mutated vs wild-type: 80.2% vs 47.6%, p <0.0001), CDKN2A (mutated vs wild-type: 56.2% vs 34.4%, p <0.0001), CDKN2B (mutated vs wild-type: 28.9% vs 23%, p =0.007), SMAD4 (mutated vs wild-type: 26.8% vs 15.7%, p <0.0001) and MTAP (mutated vs wild-type: 21.7% vs 18%, p =0.02). ARID1A (mutated vs wild-type: 7.7% vs 13.6%, p <0.0001 and RB1(mutated vs wild-type: 2% vs 4%, p =0.01) were more prevalent in the wild-type subgroup. Mean TMB was higher in the KRAS wild-type subgroup (mutated vs wild-type: 2.3 vs 3.6, p <0.0001). High TMB, defined as TMB > 10 mut/mB (mutated vs wild-type: 1% vs 6.3%, p <0.0001) and very-high TMB, defined as TMB >20 mut/mB (mutated vs wild-type: 0.5% vs 2.4%, p <0.0001) favored the wild-type. PD-L1 high expression was similar between the 2 groups (mutated vs wild-type: 5.7% vs 6%,). GA associated with immune checkpoint inhibitors (ICPIs) response including PBRM1 (mutated vs wild-type: 0.7% vs 3.2%, p <0.0001) and MDM2 (mutated vs wild-type: 1.3% vs 4.4%, p <0.0001) were more likely to be seen in KRAS wild-type PDA.
Collapse
Affiliation(s)
| | - Serenella Serinelli
- Department of Pathology, Upstate Medical University, Syracuse, NY, United States
| | - Daniel J. Zaccarini
- Department of Pathology, Upstate Medical University, Syracuse, NY, United States
| | | | | | | | - Alina Basnet
- Upstate Cancer Center, Upstate Medical University, Syracuse, NY, United States
| | | | - Stephen Graziano
- Upstate Cancer Center, Upstate Medical University, Syracuse, NY, United States
| | - Jeffrey S. Ross
- Department of Pathology, Upstate Medical University, Syracuse, NY, United States
- Foundation Medicine, Cambridge, MA, United States
| |
Collapse
|
18
|
Conway JR, Warren SC, Lee YK, McCulloch AT, Magenau A, Lee V, Metcalf XL, Stoehr J, Haigh K, Abdulkhalek L, Guaman CS, Reed DA, Murphy KJ, Pereira BA, Mélénec P, Chambers C, Latham SL, Lenthall H, Deenick EK, Ma Y, Phan T, Lim E, Joshua AM, Walters S, Grey ST, Shi YC, Zhang L, Herzog H, Croucher DR, Philp A, Scheele CL, Herrmann D, Sansom OJ, Morton JP, Papa A, Haigh JJ, Nobis M, Timpson P. Monitoring AKT activity and targeting in live tissue and disease contexts using a real-time Akt-FRET biosensor mouse. SCIENCE ADVANCES 2023; 9:eadf9063. [PMID: 37126544 PMCID: PMC10132756 DOI: 10.1126/sciadv.adf9063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Aberrant AKT activation occurs in a number of cancers, metabolic syndrome, and immune disorders, making it an important target for the treatment of many diseases. To monitor spatial and temporal AKT activity in a live setting, we generated an Akt-FRET biosensor mouse that allows longitudinal assessment of AKT activity using intravital imaging in conjunction with image stabilization and optical window technology. We demonstrate the sensitivity of the Akt-FRET biosensor mouse using various cancer models and verify its suitability to monitor response to drug targeting in spheroid and organotypic models. We also show that the dynamics of AKT activation can be monitored in real time in diverse tissues, including in individual islets of the pancreas, in the brown and white adipose tissue, and in the skeletal muscle. Thus, the Akt-FRET biosensor mouse provides an important tool to study AKT dynamics in live tissue contexts and has broad preclinical applications.
Collapse
Affiliation(s)
- James R. W. Conway
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Sean C. Warren
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Young-Kyung Lee
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andrew T. McCulloch
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- School of Clinical Medicine, UNSW Sydney, Randwick Clinical Campus, Sydney, NSW, Australia
| | - Astrid Magenau
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Victoria Lee
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Xanthe L. Metcalf
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Janett Stoehr
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Katharina Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Lea Abdulkhalek
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Cristian S. Guaman
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Daniel A. Reed
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kendelle J. Murphy
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Brooke A. Pereira
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Pauline Mélénec
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Cecilia Chambers
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Sharissa L. Latham
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Helen Lenthall
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Yuanqing Ma
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Tri Phan
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Anthony M. Joshua
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Stacey Walters
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
| | - Shane T. Grey
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Yan-Chuan Shi
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Lei Zhang
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
| | - David R. Croucher
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andy Philp
- School of Clinical Medicine, Randwick Clinical Campus, UNSW Sydney, Centre for Healthy Ageing, Centenary Institute, Missenden Road, Sydney, NSW 2050, Australia
- Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia
| | - Colinda L.G.J. Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Jennifer P. Morton
- Cancer Research UK Beatson Institute, Glasgow G611BD, UK
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G611QH, UK
| | - Antonella Papa
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Jody J. Haigh
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| | - Max Nobis
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2010, Australia
- Cancer Ecosystems Program, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| |
Collapse
|
19
|
Mortoglou M, Miralles F, Mould RR, Sengupta D, Uysal-Onganer P. Inhibiting CDK4/6 in pancreatic ductal adenocarcinoma via microRNA-21. Eur J Cell Biol 2023; 102:151318. [PMID: 37105116 DOI: 10.1016/j.ejcb.2023.151318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a 5-year survival rate of 5-10 %. The high mortality rate is due to the asymptomatic progression of clinical features in metastatic stages of the disease, which renders standard therapeutic options futile. PDAC is characterised by alterations in several genes that drive carcinogenesis and limit therapeutic response. The two most common genetic aberrations in PDAC are the mutational activation of KRAS and loss of the tumour suppressor CDK inhibitor 2A (CDKN2A), which culminate the activation of the cyclin-dependent kinase 4 and 6 (CDK4/6), that promote G1 cell cycle progression. Therapeutic strategies focusing on the CDK4/6 inhibitors such as palbociclib (PD-0332991) may potentially improve outcomes in this malignancy. MicroRNAs (miRs/miRNAs) are small endogenous non-coding RNA molecules associated with cellular proliferation, invasion, apoptosis, and cell cycle. Primarily, miR-21 promotes cell proliferation and a higher proportion of PDAC cells in the S phase, while knockdown of miR-21 has been linked to cell cycle arrest at the G2/M phase and inhibition of cell proliferation. In this study, using a CRISPR/Cas9 loss-of-function screen, we individually silenced the expression of miR-21 in two PDAC cell lines and in combination with PD-0332991 treatment, we examined the synergetic mechanisms of CDK4/6 inhibitors and miR-21 knockouts (KOs) on cell survival and death. This combination reduced cell proliferation, cell viability, increased apoptosis and G1 arrest in vitro. We further analysed the mitochondrial respiration and glycolysis of PDAC cells; then assessed the protein content of these cells and revealed numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with PD-0332991 treatment and miR-21 knocking out. Our results demonstrate that combined targeting of CDK4/6 and silencing of miR-21 represents a novel therapeutic strategy in PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Francesc Miralles
- Centre of Biomedical Education/Molecular and Clinical Sciences, Cell Biology Research Centre, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Rhys Richard Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Dipankar Sengupta
- Health Data Sciences Research Group, Research Centre for Optimal Health, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, UK.
| |
Collapse
|
20
|
Al-Noshokaty TM, Mansour A, Abdelhamid R, Abdellatif N, Alaaeldien A, Reda T, Abdelmaksoud NM, Doghish AS, Abulsoud AI, Elshaer SS. Role of long non-coding RNAs in pancreatic cancer pathogenesis and treatment resistance- A review. Pathol Res Pract 2023; 245:154438. [PMID: 37043965 DOI: 10.1016/j.prp.2023.154438] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers associated with poor prognosis. The lack of reliable means of early cancer detection contributes to this disease's dismal prognosis. Long non-coding RNAs (LncRNAs) are protein-free RNAs produced by genome transcription; they play critical roles in gene expression regulation, epigenetic modification, cell proliferation, differentiation, and reproduction. Recent research has shown that lncRNAs play important regulatory roles in PC behaviors, in addition to their recently found functions. Several in-depth investigations have shown that lncRNAs are strongly linked to PC development and progression. Here, we discuss how lncRNAs, which are often overlooked, play many roles as regulators in the molecular mechanism underlying PC. This review also discusses the involved LncRNAs in PC pathogenesis and treatment resistance.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr, Cairo, Egypt
| |
Collapse
|
21
|
Kung H, Yu J. Targeted therapy for pancreatic ductal adenocarcinoma: Mechanisms and clinical study. MedComm (Beijing) 2023; 4:e216. [PMID: 36814688 PMCID: PMC9939368 DOI: 10.1002/mco2.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 02/21/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal malignancy with a high rate of recurrence and a dismal 5-year survival rate. Contributing to the poor prognosis of PDAC is the lack of early detection, a complex network of signaling pathways and molecular mechanisms, a dense and desmoplastic stroma, and an immunosuppressive tumor microenvironment. A recent shift toward a neoadjuvant approach to treating PDAC has been sparked by the numerous benefits neoadjuvant therapy (NAT) has to offer compared with upfront surgery. However, certain aspects of NAT against PDAC, including the optimal regimen, the use of radiotherapy, and the selection of patients that would benefit from NAT, have yet to be fully elucidated. This review describes the major signaling pathways and molecular mechanisms involved in PDAC initiation and progression in addition to the immunosuppressive tumor microenvironment of PDAC. We then review current guidelines, ongoing research, and future research directions on the use of NAT based on randomized clinical trials and other studies. Finally, the current use of and research regarding targeted therapy for PDAC are examined. This review bridges the molecular understanding of PDAC with its clinical significance, development of novel therapies, and shifting directions in treatment paradigm.
Collapse
Affiliation(s)
- Heng‐Chung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jun Yu
- Departments of Medicine and OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
22
|
Chang WH, Liu Y, Hammes EA, Bryant KL, Cerione RA, Antonyak MA. Oncogenic RAS promotes MYC protein stability by upregulating the expression of the inhibitor of apoptosis protein family member Survivin. J Biol Chem 2023; 299:102842. [PMID: 36581205 PMCID: PMC9860443 DOI: 10.1016/j.jbc.2022.102842] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
The small GTPase KRAS is frequently mutated in pancreatic cancer and its cooperation with the transcription factor MYC is essential for malignant transformation. The key to oncogenic KRAS and MYC working together is the stabilization of MYC expression due to KRAS activating the extracellular signal-regulated kinase 1/2, which phosphorylates MYC at serine 62 (Ser 62). This prevents the proteasomal degradation of MYC while enhancing its transcriptional activity. Here, we identify how this essential signaling connection between oncogenic KRAS and MYC expression is mediated by the inhibitor of apoptosis protein family member Survivin. This discovery stemmed from our finding that Survivin expression is downregulated upon treatment of pancreatic cancer cells with the KRASG12C inhibitor Sotorasib. We went on to show that oncogenic KRAS increases Survivin expression by activating extracellular signal-regulated kinase 1/2 in pancreatic cancer cells and that treating the cells either with siRNAs targeting Survivin or with YM155, a small molecule that potently blocks Survivin expression, downregulates MYC and strongly inhibited their growth. We further determined that Survivin protects MYC from degradation by blocking autophagy, which then prevents cellular inhibitor of protein phosphatase 2A from undergoing autophagic degradation. Cellular inhibitor of protein phosphatase 2A, by inhibiting protein phosphatase 2A, helps to maintain MYC phosphorylation at Ser 62, thereby ensuring its cooperation with oncogenic KRAS in driving cancer progression. Overall, these findings highlight a novel role for Survivin in mediating the cooperative actions of KRAS and MYC during malignant transformation and raise the possibility that targeting Survivin may offer therapeutic benefits against KRAS-driven cancers.
Collapse
Affiliation(s)
- Wen-Hsuan Chang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yinzhe Liu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Emma A Hammes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Kirsten L Bryant
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard A Cerione
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA; Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
23
|
Deng X, He X, Yang Z, Huang J, Zhao L, Wen M, Hu X, Zou Z. Clustering analysis and prognostic model based on PI3K/AKT-related genes in pancreatic cancer. Front Oncol 2023; 13:1112104. [PMID: 37124502 PMCID: PMC10140326 DOI: 10.3389/fonc.2023.1112104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Pancreatic cancer is one of most aggressive malignancies with a dismal prognosis. Activation of PI3K/AKT signaling is instrumental in pancreatic cancer tumorigenesis. The aims of this study were to identify the molecular clustering, prognostic value, relationship with tumor immunity and targeting of PI3K/AKT-related genes (PARGs) in pancreatic cancer using bioinformatics. Methods The GSEA website was searched for PARGs, and pancreatic cancer-related mRNA data and clinical profiles were obtained through TCGA downloads. Prognosis-related genes were identified by univariate Cox regression analysis, and samples were further clustered by unsupervised methods to identify significant differences in survival, clinical information and immune infiltration between categories. Next, a prognostic model was constructed using Lasso regression analysis. The model was well validated by univariate and multivariate Cox regression analyses, Kaplan-Meier survival analysis and ROC curves, and correlations between risk scores and patient pathological characteristics were identified. Finally, GSEA, drug prediction and immune checkpoint protein analyses were performed. Results Pancreatic cancers were divided into Cluster 1 (C1) and Cluster 2 (C1) according to PARG mRNA expression. C1 exhibited longer overall survival (OS) and higher immune scores and CTLA4 expression, whereas C2 exhibited more abundant PD-L1. A 6-PARG-based prognostic model was constructed to divide pancreatic cancer patients into a high-risk score (HRS) group and a low-risk score (LRS) group, where the HRS group exhibited worse OS. The risk score was defined as an independent predictor of OS. The HRS group was significantly associated with pancreatic cancer metastasis, aggregation and immune score. Furthermore, the HRS group exhibited immunosuppression and was sensitive to radiotherapy and guitarbine chemotherapy. Multidrug sensitivity prediction analysis indicated that the HRS group may be sensitive to PI3K/AKT signaling inhibitors (PIK-93, GSK2126458, CAL-101 and rapamycin) and ATP concentration regulators (Thapsigargin). In addition, we confirmed the oncogenic effect of protein phosphatase 2 regulatory subunit B'' subunit alpha (PPP2R3A) in pancreatic cancer in vitro and in vivo. Conclusions PARGs predict prognosis, tumor immune profile, radiotherapy and chemotherapy drug sensitivity and are potential predictive markers for pancreatic cancer treatment that can help clinicians make decisions and personalize treatment.
Collapse
Affiliation(s)
- Xiangying Deng
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xu He
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- Department of Science and Education, Yiyang Central Hospital, Yiyang, China
- The Hunan Provincial Key Laboratory of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
| | - Zehua Yang
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
| | - Jing Huang
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
| | - Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wen
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiyuan Hu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zizheng Zou
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Yiyang Medical College, Yiyang, China
- Department of Science and Education, Yiyang Central Hospital, Yiyang, China
- The Hunan Provincial Key Laboratory of Precision Diagnosis and Treatment for Gastrointestinal Tumor, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zizheng Zou,
| |
Collapse
|
24
|
Yang J, Li Y, Han X, Pei X, Lin Z, Li C. The antitumor effect of the novel agent MCL/ACT001 in pancreatic ductal adenocarcinoma. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04542-9. [PMID: 36547690 DOI: 10.1007/s00432-022-04542-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is a major challenge in cancer therapy, there are more than four hundred thousand deaths per year, and the 5-year survival rate is less than 10%. The incidence continues to rise. Treatment with classic drugs offers limited therapeutic benefits. The aim of this study was to investigate the mechanism and effect of the new agent ACT001, the active metabolite of Micheliolide (MCL), in vitro and in vivo against PDAC. METHODS MTT assay, wound healing assay, and flow cytometry were used to assess the effects of MCL/ACT001 in vitro. DCFH-DA assay was used to assess ROS accumulation. Western blotting, immunohistochemical staining and TUNEL assay were also conducted to determine the mechanisms. PANC-1-Luc cells and bioluminescent reporter imaging were used to assess antitumor effect of ACT001 using a orthotopic xenograft model in vivo. RESULTS MCL/ACT001 significantly inhibited cell growth in PDAC in a dose-dependent manner, induced cell apoptosis, cell migration and reactive oxygen species (ROS) accumulation in vitro. In vivo, ACT001 (400 mg/kg/day) inhibited PDAC tumor growth in orthotopic xenograft mice. We verified that EGFR and Akt were markedly overexpressed in PDAC cells and patient tumors. Mechanistic investigations revealed that MCL exerted its antitumor activity via regulation of the EGFR-Akt-Bim signaling pathway, thus inducing Bim expression both in vitro and in vivo. CONCLUSION MCL/ACT001 is a highly promising agent in the treatment of PDAC patients.
Collapse
|
25
|
Diehl AC, Hannan LM, Zhen DB, Coveler AL, King G, Cohen SA, Harris WP, Shankaran V, Wong KM, Green S, Ng N, Pillarisetty VG, Sham JG, Park JO, Reddi D, Konnick EQ, Pritchard CC, Baker K, Redman M, Chiorean EG. KRAS Mutation Variants and Co-occurring PI3K Pathway Alterations Impact Survival for Patients with Pancreatic Ductal Adenocarcinomas. Oncologist 2022; 27:1025-1033. [PMID: 36124727 DOI: 10.1093/oncolo/oyac179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND KRAS variant alleles may have differential biological properties which impact prognosis and therapeutic options in pancreatic ductal adenocarcinomas (PDA). MATERIALS AND METHODS We retrospectively identified patients with advanced PDA who received first-line therapy and underwent blood and/or tumor genomic sequencing at the University of Washington between 2013 and 2020. We examined the incidence of KRAS mutation variants with and without co-occurring PI3K or other genomic alterations and evaluated the association of these mutations with clinicopathological characteristics and survival using a Cox proportional hazards model. RESULTS One hundred twenty-six patients had genomic sequencing data; KRAS mutations were identified in 111 PDA and included the following variants: G12D (43)/G12V (35)/G12R (23)/other (10). PI3K pathway mutations (26% vs. 8%) and homologous recombination DNA repair (HRR) defects (35% vs. 12.5%) were more common among KRAS G12R vs. non-G12R mutated cancers. Patients with KRAS G12R vs. non-G12R cancers had significantly longer overall survival (OS) (HR 0.55) and progression-free survival (PFS) (HR 0.58), adjusted for HRR pathway co-mutations among other covariates. Within the KRAS G12R group, co-occurring PI3K pathway mutations were associated with numerically shorter OS (HR 1.58), while no effect was observed on PFS. CONCLUSIONS Patients with PDA harboring KRAS G12R vs. non-G12R mutations have longer survival, but this advantage was offset by co-occurring PI3K alterations. The KRAS/PI3K genomic profile could inform therapeutic vulnerabilities in patients with PDA.
Collapse
Affiliation(s)
- Adam C Diehl
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lindsay M Hannan
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David B Zhen
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew L Coveler
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gentry King
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stacey A Cohen
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - William P Harris
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Veena Shankaran
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kit M Wong
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Natasha Ng
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Jonathan G Sham
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - James O Park
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Deepti Reddi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Eric Q Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Mary Redman
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - E Gabriela Chiorean
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
26
|
Bispo IMC, Granger HP, Almeida PP, Nishiyama PB, de Freitas LM. Systems biology and OMIC data integration to understand gastrointestinal cancers. World J Clin Oncol 2022; 13:762-778. [PMID: 36337313 PMCID: PMC9630993 DOI: 10.5306/wjco.v13.i10.762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/22/2021] [Accepted: 10/02/2022] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers are a set of diverse diseases affecting many parts/ organs. The five most frequent GI cancer types are esophageal, gastric cancer (GC), liver cancer, pancreatic cancer, and colorectal cancer (CRC); together, they give rise to 5 million new cases and cause the death of 3.5 million people annually. We provide information about molecular changes crucial to tumorigenesis and the behavior and prognosis. During the formation of cancer cells, the genomic changes are microsatellite instability with multiple chromosomal arrangements in GC and CRC. The genomically stable subtype is observed in GC and pancreatic cancer. Besides these genomic subtypes, CRC has epigenetic modification (hypermethylation) associated with a poor prognosis. The pathway information highlights the functions shared by GI cancers such as apoptosis; focal adhesion; and the p21-activated kinase, phosphoinositide 3-kinase/Akt, transforming growth factor beta, and Toll-like receptor signaling pathways. These pathways show survival, cell proliferation, and cell motility. In addition, the immune response and inflammation are also essential elements in the shared functions. We also retrieved information on protein-protein interaction from the STRING database, and found that proteins Akt1, catenin beta 1 (CTNNB1), E1A binding protein P300, tumor protein p53 (TP53), and TP53 binding protein 1 (TP53BP1) are central nodes in the network. The protein expression of these genes is associated with overall survival in some GI cancers. The low TP53BP1 expression in CRC, high EP300 expression in esophageal cancer, and increased expression of Akt1/TP53 or low CTNNB1 expression in GC are associated with a poor prognosis. The Kaplan Meier plotter database also confirmed the association between expression of the five central genes and GC survival rates. In conclusion, GI cancers are very diverse at the molecular level. However, the shared mutations and protein pathways might be used to understand better and reveal diagnostic/prognostic or drug targets.
Collapse
Affiliation(s)
- Iasmin Moreira Costa Bispo
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Henry Paul Granger
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Palloma Porto Almeida
- Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil
| | - Patricia Belini Nishiyama
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| | - Leandro Martins de Freitas
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45.029-094, Bahia, Brazil
| |
Collapse
|
27
|
Zhou S, Zhong Z, Lu Y, Li Y, Yao H, Zhao Y, Guo T, Yang K, Li Y, Chen S, Huang K, Lian G. A LETM2-Regulated PI3K-Akt Signaling Axis Reveals a Prognostic and Therapeutic Target in Pancreatic Cancer. Cancers (Basel) 2022; 14:cancers14194722. [PMID: 36230646 PMCID: PMC9564284 DOI: 10.3390/cancers14194722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary LEMT2 was a newly discovered protein-encoding gene with little cancer research and an unclear mechanism. This study aimed to illustrate LETM2 as the crucial oncogene for tumor progression in pancreatic ductal adenocarcinoma (PDAC). We analyzed the expression level and prognostic value of LETM2 in multiple cancers using pan-cancer analysis and found that the LETM2 expression was the most significantly related to the dismal prognosis of PDAC. Immunohistochemical analyses showed that high LETM2 expression was correlated with poor outcomes of PDAC. In in vitro and in vivo experiments, LETM2 knockdown significantly inhibited tumor proliferation and metastasis, while LETM2 overexpression exerted the opposite effects. Then, we suggested that LETM2 may facilitate tumor progression by activating downstream PI3K-Akt signaling pathway in PDAC. In conclusion, the study enhanced our understanding of the LETM2-regulated PI3K-Akt signaling axis served as a prognostic and therapeutic target of pancreatic cancer. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the highest mortalities malignant tumors, which is characterized by difficult diagnosis, rapid progression and high recurrence rate. Nevertheless, PDAC responds poorly to conventional therapies, which highlights the urgency to identify novel prognostic and therapeutic targets. LEMT2 was a newly discovered protein-encoding gene with little cancer research and an unclear mechanism. Thus, this study aimed to illustrate LETM2 as the crucial oncogene for tumor progression in PDAC. In this study, we analyzed the expression level and prognostic value of LETM2 in multiple cancers using pan-cancer analysis. The analyses based on the TCGA-GTEx dataset indicated that the LETM2 expression was obviously elevated in several cancers, and it was the most significantly related to the dismal prognosis of PDAC. Subsequently, we demonstrated the functional role and mechanism of LETM2 by clinical sample evaluation, and in in vitro and in vivo experiments. Immunohistochemical analyses showed that high expression of LETM2 was correlated with poor outcomes of PDAC. Moreover, we demonstrated that LETM2 knockdown significantly inhibited tumor proliferation and metastasis, and promoted cell apoptosis, while LETM2 overexpression exerted the opposite effects. Finally, the impairment caused by LETM2-knockdown could be recovered via excitation of the PI3k-Akt pathway in vitro and in vivo animal models, which suggested that LETM2 could activate the downstream PI3K-Akt pathway to participate in PDAC progression. In conclusion, the study enhanced our understanding of LETM2 as an oncogene hallmark of PDAC. LETM2 may facilitate tumor progression by activating the PI3K-Akt signaling pathway, which provides potential targets for the diagnosis, treatment, and prognosis of pancreatic cancer.
Collapse
Affiliation(s)
- Shurui Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Ziyi Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Yanzong Lu
- Department of Ophthalmology, No.903 Hospital of PLA Joint Logistic Support Force, Hangzhou 310013, China
| | - Yunlong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Hanming Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Yue Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Tairan Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Kege Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Yaqing Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Shaojie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
| | - Kaihong Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
- Correspondence: (K.H.); (G.L.)
| | - Guoda Lian
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510120, China
- Correspondence: (K.H.); (G.L.)
| |
Collapse
|
28
|
[CD40LG is a novel immune- and stroma-related prognostic biomarker in the tumor microenvironment of invasive breast cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1267-1278. [PMID: 36210698 PMCID: PMC9550551 DOI: 10.12122/j.issn.1673-4254.2022.09.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To identify tumor microenvironment (TME)- related genes associated with the occurrence of invasive breast cancer as potential prognostic biomarkers and therapeutic targets. METHODS RNA transcriptome data and clinically relevant data were retrieved from TCGA database, and the StromalScore and ImmuneScore were calculated using the ESTIMATE algorithm. The differentially expressed genes (DEGs) were screened by taking the intersection. A protein- protein interaction network was established, and univariate COX regression analysis was used to identify the core genes among the DEGs. A core gene was selected for GSEA and CIBERSORT analysis to determine the function of the core gene and the proportion of tumor-infiltrating immune cells, respectively. Western blotting and qRT-PCR were performed to verify the expression level of CD40LG in breast cancer cell lines and clinical specimens. RESULTS A total of 1222 samples (124 normal and 1098 tumor samples) were extracted from TCGA for analysis, from which 487 DEGs were identified. These genes were mainly enriched in immune-related pathways, and crossover analysis identified 11 key genes (CD40LG, ITK, CD5, CD3E, SPN, IL7R, CD48, CCL19, CD2, CD52, and CD2711) associated with breast cancer TME status. CD40LG was selected as the core gene, whose high expression was found to be associated with a longer overall survival of breast cancer patients (P=0.002), and its expression level differed significantly with TNM stage and tumor size (P < 0.05). GSEA and CIBERSORT analyses indicated that CD40LG expression level was associated with immune activity in the TME. Western blotting and qRT-PCR showed that the protein and mRNA expression of CD40LG were significantly lower in breast cancer cells and cancer tissues than in normal breast cells and adjacent tissues. CONCLUSIONS The high expression of CD40LG in TME is positively correlated with the survival of patients with invasive breast cancer, suggesting its value as a potential new biomarker for predicting prognosis of the patients.
Collapse
|
29
|
Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int J Mol Sci 2022; 23:ijms231710132. [PMID: 36077529 PMCID: PMC9456549 DOI: 10.3390/ijms231710132] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.
Collapse
|
30
|
Rudloff U. Emerging kinase inhibitors for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Emerg Drugs 2022; 27:345-368. [PMID: 36250721 PMCID: PMC9793333 DOI: 10.1080/14728214.2022.2134346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pancreatic cancer is one of the deadliest solid organ cancers. In the absence of specific warning symptoms pancreatic cancer is diagnosed notoriously late. Current systemic chemotherapy regimens extend survival by a mere few months. With the advances in genetic, proteomic, and immunological profiling there is strong rationale to test kinase inhibitors to improve outcome. AREAS COVERED This review article provides a comprehensive summary of approved treatments and past, present, and future developments of kinase inhibitors in pancreatic cancer. Emerging roles of protein kinase inhibitors are discussed in the context of the unique stroma, the lack of high-prevalence therapeutic targets and rapid emergence of acquired resistance, novel immuno-oncology kinase targets, and recent medicinal chemistry advances. EXPERT OPINION Due to the to-date frequent failure of protein kinase inhibitors indiscriminately administered to unselected pancreatic cancer patients, there is a shift toward the development of these agents in molecularly defined subgroups which are more likely to respond. The development of accurate biomarkers to select patients who are the best candidates based on a detailed understanding of mechanism of action, pro-survival roles, and mediation of resistance of targeted kinases will be critical for the future development of protein kinase inhibitors in this disease.
Collapse
Affiliation(s)
- Udo Rudloff
- Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
31
|
ALCAM: A Novel Surface Marker on EpCAMlow Circulating Tumor Cells. Biomedicines 2022; 10:biomedicines10081983. [PMID: 36009530 PMCID: PMC9405826 DOI: 10.3390/biomedicines10081983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Current strategies in circulating tumor cell (CTC) isolation in pancreatic cancer heavily rely on the EpCAM and cytokeratin cell status. EpCAM is generally not considered a good marker given its transitory change during Epithelial to Mesenchymal Transition (EMT) or reverse EMT. There is a need to identify other surface markers to capture the complete repertoire of PDAC CTCs. The primary objective of the study is to characterize alternate surface biomarkers to EpCAM on CTCs that express low or negligible levels of surface EpCAM in pancreatic cancer patients. Methods: Flow cytometry and surface mass spectrometry were used to identify proteins expressed on the surface of PDAC CTCs in culture. CTCs were grown under conditions of attachment and in co-culture with naïve neutrophils. Putative biomarkers were then validated in GEMMs and patient samples. Results: Surface proteomic profiling of CTCs identified several novel protein biomarkers. ALCAM was identified as a novel robust marker in GEMM models and in patient samples. Conclusions: We identified several novel surface biomarkers on CTCs expressed under differing conditions of culture. ALCAM was validated and identified as a novel alternate surface marker on EpCAMlow CTCs.
Collapse
|
32
|
Mortazavi M, Moosavi F, Martini M, Giovannetti E, Firuzi O. Prospects of targeting PI3K/AKT/mTOR pathway in pancreatic cancer. Crit Rev Oncol Hematol 2022; 176:103749. [PMID: 35728737 DOI: 10.1016/j.critrevonc.2022.103749] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses among all malignancies. PI3K/AKT/mTOR signaling pathway, a main downstream effector of KRAS is involved in the regulation of key hallmarks of cancer. We here report that whole-genome analyses demonstrate the frequent involvement of aberrant activations of PI3K/AKT/mTOR pathway components in PDAC patients and critically evaluate preclinical and clinical evidence on the application of PI3K/AKT/mTOR pathway targeting agents. Combinations of these agents with chemotherapeutics or other targeted therapies, including the modulators of cyclin-dependent kinases, receptor tyrosine kinases and RAF/MEK/ERK pathway are also examined. Although human genetic studies and preclinical pharmacological investigations have provided strong evidence on the role of PI3K/AKT/mTOR pathway in PDAC, clinical studies in general have not been as promising. Patient stratification seems to be the key missing point and with the advent of biomarker-guided clinical trials, targeting PI3K/AKT/mTOR pathway could provide valuable assets for treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, Fondazine Pisana per la Scienza, Pisa, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
33
|
Begum H, Chirra N, Kumar D, Murugesan P, Kantevari S, Tangutur AD. Autophagic and apoptotic cell death induced by the quinoline derivative 2-(6-methoxynaphthalen-2-yl)quinolin-4-amine in pancreatic cancer cells is via ER stress and inhibition of Akt/mTOR signaling pathway. Drug Dev Res 2022; 83:910-926. [PMID: 35092073 DOI: 10.1002/ddr.21916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2023]
Abstract
Pancreatic cancer (PC) is among the most lethal cancers and is resistant to existing therapies, which highlights the need for new and alternative therapeutic treatments. Autophagy is emerging as one of the alternative cell death mechanisms and is well known to cross-talk with apoptosis. Autophagy can act as a viable option to treat highly resistant PC. The current study investigates and provides insight into the autophagic and apoptotic cell death induced by quinoline derivative 2-(6-methoxynaphthalen-2-yl)quinolin-4-amine (6MN-4-AQ) in PC cell lines PANC-1 and MIA PaCa-2. Treatment with 6MN-4-AQ reduced cell viability in concentration dependent manner (2-16 μM) and inhibited the clonogenic potential of PC cells at a concentration of 4 μM for 24 h. Further, we found that 6MN-4-AQ induced both apoptosis and autophagic cell death simultaneously. We identified that 6MN-4-AQ induced autophagic cell death by forming cytoplasmic vacuoles, the elevation of autophagy flux, increase in LC3-II, Beclin-1 protein expression, and degradation of p62. Moreover, 6MN-4-AQ induced apoptosis via Caspase-3 activation and cleavage of PARP in PC cells. Upon investigating the underlying mechanism associated with 6MN-4-AQ induced cell death, it was observed that 6MN-4-AQ treatment is able to suppress the Akt/mTOR pathway and induced ER stress leading to the induction of autophagy. Also, 6MN-4-AQ treatment suppressed epithelial to mesenchymal transition by reducing the protein expression of SLUG, snail, and vimentin. Subsequently, 6MN-4-AQ inhibited cell migration and invasion by down regulating MMP-7 and MMP-9 protein expression, suggesting that 6MN-4-AQ may serve as a plausible therapeutic agent for PC.
Collapse
Affiliation(s)
- Habeebunnisa Begum
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nagaraju Chirra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Dinesh Kumar
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Periyasamy Murugesan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Srinivas Kantevari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Fluoro & Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
34
|
Silwal-Pandit L, Stålberg SM, Johansson HJ, Mermelekas G, Lothe IMB, Skrede ML, Dalsgaard AM, Nebdal DJH, Helland Å, Lingjærde OC, Labori KJ, Skålhegg BS, Lehtiö J, Kure EH. Proteome Analysis of Pancreatic Tumors Implicates Extracellular Matrix in Patient Outcome. CANCER RESEARCH COMMUNICATIONS 2022; 2:434-446. [PMID: 36923555 PMCID: PMC10010336 DOI: 10.1158/2767-9764.crc-21-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/23/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
Pancreatic cancer remains a disease with unmet clinical needs and inadequate diagnostic, prognostic, and predictive biomarkers. In-depth characterization of the disease proteome is limited. This study thus aims to define and describe protein networks underlying pancreatic cancer and identify protein centric subtypes with clinical relevance. Mass spectrometry-based proteomics was used to identify and quantify the proteome in tumor tissue, tumor-adjacent tissue, and patient-derived xenografts (PDX)-derived cell lines from patients with pancreatic cancer, and tissues from patients with chronic pancreatitis. We identified, quantified, and characterized 11,634 proteins from 72 pancreatic tissue samples. Network focused analysis of the proteomics data led to identification of a tumor epithelium-specific module and an extracellular matrix (ECM)-associated module that discriminated pancreatic tumor tissue from both tumor adjacent tissue and pancreatitis tissue. On the basis of the ECM module, we defined an ECM-high and an ECM-low subgroup, where the ECM-high subgroup was associated with poor prognosis (median survival months: 15.3 vs. 22.9 months; log-rank test, P = 0.02). The ECM-high tumors were characterized by elevated epithelial-mesenchymal transition and glycolytic activities, and low oxidative phosphorylation, E2F, and DNA repair pathway activities. This study offers novel insights into the protein network underlying pancreatic cancer opening up for proteome precision medicine development. Significance Pancreatic cancer lacks reliable biomarkers for prognostication and treatment of patients. We analyzed the proteome of pancreatic tumors, nonmalignant tissues of the pancreas and PDX-derived cell lines, and identified proteins that discriminate between patients with good and poor survival. The proteomics data also unraveled potential novel drug targets.
Collapse
Affiliation(s)
- Laxmi Silwal-Pandit
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Stina M Stålberg
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
| | - Henrik J Johansson
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Georgios Mermelekas
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Inger Marie B Lothe
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Martina L Skrede
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Astrid Marie Dalsgaard
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Daniel J H Nebdal
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Computer Science, University of Oslo, Oslo, Norway
| | - Knut Jørgen Labori
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
| | - Bjørn S Skålhegg
- Division of Molecular Nutrition, University of Oslo, Oslo, Norway
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Elin H Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
| |
Collapse
|
35
|
Exploration of the System-Level Mechanisms of the Herbal Drug FDY003 for Pancreatic Cancer Treatment: A Network Pharmacological Investigation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7160209. [PMID: 35591866 PMCID: PMC9113891 DOI: 10.1155/2022/7160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Pancreatic cancer (PC) is the most lethal cancer with the lowest survival rate globally. Although the prescription of herbal drugs against PC is gaining increasing attention, their polypharmacological therapeutic mechanisms are yet to be fully understood. Based on network pharmacology, we explored the anti-PC properties and system-level mechanisms of the herbal drug FDY003. FDY003 decreased the viability of human PC cells and strengthened their chemosensitivity. Network pharmacological analysis of FDY003 indicated the presence of 16 active phytochemical components and 123 PC-related pharmacological targets. Functional enrichment analysis revealed that the PC-related targets of FDY003 participate in the regulation of cell growth and proliferation, cell cycle process, cell survival, and cell death. In addition, FDY003 was shown to target diverse key pathways associated with PC pathophysiology, namely, the PIK3-Akt, MAPK, FoxO, focal adhesion, TNF, p53, HIF-1, and Ras pathways. Our network pharmacological findings advance the mechanistic understanding of the anti-PC properties of FDY003 from a system perspective.
Collapse
|
36
|
Ma Y, Sender S, Sekora A, Kong W, Bauer P, Ameziane N, Al-Ali R, Krake S, Radefeldt M, Weiss FU, Lerch MM, Parveen A, Zechner D, Junghanss C, Murua Escobar H. The Inhibitory Response to PI3K/AKT Pathway Inhibitors MK-2206 and Buparlisib Is Related to Genetic Differences in Pancreatic Ductal Adenocarcinoma Cell Lines. Int J Mol Sci 2022; 23:4295. [PMID: 35457111 PMCID: PMC9029322 DOI: 10.3390/ijms23084295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/23/2023] Open
Abstract
The aberrant activation of the phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT) pathway is common in pancreatic ductal adenocarcinomas (PDAC). The application of inhibitors against PI3K and AKT has been considered as a therapeutic option. We investigated PDAC cell lines exposed to increasing concentrations of MK-2206 (an AKT1/2/3 inhibitor) and Buparlisib (a pan-PI3K inhibitor). Cell proliferation, metabolic activity, biomass, and apoptosis/necrosis were evaluated. Further, whole-exome sequencing (WES) and RNA sequencing (RNA-seq) were performed to analyze the recurrent aberrations and expression profiles of the inhibitor target genes and the genes frequently mutated in PDAC (Kirsten rat sarcoma virus (KRAS), Tumor protein p53 (TP53)). MK-2206 and Buparlisib demonstrated pronounced cytotoxic effects and limited cell-line-specific effects in cell death induction. WES revealed two sequence variants within the direct target genes (PIK3CA c.1143C > G in Colo357 and PIK3CD c.2480C > G in Capan-1), but a direct link to the Buparlisib response was not observed. RNA-seq demonstrated that the expression level of the inhibitor target genes did not affect the efficacy of the corresponding inhibitors. Moreover, increased resistance to MK-2206 was observed in the analyzed cell lines carrying a KRAS variant. Further, increased resistance to both inhibitors was observed in SU.86.86 carrying two TP53 missense variants. Additionally, the presence of the PIK3CA c.1143C > G in KRAS-variant-carrying cell lines was observed to correlate with increased sensitivity to Buparlisib. In conclusion, the present study reveals the distinct antitumor effects of PI3K/AKT pathway inhibitors against PDAC cell lines. Aberrations in specific target genes, as well as KRAS and TP53, individually or together, affect the efficacy of the two PI3K/AKT pathway inhibitors.
Collapse
Affiliation(s)
- Yixuan Ma
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
| | - Sina Sender
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
| | - Anett Sekora
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
| | - Weibo Kong
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
- Institute of Muscle Biology and Growth, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Peter Bauer
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
- CENTOGENE GmbH, 18057 Rostock, Germany; (N.A.); (R.A.-A.); (S.K.); (M.R.)
| | - Najim Ameziane
- CENTOGENE GmbH, 18057 Rostock, Germany; (N.A.); (R.A.-A.); (S.K.); (M.R.)
- Arcensus GmbH, 18055 Rostock, Germany
| | - Ruslan Al-Ali
- CENTOGENE GmbH, 18057 Rostock, Germany; (N.A.); (R.A.-A.); (S.K.); (M.R.)
| | - Susann Krake
- CENTOGENE GmbH, 18057 Rostock, Germany; (N.A.); (R.A.-A.); (S.K.); (M.R.)
| | - Mandy Radefeldt
- CENTOGENE GmbH, 18057 Rostock, Germany; (N.A.); (R.A.-A.); (S.K.); (M.R.)
| | - Frank Ulrich Weiss
- Department of Medicine A, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (F.U.W.); (M.M.L.)
| | - Markus M. Lerch
- Department of Medicine A, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (F.U.W.); (M.M.L.)
- LMU Munich University Hospital, 81377 Munich, Germany
| | - Alisha Parveen
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (A.P.); (D.Z.)
| | - Dietmar Zechner
- Institute for Experimental Surgery, University of Rostock, 18057 Rostock, Germany; (A.P.); (D.Z.)
| | - Christian Junghanss
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
| | - Hugo Murua Escobar
- Department of Medicine Clinic III, Hematology, Oncology and Palliative Medicine, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany; (Y.M.); (S.S.); (A.S.); (W.K.); (P.B.); (C.J.)
| |
Collapse
|
37
|
Schneeweis C, Hassan Z, Ascherl K, Wirth M, Koutsouli S, Orben F, Krauß L, Schneider C, Öllinger R, Krämer OH, Rad R, Reichert M, Robles MS, Saur D, Schneider G. Indirect targeting of MYC sensitizes pancreatic cancer cells to mechanistic target of rapamycin (mTOR) inhibition. Cancer Commun (Lond) 2022; 42:360-364. [PMID: 35253411 PMCID: PMC9017755 DOI: 10.1002/cac2.12280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 11/07/2022] Open
Affiliation(s)
- Christian Schneeweis
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University MunichMunich81675Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University MunichMunich81675Germany
| | - Katja Ascherl
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University MunichMunich81675Germany
| | - Matthias Wirth
- Department of HematologyOncology and Tumor ImmunologyCharité ‐ Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlin12203Germany
| | - Stella Koutsouli
- Institute of Medical Psychology and Biomedical Center (BMC)Faculty of MedicineLMU MunichMunich80336Germany
| | - Felix Orben
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University MunichMunich81675Germany
| | - Lukas Krauß
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University MunichMunich81675Germany
| | - Carolin Schneider
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University MunichMunich81675Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University MunichMunich81675Germany
| | - Oliver H. Krämer
- Department of ToxicologyUniversity of Mainz Medical CenterMainz55131Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University MunichMunich81675Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University MunichMunich81675Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
- Center for Protein Assemblies (CPA)Technical University of MunichGarching85747Germany
| | - Maria S. Robles
- Institute of Medical Psychology and Biomedical Center (BMC)Faculty of MedicineLMU MunichMunich80336Germany
| | - Dieter Saur
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)Heidelberg69120Germany
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University MunichMunich81675Germany
| | - Günter Schneider
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University MunichMunich81675Germany
- Department of GeneralVisceral and Pediatric SurgeryUniversity Medical Center GöttingenGöttingen37075Germany
| |
Collapse
|
38
|
Bao J, Xu C, Li B, Wu Z, Shen J, Song P, Peng Q, Hu G. Systematic Characterization of the Clinical Relevance of KPNA4 in Pancreatic Ductal Adenocarcinoma. Front Oncol 2022; 12:834728. [PMID: 35425701 PMCID: PMC9002131 DOI: 10.3389/fonc.2022.834728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with poor prognosis. Karyopherin subunit alpha 4 (KPNA4) is a nuclear transport factor and plays tumor-promoting roles in multiple cancers. However, the roles of KPNA4 in PDAC still remain unknown. This study investigated the prognostic value of KPNA4 and its potential functions in PDAC and tumor microenvironment. Methods LinkedOmics was utilized to screen genes with survival significance in PDAC. KPNA4 expression was analyzed using multiple datasets and verified in PDAC cells and clinical samples by qRT-PCR and immunohistochemistry. Clinical correlation and survival analyses were conducted to identify the clinical significance and prognostic value of KPNA4 in PDAC patients. Subsequently, KPNA4 was knocked down in PDAC cell lines, and CCK-8, colony formation and wound healing assays were performed to test the functions of KPNA4 in vitro. Immune infiltration analysis was performed to explore the potential roles of KPNA4 in the tumor microenvironment of PDAC. Moreover, functional analyses were conducted to explore the underlying mechanism of KPNA4 in the progression of PDAC. Results We found KPNA4 was significantly upregulated in PDAC cells and tissues. KPNA4 expression was associated with tumor progression in PDAC patients. Survival analyses further revealed that KPNA4 could act as an independent predictor of unfavorable survival for PDAC patients. KPNA4 knockdown suppressed the viability, colony formation and migration of PDAC cells. Moreover, KPNA4 was correlated with immunosuppressive cells infiltration and T cell exhaustion in the tumor microenvironment of PDAC. Finally, functional analyses indicated the association of KPNA4 with focal adhesion kinase (FAK) signaling, and KPNA4 silencing significantly decreased the expression of FAK and PD-L1. Conclusions This study revealed that KPNA4 is an independent prognostic biomarker for PDAC and plays a tumor-promoting role by facilitating proliferation and migration of cancer cells and participating in immune infiltration, which may be mediated by FAK signaling and PD-L1 expression. These results provide a novel and potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoliang Xu
- Laboratory of Cancer Genomics and Biology, Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengkai Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengli Song
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Peng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Xu J, Li Z, Zhuo Q, Ye Z, Fan G, Gao H, Ji S, Yu X, Xu X, Liu W, Xu W. Pevonedistat Suppresses Pancreatic Cancer Growth via Inactivation of the Neddylation Pathway. Front Oncol 2022; 12:822039. [PMID: 35155257 PMCID: PMC8826241 DOI: 10.3389/fonc.2022.822039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Background The neddylation pathway is aberrantly overactivated in multiple human cancers and has been indicated as an effective target for anticancer therapy in clinical trials. We aimed to study whether the neddylation pathway is upregulated in pancreatic cancer and whether pevonedistat, a first-in-class anticancer agent specifically targeting this pathway, will suppress cancer tumorigenesis and progression. Methods We evaluated the expression pattern of neddylation pathway components in 179 pancreatic adenocarcinoma (PAAD) compared with 171 normal tissues from The Cancer Genome Atlas (TCGA) dataset and further assessed PAAD patient prognosis with high neddylation pathway expression via Gene Expression Profiling Interactive Analysis (GEPIA). We then analyzed malignant cancer phenotypes both in vitro and in vivo, as well as intrinsic molecular mechanisms upon pevonedistat treatment. Results We found that the neddylation pathway was hyperactivated in pancreatic cancer. Patients with high neddylation pathway expression exhibited worse prognoses. Pevonedistat significantly inhibited the cancer cell cycle, cell growth, and proliferation; increased cell apoptosis; and decreased cancer cell xenografts in a mouse model. Mechanistically, pevonedistat treatment and the siRNA knockdown neddylation pathway were able to remarkably induce the accumulation of Wee1, p27, and p21. Further mechanistic studies revealed that pevonedistat mainly impaired the ubiquitination level and delayed the protein degradation of Wee1, p27, and p21. Conclusions Our results showed that pevonedistat targeted the overexpression of the neddylation pathway in pancreatic cancer to induce cell growth suppression by inducing the accumulation of the cell cycle regulators Wee1, p27, and p21, which provides sound evidence for the clinical trial of pevonedistat for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Junfeng Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zheng Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Qifeng Zhuo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Zeng Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Guixiong Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Heli Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shunrong Ji
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wensheng Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wenyan Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Faleiro I, Roberto VP, Demirkol Canli S, Fraunhoffer NA, Iovanna J, Gure AO, Link W, Castelo-Branco P. DNA Methylation of PI3K/AKT Pathway-Related Genes Predicts Outcome in Patients with Pancreatic Cancer: A Comprehensive Bioinformatics-Based Study. Cancers (Basel) 2021; 13:cancers13246354. [PMID: 34944974 PMCID: PMC8699150 DOI: 10.3390/cancers13246354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary Pancreatic cancer is a highly lethal malignancy. Dysregulation of epigenetic mechanisms leads to abnormal patterns of gene expression contributing to the development and progression of cancer. We explored the ability of DNA methylation of PI3K-related genes to differentiate between malignant and healthy pancreatic tissue using distinct pancreatic cancer cohorts, and found that the methylation levels of the ITGA4, SFN, ITGA2, and PIK3R1 genes are altered in tumour samples since the early stages of malignant transformation and could serve as new diagnostic tools. We also demonstrate that these alterations correlate with overall survival and recurrence-free survival of the patients suggesting that its assessment can serve as independent prognostic indicators of patients’ survival with higher sensitivity and specificity than the currently implemented biomarkers. Therefore, the methylation profile of genes involved in this pathway may be an alternative method for predicting cell malignancy and help doctors’ decisions on patient care. Abstract Pancreatic cancer (PCA) is one of the most lethal malignancies worldwide with a 5-year survival rate of 9%. Despite the advances in the field, the need for an earlier detection and effective therapies is paramount. PCA high heterogeneity suggests that epigenetic alterations play a key role in tumour development. However, only few epigenetic biomarkers or therapeutic targets have been identified so far. Here we explored the potential of distinct DNA methylation signatures as biomarkers for early detection and prognosis of PCA. PI3K/AKT-related genes differentially expressed in PCA were identified using the Pancreatic Expression Database (n = 153). Methylation data from PCA patients was obtained from The Cancer Genome Atlas (n = 183), crossed with clinical data to evaluate the biomarker potential of the epigenetic signatures identified and validated in independent cohorts. The majority of selected genes presented higher expression and hypomethylation in tumour tissue. The methylation signatures of specific genes in the PI3K/AKT pathway could distinguish normal from malignant tissue at initial disease stages with AUC > 0.8, revealing their potential as PCA diagnostic tools. ITGA4, SFN, ITGA2, and PIK3R1 methylation levels could be independent prognostic indicators of patients’ survival. Methylation status of SFN and PIK3R1 were also associated with disease recurrence. Our study reveals that the methylation levels of PIK3/AKT genes involved in PCA could be used to diagnose and predict patients’ clinical outcome with high sensitivity and specificity. These results provide new evidence of the potential of epigenetic alterations as biomarkers for disease screening and management and highlight possible therapeutic targets.
Collapse
Affiliation(s)
- Inês Faleiro
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Instituto de Medicina Molecular João Lobo Antunes (IMM), Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Vânia Palma Roberto
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139 Faro, Portugal
- Correspondence: (V.P.R.); (P.C.-B.)
| | - Secil Demirkol Canli
- Molecular Pathology Application and Research Center, Hacettepe University, 06100 Ankara, Turkey;
| | - Nicolas A. Fraunhoffer
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France; (N.A.F.); (J.I.)
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France; (N.A.F.); (J.I.)
| | - Ali Osmay Gure
- Department of Medical Biology, Acibadem University, 34684 Istanbul, Turkey;
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal;
- Algarve Biomedical Center Research Institute (ABC-RI), 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, 1400-038 Lisbon, Portugal
- Correspondence: (V.P.R.); (P.C.-B.)
| |
Collapse
|
41
|
Pretta A, Ziranu P, Puzzoni M, Lai E, Orsi G, Liscia N, Molinaro E, Mariani S, Riggi L, Rovesti G, Dubois M, Migliari M, Persano M, Saba G, Impera V, Musio F, Batzella E, Demurtas L, Pusceddu V, Astara G, Faloppi L, Casadei Gardini A, Andrikou K, Cascinu S, Scartozzi M. Retrospective survival analysis in patients with metastatic pancreatic ductal adenocarcinoma with insulin-treated type 2 diabetes mellitus. TUMORI JOURNAL 2021; 107:550-555. [PMID: 33243068 DOI: 10.1177/0300891620976945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The association between pancreatic ductal adenocarcinoma (PDAC) and type 2 diabetes mellitus (DM2) has long been evaluated and the role of antidiabetic medications such as metformin has also been investigated. The objective of this study was to examine the association between insulin use and overall survival (OS) in patients with advanced PDAC and DM2. METHODS We retrospectively collected data from 164 patients, including an exploratory cohort of 96 patients from Medical Oncology Unit, University Hospital and University of Cagliari, Italy, and a validation cohort of 68 patients from Medical Oncology of Modena University Hospital. Patients had metastatic disease and received a first-line gemcitabine-based chemotherapy and, subsequently, a second-line fluoropyrimidines-based chemotherapy. We performed univariate analysis to evaluate correlation between long-term diabetes and overall survival. Then we performed multivariate analysis, adjusting for sex, metastatic sites, Eastern Cooperative Oncology Group Performance Status, Ca19.9 levels, N/L ratio, and lactate dehydrogenase levels at diagnosis, to confirm the independence of the variable. RESULTS In the exploratory cohort, DM2 was significantly associated with higher median OS at univariate analysis (16 vs 10 months; p = 0.004). This result was confirmed by validation cohort (11 months vs 6 months; p = 0.01). In multivariate analysis, insulin-treated patients compared with non diabetic patients showed a significantly increased survival of 4.6 months (p = 0.03). CONCLUSIONS Patients with insulin-treated metastatic PDAC showed better OS than non diabetic patients, as demonstrated by both cohorts. The correlation between OS and insulin-treated DM2 should be investigated further through a prospective clinical trial.
Collapse
Affiliation(s)
- Andrea Pretta
- Medical Oncology Unit, Sapienza University of Rome, Roma, Italy
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Giulia Orsi
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicole Liscia
- Medical Oncology Unit, Sapienza University of Rome, Roma, Italy
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Eleonora Molinaro
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Laura Riggi
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Rovesti
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Dubois
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Marco Migliari
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Mara Persano
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Giorgio Saba
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Valentino Impera
- Medical Oncology Unit, Sapienza University of Rome, Roma, Italy
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Francesca Musio
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Erich Batzella
- Department of Statistical Science, University of Padova, Padova, Veneto, Italy
| | - Laura Demurtas
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Giorgio Astara
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| | - Luca Faloppi
- Department of Medical Oncology, Macerata General Hospital, Macerata, Italy
| | - Andrea Casadei Gardini
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Kalliopi Andrikou
- Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Cascinu
- IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, Monserrato, Cagliari, Italy
| |
Collapse
|
42
|
Sankarasubramanian S, Pfohl U, Regenbrecht CRA, Reinhard C, Wedeken L. Context Matters-Why We Need to Change From a One Size Fits all Approach to Made-to-Measure Therapies for Individual Patients With Pancreatic Cancer. Front Cell Dev Biol 2021; 9:760705. [PMID: 34805167 PMCID: PMC8599957 DOI: 10.3389/fcell.2021.760705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the deadliest cancers and remains a major unsolved health problem. While pancreatic ductal adenocarcinoma (PDAC) is associated with driver mutations in only four major genes (KRAS, TP53, SMAD4, and CDKN2A), every tumor differs in its molecular landscape, histology, and prognosis. It is crucial to understand and consider these differences to be able to tailor treatment regimens specific to the vulnerabilities of the individual tumor to enhance patient outcome. This review focuses on the heterogeneity of pancreatic tumor cells and how in addition to genetic alterations, the subsequent dysregulation of multiple signaling cascades at various levels, epigenetic and metabolic factors contribute to the oncogenesis of PDAC and compensate for each other in driving cancer progression if one is tackled by a therapeutic approach. This implicates that besides the need for new combinatorial therapies for PDAC, a personalized approach for treating this highly complex cancer is required. A strategy that combines both a target-based and phenotypic approach to identify an effective treatment, like Reverse Clinical Engineering® using patient-derived organoids, is discussed as a promising way forward in the field of personalized medicine to tackle this deadly disease.
Collapse
Affiliation(s)
| | - Ulrike Pfohl
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Molecular Bio Science, Goethe University Frankfurt Am Main, Frankfurt, Germany
| | - Christian R. A. Regenbrecht
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
- Institute for Pathology, Universitätsklinikum Göttingen, Göttingen, Germany
| | | | - Lena Wedeken
- CELLphenomics GmbH, Berlin, Germany
- ASC Oncology GmbH, Berlin, Germany
| |
Collapse
|
43
|
Development of a MicroRNA Signature Predictive of Recurrence and Survival in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13205168. [PMID: 34680317 PMCID: PMC8534163 DOI: 10.3390/cancers13205168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Optimal patient selection for radiotherapy in pancreatic cancer is unestablished and may be improved with molecular profiling. To this end, we developed and validated a microRNA signature that predicted for worse locoregional recurrence and overall survival in patients with resectable pancreatic cancer. In a separate cohort of patients with borderline resectable and locally advanced pancreatic cancer, this risk signature was also predictive of worse locoregional recurrence, distant recurrence, and overall survival. Additionally, borderline resectable or locally advanced patients who had high risk score and did not receive radiation had worse outcomes compared to patients who either had low risk score or received radiation, irrespective of risk score. This risk signature may be useful in assessing patient prognosis and tailor therapy in patients with resectable, borderline resectable, or locally advanced pancreatic cancer, but requires further study. Abstract Background: Optimal patient selection for radiotherapy in pancreatic ductal adenocarcinoma (PDAC) is unestablished. Molecular profiling may select patients at high risk for locoregional recurrence (LRR) who would benefit from radiation. Methods: We included resectable pancreatic cancer (R-PDAC) patients, divided into training and validation cohorts, treated among three institutions with surgery and adjuvant chemotherapy, and borderline resectable or locally advanced pancreatic cancer (BR/LA-PDAC) patients treated with chemotherapy with or without radiation at the primary study institution. We isolated RNA from R-PDAC surgical specimens. Using NanoString, we identified miRNAs differentially expressed between normal and malignant pancreatic tissue. ElasticNet regression identified two miRNAs most predictive of LRR in the training cohort, miR-181b/d and miR-575, which were used to generate a risk score (RS). We evaluated the association of the median-dichotomized RS with recurrence and overall survival (OS). Results: We identified 183 R-PDAC and 77 BR/LA-PDAC patients with median follow up of 37 months treated between 2001 and 2014. On multivariable analysis of the R-PDAC training cohort (n = 90), RS was associated with worse LRR (HR = 1.34; 95%CI 1.27–11.38; p = 0.017) and OS (HR = 2.89; 95%CI 1.10–4.76; p = 0.027). In the R-PDAC validation cohort, RS was associated with worse LRR (HR = 2.39; 95%CI 1.03–5.54; p = 0.042), but not OS (p = 0.087). For BR/LA-PDAC, RS was associated with worse LRR (HR = 2.71; 95%CI 1.14–6.48; p = 0.025), DR (HR = 1.93; 95%CI 1.10–3.38; p = 0.022), and OS (HR = 1.97; 95%CI 1.17–3.34; p = 0.011). Additionally, after stratifying by RS and receipt of radiation in BR/LA-PDAC patients, high RS patients who did not receive radiation had worse LRR (p = 0.018), DR (p = 0.006), and OS (p < 0.001) compared to patients with either low RS or patients who received radiation, irrespective of RS. Conclusions: RS predicted worse LRR and OS in R-PDAC and worse LRR, DR, and OS in BR/LA-PDAC. This may select patients who would benefit from radiation and should be validated prospectively.
Collapse
|
44
|
Schneider G, Wirth M, Keller U, Saur D. Rationale for MYC imaging and targeting in pancreatic cancer. EJNMMI Res 2021; 11:104. [PMID: 34637026 PMCID: PMC8511206 DOI: 10.1186/s13550-021-00843-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
The incidence and lethality of pancreatic ductal adenocarcinoma (PDAC) will continue to increase in the next decade. For most patients, chemotherapeutic combination therapies remain the standard of care. The development and successful implementation of precision oncology in other gastrointestinal tumor entities point to opportunities also for PDAC. Therefore, markers linked to specific therapeutic responses and important subgroups of the disease are needed. The MYC oncogene is a relevant driver in PDAC and is linked to drug resistance and sensitivity. Here, we update recent insights into MYC biology in PDAC, summarize the connections between MYC and drug responses, and point to an opportunity to image MYC non-invasively. In sum, we propose MYC-associated biology as a basis for the development of concepts for precision oncology in PDAC.
Collapse
Affiliation(s)
- Günter Schneider
- Medical Clinic and Policlinic II, Klinikum Rechts Der Isar, TU Munich, 81675, Munich, Germany. .,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany. .,Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Matthias Wirth
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany. .,Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany.
| | - Ulrich Keller
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,Department of Hematology, Oncology and Cancer Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, 12203, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine, 13125, Berlin, Germany
| | - Dieter Saur
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.,Insititute for Translational Cancer Research and Experimental Cancer Therapy, MRI, TU Munich, 81675, Munich, Germany
| |
Collapse
|
45
|
Role of non-coding RNAs in tumor progression and metastasis in pancreatic cancer. Cancer Metastasis Rev 2021; 40:761-776. [PMID: 34591242 PMCID: PMC8556175 DOI: 10.1007/s10555-021-09995-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer with an overall 5-year survival rate of less than 10%. The 1-year survival rate of patients with locally advanced or metastatic disease is abysmal. The aggressive nature of cancer cells, hypovascularization, extensive desmoplastic stroma, and immunosuppressive tumor microenvironment (TME) endows PDAC tumors with multiple mechanisms of drug resistance. With no obvious genetic mutation(s) driving tumor progression or metastatic transition, the challenges for understanding the biological mechanism(s) of these processes are paramount. A better understanding of the molecular and cellular mechanisms of these processes could lead to new diagnostic tools for patient management and new targets for therapeutic intervention. microRNAs (miRNAs) are an evolutionarily conserved gene class of short non-coding regulatory RNAs. miRNAs are an extensive regulatory layer that controls gene expression at the posttranscriptional level. This review focuses on preclinical models that functionally dissect miRNA activity in tumor progression or metastatic processes in PDAC. Collectively, these studies suggest an influence of miRNAs and RNA-RNA networks in the processes of epithelial to mesenchymal cell transition and cancer cell stemness. At a cell-type level, some miRNAs mainly influence cancer cell–intrinsic processes and pathways, whereas other miRNAs predominantly act in distinct cellular compartments of the TME to regulate fibroblast and immune cell functions and/or influence other cell types’ function via cell-to-cell communications by transfer of extracellular vesicles. At a molecular level, the influence of miRNA-mediated regulation often converges in core signaling pathways, including TGF-β, JAK/STAT, PI3K/AKT, and NF-κB.
Collapse
|
46
|
Cintas C, Douche T, Dantes Z, Mouton-Barbosa E, Bousquet MP, Cayron C, Therville N, Pont F, Ramos-Delgado F, Guyon C, Garmy-Susini B, Cappello P, Burlet-Schiltz O, Hirsch E, Gomez-Brouchet A, Thibault B, Reichert M, Guillermet-Guibert J. Phosphoproteomics Identifies PI3K Inhibitor-selective Adaptive Responses in Pancreatic Cancer Cell Therapy and Resistance. Mol Cancer Ther 2021; 20:2433-2445. [PMID: 34552006 DOI: 10.1158/1535-7163.mct-20-0981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022]
Abstract
The PI3K pathway is highly active in human cancers. The four class I isoforms of PI3K are activated by distinct mechanisms leading to a common downstream signaling. Their downstream redundancy is thought to be responsible for treatment failures of PI3K inhibitors. We challenged this concept, by mapping the differential phosphoproteome evolution in response to PI3K inhibitors with different isoform-selectivity patterns in pancreatic cancer, a disease currently without effective therapy. In this cancer, the PI3K signal was shown to control cell proliferation. We compared the effects of LY294002 that inhibit with equal potency all class I isoenzymes and downstream mTOR with the action of inhibitors with higher isoform selectivity toward PI3Kα, PI3Kβ, or PI3Kγ (namely, A66, TGX-221 and AS-252424). A bioinformatics global pathway analysis of phosphoproteomics data allowed us to identify common and specific signals activated by PI3K inhibitors supported by the biological data. AS-252424 was the most effective treatment and induced apoptotic pathway activation as well as the highest changes in global phosphorylation-regulated cell signal. However, AS-252424 treatment induced reactivation of Akt, therefore decreasing the treatment outcome on cell survival. Reversely, AS-252424 and A66 combination treatment prevented p-Akt reactivation and led to synergistic action in cell lines and patient organoids. The combination of clinically approved α-selective BYL-719 with γ-selective IPI-549 was more efficient than single-molecule treatment on xenograft growth. Mapping unique adaptive signaling responses to isoform-selective PI3K inhibition will help to design better combinative treatments that prevent the induction of selective compensatory signals.
Collapse
Affiliation(s)
- Célia Cintas
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Thibault Douche
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Zahra Dantes
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany.,German Cancer Consortium (DKTK), partner site Munich, Germany
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Marie-Pierre Bousquet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Coralie Cayron
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Nicole Therville
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Frédéric Pont
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France
| | - Fernanda Ramos-Delgado
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Camille Guyon
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | | | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center (MBC), Turin, Italy
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS UMR 5089, UPS, Toulouse, France
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,Molecular Biotechnology Center (MBC), Turin, Italy
| | - Anne Gomez-Brouchet
- IUCT-O, Institut Claudius Regaud, Hopitaux de Toulouse, Biobank, Toulouse, France
| | - Benoît Thibault
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France.,Labex TouCAN, Toulouse, France
| | - Maximilian Reichert
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Center for Protein Assemblies (CPA), Technische Universität München, Garching, Germany.,German Cancer Consortium (DKTK), partner site Munich, Germany
| | - Julie Guillermet-Guibert
- INSERM, CNRS, Université Paul Sabatier, U1037, CRCT, Toulouse, France. .,Labex TouCAN, Toulouse, France
| |
Collapse
|
47
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
48
|
Thibault B, Ramos‐Delgado F, Pons‐Tostivint E, Therville N, Cintas C, Arcucci S, Cassant‐Sourdy S, Reyes‐Castellanos G, Tosolini M, Villard AV, Cayron C, Baer R, Bertrand‐Michel J, Pagan D, Ferreira Da Mota D, Yan H, Falcomatà C, Muscari F, Bournet B, Delord J, Aksoy E, Carrier A, Cordelier P, Saur D, Basset C, Guillermet‐Guibert J. Pancreatic cancer intrinsic PI3Kα activity accelerates metastasis and rewires macrophage component. EMBO Mol Med 2021; 13:e13502. [PMID: 34033220 PMCID: PMC8261517 DOI: 10.15252/emmm.202013502] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients frequently suffer from undetected micro-metastatic disease. This clinical situation would greatly benefit from additional investigation. Therefore, we set out to identify key signalling events that drive metastatic evolution from the pancreas. We searched for a gene signature that discriminate localised PDAC from confirmed metastatic PDAC and devised a preclinical protocol using circulating cell-free DNA (cfDNA) as an early biomarker of micro-metastatic disease to validate the identification of key signalling events. An unbiased approach identified, amongst actionable markers of disease progression, the PI3K pathway and a distinctive PI3Kα activation signature as predictive of PDAC aggressiveness and prognosis. Pharmacological or tumour-restricted genetic PI3Kα-selective inhibition prevented macro-metastatic evolution by hindering tumoural cell migratory behaviour independently of genetic alterations. We found that PI3Kα inhibition altered the quantity and the species composition of the produced lipid second messenger PIP3 , with a selective decrease of C36:2 PI-3,4,5-P3 . Tumoural PI3Kα inactivation prevented the accumulation of pro-tumoural CD206-positive macrophages in the tumour-adjacent tissue. Tumour cell-intrinsic PI3Kα promotes pro-metastatic features that could be pharmacologically targeted to delay macro-metastatic evolution.
Collapse
Affiliation(s)
- Benoit Thibault
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Fernanda Ramos‐Delgado
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Elvire Pons‐Tostivint
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Nicole Therville
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Celia Cintas
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Silvia Arcucci
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Stephanie Cassant‐Sourdy
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | | | - Marie Tosolini
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
| | - Amelie V Villard
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Coralie Cayron
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | - Romain Baer
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| | | | - Delphine Pagan
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
| | - Dina Ferreira Da Mota
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Hongkai Yan
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer TherapyKlinikum rechts der IsarSchool of MedicineTechnische Universität MünchenMunichGermany
| | - Chiara Falcomatà
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer TherapyKlinikum rechts der IsarSchool of MedicineTechnische Universität MünchenMunichGermany
| | - Fabrice Muscari
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Barbara Bournet
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Jean‐Pierre Delord
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Ezra Aksoy
- Centre for Biochemical PharmacologyWilliam Harvey Research InstituteQueen Mary University of LondonLondonUK
| | - Alice Carrier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli‐Calmettes, CRCMMarseilleFrance
| | - Pierre Cordelier
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
| | - Dieter Saur
- Division of Translational Cancer ResearchGerman Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Chair of Translational Cancer Research and Institute of Experimental Cancer TherapyKlinikum rechts der IsarSchool of MedicineTechnische Universität MünchenMunichGermany
| | - Celine Basset
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
- Institut Universitaire du Cancer de Toulouse – Oncopole (IUCT‐O)Hopitaux de ToulouseInstitut Claudius Regaud ToulouseFrance
| | - Julie Guillermet‐Guibert
- Centre de Recherches en Cancérologie de ToulouseInserm, CNRSUniversité de ToulouseToulouseFrance
- LABEX TouCANToulouseFrance
| |
Collapse
|
49
|
Alzhrani R, Alsaab HO, Vanamal K, Bhise K, Tatiparti K, Barari A, Sau S, Iyer AK. Overcoming the Tumor Microenvironmental Barriers of Pancreatic Ductal Adenocarcinomas for Achieving Better Treatment Outcomes. ADVANCED THERAPEUTICS 2021; 4:2000262. [PMID: 34212073 PMCID: PMC8240487 DOI: 10.1002/adtp.202000262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the tumor to metastasize and develop resistance against chemo and radiation therapy. A highly complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest responders of ICIs therapy. The immunologically "cold" phenotype of PDAC is attributed to the low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, contributing to a significant immunotherapy resistance mechanism. Thus, the development of innovative strategies for turning immunologically "cold" tumor into "hot" ones is an unmet need to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic agents' efficiency by disrupting the PDAC stroma. This review highlights the current challenges and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus significantly advancing PDAC research knowledge.
Collapse
Affiliation(s)
- Rami Alzhrani
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Kushal Vanamal
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ketki Bhise
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Katyayani Tatiparti
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Ayatakshi Barari
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Samaresh Sau
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
| | - Arun K. Iyer
- Use-Inspired Biomaterials and Integrated Nano Delivery Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit 48201, United States
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, School of Medicine, Detroit, MI, United States
| |
Collapse
|
50
|
Charles Jacob HK, Charles Richard JL, Signorelli R, Kashuv T, Lavania S, Vaish U, Boopathy R, Middleton A, Boone MM, Sundaram R, Dudeja V, Saluja AK. Modulation of Early Neutrophil Granulation: The Circulating Tumor Cell-Extravesicular Connection in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13112727. [PMID: 34072942 PMCID: PMC8198339 DOI: 10.3390/cancers13112727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) found in the blood of pancreatic cancer patients show a worse prognosis to therapy if they are seen in clusters of cells with neutrophils or platelets or with other cell types than when they are seen as singlets. We wanted to investigate if there is a secondary mode of communication between the CTCs and neutrophils that causes them to associate. We describe for the first time an extravesicular (EV) mediated communication between CTCs and neutrophils that modulates early transcriptome changes that can cause neutrophils to partially degranulate and form associations. We also identify the protein cargo carried in such EVs and how when added to naïve neutrophils, they can modulate transcriptomic changes in neutrophils partially disarming them to form clusters rather than undergo specialized cell death, which is characterized by release of condensed chromatin (NETs) and granular contents termed as NETosis. Abstract Tumor cells dissociate from the primary site and enter into systemic circulation (circulating tumor cells, CTCs) either alone or as tumor microemboli (clusters); the latter having an increased predisposition towards forming distal metastases than single CTCs. The formation of clusters is, in part, created by contacts between cell–cell junction proteins and/or cytokine receptor pairs with other cells such as neutrophils, platelets, fibroblasts, etc. In the present study, we provide evidence for an extravesicular (EV) mode of communication between pancreatic cancer CTCs and neutrophils. Our results suggest that the EV proteome of CTCs contain signaling proteins that can modulate degranulation and granule mobilization in neutrophils and, also, contain tissue plasminogen activator and other proteins that can regulate cluster formation. By exposing naïve neutrophils to EVs isolated from CTCs, we further show how these changes are modulated in a dynamic fashion indicating evidence for a deeper EV based remodulatory effect on companion cells in clusters.
Collapse
Affiliation(s)
- Harrys Kishore Charles Jacob
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | - John Lalith Charles Richard
- School of Biosciences, Engineering and Technology (SBET), VIT Bhopal University, Madhya Pradesh 466114, India;
| | | | - Tyler Kashuv
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33146, USA;
| | - Shweta Lavania
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Utpreksha Vaish
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Ranjitha Boopathy
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201304, India;
| | - Ashley Middleton
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | | | - Ramakrishnan Sundaram
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
| | - Vikas Dudeja
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
- Department of Life Sciences, Shiv Nadar University, Greater Noida 201304, India;
| | - Ashok Kumar Saluja
- Departments of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (H.K.C.J.); (S.L.); (A.M.); (R.S.); (V.D.)
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, FL 33136, USA
- Correspondence: ; Tel.: +1-305-243-2703
| |
Collapse
|