1
|
Hirai R, Kinugasa H, Ishiguro M, Toyosawa J, Aoyama Y, Igawa S, Yamasaki Y, Inokuchi T, Takahara M, Kawano S, Hiraoka S, Otsuka M. Short- and longer-term learning effects from virtual scale endoscopy videos: a useful tool for colorectal lesion size estimation (with videos). Gastrointest Endosc 2025; 101:1030-1037.e5. [PMID: 39490692 DOI: 10.1016/j.gie.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND AND AIMS Accurate assessment of colorectal polyp size is crucial for determining treatment and surveillance policies. However, visual estimation of lesion diameter is often inaccurate, making simple and effective educational tools essential. We aimed to evaluate the learning effects of virtual scale endoscopy (VSE). METHODS Thirty-three endoscopists first watched prelearning videos for SET1. They then estimated the diameters of 20 lesions and referred to instructional videos with VSE for self-study. Subsequently, they watched the postlearning videos for SET2 and estimated the lesion diameters. The error between the estimated and correct lesion sizes of both sets was compared. To evaluate longer-term learning effects, participants answered SET3 and SET4, which consisted of the same questions as SET2 and SET1, respectively, but 2 to 3 months later without watching the instructional video for SET2. RESULTS The error in the participants' estimation of the correct lesion diameter improved from SET1 to SET2 (34.7 ± 6.6 mm vs 30.7 ± 7.7 mm, P = .048), with a significant learning effect and error improvement specifically among nonexperts (35.2 ± 5.3 mm vs 30 ± 6.8 mm, P = .028). In SET3 and SET4, participants' errors indicated that the learning effect was well maintained (SET2 vs SET3: 30.7 ± 7.7 mm vs 28.6 ± 7.2 mm [P = .1]; SET1 vs SET4: 34.7 ± 6.6 mm vs 31.7 ± 7.1 mm [P = .025]). CONCLUSIONS VSE videos are a valuable learning tool for estimating lesion diameter, particularly for novice endoscopists, both in the short and longer term.
Collapse
Affiliation(s)
- Ryosuke Hirai
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hideaki Kinugasa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikako Ishiguro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junki Toyosawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Aoyama
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shoko Igawa
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasushi Yamasaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshihiro Inokuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Takahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiji Kawano
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
2
|
Linhares SM, Schultz KS, Mongiu AK. Computer aided polyp detection has limited clinical efficacy. BMJ 2025; 389:r732. [PMID: 40246307 DOI: 10.1136/bmj.r732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Affiliation(s)
- Samantha M Linhares
- Division of Colon & Rectal Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Kurt S Schultz
- Division of Colon & Rectal Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| | - Anne K Mongiu
- Division of Colon & Rectal Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
3
|
Rizkala T, Menini M, Massimi D, Repici A. Role of Artificial Intelligence for Colon Polyp Detection and Diagnosis and Colon Cancer. Gastrointest Endosc Clin N Am 2025; 35:389-400. [PMID: 40021235 DOI: 10.1016/j.giec.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The broad use of artificial intelligence (AI) and its various applications have already shown significant impact in medicine and in everyday life. In gastroenterology, the most studied AI tools at present are computer-aided detection (CADe) and computer-aided diagnosis (CADx). These tools have been mainly assessed during colonoscopy for the detection of polyps and for the prediction of their histology based on their appearance. Their use aims to improve colonoscopy quality, standardize procedures, and potentially reduce costs. Data on CADe demonstrate clear benefits that are applicable to clinical practice. While CADx shows good diagnostic performance, its additional benefits in assisting endoscopists remain unclear.
Collapse
Affiliation(s)
- Tommy Rizkala
- Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Maddalena Menini
- Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Davide Massimi
- Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Alessandro Repici
- Endoscopy Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan 20072, Italy.
| |
Collapse
|
4
|
Ramoni D, Scuricini A, Carbone F, Liberale L, Montecucco F. Artificial intelligence in gastroenterology: Ethical and diagnostic challenges in clinical practice. World J Gastroenterol 2025; 31:102725. [PMID: 40093670 PMCID: PMC11886536 DOI: 10.3748/wjg.v31.i10.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/26/2025] Open
Abstract
This article discusses the manuscript recently published in the World Journal of Gastroenterology, which explores the application of deep learning models in decision-making processes via wireless capsule endoscopy. Integrating artificial intelligence (AI) into gastrointestinal disease diagnosis represents a transformative step toward precision medicine, enhancing real-time accuracy in detecting multi-category lesions at earlier stages, including small bowel lesions and precancerous polyps, ultimately improving patient outcomes. However, the use of AI in clinical settings raises ethical considerations that extend beyond technological potential. Issues of patient privacy, data security, and potential diagnostic biases require careful attention. AI models must prioritize diverse and representative datasets to mitigate inequities and ensure diagnostic accuracy across populations. Furthermore, balancing AI with clinical expertise is crucial, positioning AI as a supportive tool rather than a replacement for physician judgment. Addressing these ethical challenges will support the responsible deployment of AI, through equitable contribution to patient-centered care.
Collapse
Affiliation(s)
- Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
| | | | - Federico Carbone
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Italian Cardiovascular Network, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Italian Cardiovascular Network, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, Italian Cardiovascular Network, IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| |
Collapse
|
5
|
Hassan C, Bisschops R, Sharma P, Mori Y. Colon Cancer Screening, Surveillance, and Treatment: Novel Artificial Intelligence Driving Strategies in the Management of Colon Lesions. Gastroenterology 2025:S0016-5085(25)00478-0. [PMID: 40054749 DOI: 10.1053/j.gastro.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/25/2025]
Abstract
Colonoscopy, a crucial procedure for detecting and removing colorectal polyps, has seen transformative advancements through the integration of artificial intelligence, specifically in computer-aided detection (CADe) and diagnosis (CADx). These tools enhance real-time detection and characterization of lesions, potentially reducing human error, and standardizing the quality of colonoscopy across endoscopists. CADe has proven effective in increasing adenoma detection rate, potentially reducing long-term colorectal cancer incidence. However, CADe's benefits are accompanied by challenges, such as potentially longer procedure times, increased non-neoplastic polyp resections, and a higher surveillance burden. CADx, although promising in differentiating neoplastic and non-neoplastic diminutive polyps, encounters limitations in accuracy, particularly in the proximal colon. Real-world data also revealed gaps between trial efficacy and practical outcomes, emphasizing the need for further research in uncontrolled settings. Moreover, CADx limited specificity and binary output underscore the necessity for explainable artificial intelligence to gain endoscopists' trust. This review aimed to explore the benefits, harms, and limitations of artificial intelligence for colon cancer screening, surveillance, and treatment focusing on CADe and CADx systems for lesion detection and characterization, respectively, while addressing challenges in integrating these technologies into clinical practice.
Collapse
Affiliation(s)
- Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Department of Gastroenterology, Istituto di Ricovero e Cura a Carattere Scientifico, Humanitas Research Hospital, Rozzano, Italy.
| | - Raf Bisschops
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium; Translational Research Center in Gastrointestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Prateek Sharma
- Department of Gastroenterology and Hepatology, Kansas City Veterans Affairs Medical Center, Kansas City, Missouri
| | - Yuichi Mori
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan; Clinical Effectiveness Research Group, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Kumar A, Aravind N, Gillani T, Kumar D. Artificial intelligence breakthrough in diagnosis, treatment, and prevention of colorectal cancer – A comprehensive review. Biomed Signal Process Control 2025; 101:107205. [DOI: 10.1016/j.bspc.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
|
7
|
Spada C, Salvi D, Ferrari C, Hassan C, Barbaro F, Belluardo N, Grazioli LM, Milluzzo SM, Olivari N, Papparella LG, Pecere S, Pesatori EV, Petruzziello L, Piccirelli S, Quadarella A, Cesaro P, Costamagna G. A comprehensive RCT in screening, surveillance, and diagnostic AI-assisted colonoscopies (ACCENDO-Colo study). Dig Liver Dis 2025; 57:762-769. [PMID: 39814659 DOI: 10.1016/j.dld.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/14/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND AND AIMS Adenoma detection rate (ADR) serves as a primary quality metric in colonoscopy. Various computer-aided detection (CADe) tools have emerged, yielding diverse impacts on ADR across different demographic cohorts. This study aims to evaluate a new CADe system in patients undergoing colonoscopy. METHODS This is an Italian multicenter randomized control trial (RCT) that included patients aged 40-85 scheduled for screening, surveillance or diagnostic colonoscopy randomly assigned to CADe or standard colonoscopy (SC). Patients with a Boston Bowel Preparation Scale < 2 in any segment were excluded. The primary outcome was ADR in both groups. Secondary outcomes included adenoma per colonoscopy (APC), polyp per colonoscopy (PPC) and sessile serrated lesion detection rate (SSLDR). RESULTS 1228 patients were enrolled of whom 70 were excluded for inadequate bowel cleansing or missed cecal intubation. Therefore, 1158 subjects (578 CADe vs 580 SC) were included in the final analysis. ADR was significantly higher in CADe than in the control group (50.2 % vs 40.5 %, p = 0.001). CADe also significantly increased PPC and APC (1.64 ± 2.03 vs 1.23 ± 1.72, p < 0.001; 1.16 ± 1.82 vs 0.80 ± 1.46 p < 0.001; respectively). No significant differences were found in SSLDR between CADe and SC (12.1 % vs 11.0 %, p = 0.631). CONCLUSIONS The results of this RCT indicate that AI-assisted colonoscopy significantly improved ADR in a non-selected population undergoing colonoscopy without causing any significant delay in procedure time or increasing the detection of nonneoplastic lesions. (Ethical committee approval: NCT05862948).
Collapse
Affiliation(s)
- C Spada
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - D Salvi
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.
| | - C Ferrari
- Research and Clinical Trials Office, Fondazione Poliambulanza Istituto Ospedaliero Brescia, Italy
| | - C Hassan
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy; Endoscopy Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - F Barbaro
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - N Belluardo
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - L Minelli Grazioli
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - S M Milluzzo
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - N Olivari
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - L G Papparella
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - S Pecere
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - E V Pesatori
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - L Petruzziello
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - S Piccirelli
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - A Quadarella
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - P Cesaro
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - G Costamagna
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
8
|
Nagaraju GP, Sandhya T, Srilatha M, Ganji SP, Saddala MS, El-Rayes BF. Artificial intelligence in gastrointestinal cancers: Diagnostic, prognostic, and surgical strategies. Cancer Lett 2025; 612:217461. [PMID: 39809357 DOI: 10.1016/j.canlet.2025.217461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/12/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
GI (Gastrointestinal) malignancies are one of the most common and lethal cancers globally. The dawn of precision medicine and developing technologies have reduced the mortality rates for GI malignancies, underscoring the main role of early detection methods for survival rate improvement. Artificial intelligence (AI) is a new technology that may improve GI cancer screening, treatment, and therapeutic efficiency for better patient care. AI could accelerate the development of targeted therapies by analyzing considerable data from the genome and identifying biomarkers connected with GI tumors. This opens up new avenues toward more tailored and personalized approaches, raising efficacy while reducing undesired side effects. For instance, AI may improve treatment outcomes by accurately predicting patient responses to therapeutic regimens, helping oncologists choose the most effective treatment options. This review will outline the transformative potential of AI in GI oncology by emphasizing the incorporation of AI-based technologies to enhance patient care.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- School of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Tatekalva Sandhya
- Department of Computer Science, Sri Venkateswara University, Tirupati, 517502, AP, India
| | - Mundla Srilatha
- Department of Biotechnology, Sri Venkateswara University, Tirupati, 517502, AP, India
| | - Swapna Priya Ganji
- School of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Madhu Sudhana Saddala
- Bioinformatics, Genomics and Proteomics, University of California, Irvine, Los Angeles, 92697, USA
| | - Bassel F El-Rayes
- School of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
9
|
Spadaccini M, Menini M, Massimi D, Rizkala T, De Sire R, Alfarone L, Capogreco A, Colombo M, Maselli R, Fugazza A, Brandaleone L, Di Martino A, Ramai D, Repici A, Hassan C. AI and Polyp Detection During Colonoscopy. Cancers (Basel) 2025; 17:797. [PMID: 40075645 PMCID: PMC11898786 DOI: 10.3390/cancers17050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) prevention depends on effective colonoscopy; yet variability in adenoma detection rates (ADRs) and missed lesions remain significant hurdles. Artificial intelligence-powered computer-aided detection (CADe) systems offer promising advancements in enhancing polyp detection. This review examines the role of CADe in improving ADR and reducing adenoma miss rates (AMRs) while addressing its broader clinical implications. CADe has demonstrated consistent improvements in ADRs and AMRs; largely by detecting diminutive polyps, but shows limited efficacy in identifying advanced adenomas or sessile serrated lesions. Challenges such as operator deskilling and the need for enhanced algorithms persist. Combining CADe with adjunctive techniques has shown potential for further optimizing performance. While CADe has standardized detection quality; its long-term impact on CRC incidence and mortality remains inconclusive. Future research should focus on refining CADe technology and assessing its effectiveness in reducing the global burden of CRC.
Collapse
Affiliation(s)
- Marco Spadaccini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (M.M.); (L.B.); (C.H.)
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Maddalena Menini
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (M.M.); (L.B.); (C.H.)
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Davide Massimi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (M.M.); (L.B.); (C.H.)
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Tommy Rizkala
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Roberto De Sire
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Ludovico Alfarone
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Antonio Capogreco
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Matteo Colombo
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Roberta Maselli
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (M.M.); (L.B.); (C.H.)
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Alessandro Fugazza
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Luca Brandaleone
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (M.M.); (L.B.); (C.H.)
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Antonio Di Martino
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (M.M.); (L.B.); (C.H.)
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Daryl Ramai
- Division of Gastroenterology and Hepatology, University of Utah, Salt Lake City, UT 84112, USA
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (M.M.); (L.B.); (C.H.)
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| | - Cesare Hassan
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy; (M.S.); (M.M.); (L.B.); (C.H.)
- Department of Gastroneterology, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, Rozzano, 20089 Milan, Italy (R.D.S.)
| |
Collapse
|
10
|
Lagström RMB, Bräuner KB, Bielik J, Rosen AW, Crone JG, Gögenur I, Bulut M. Improvement in adenoma detection rate by artificial intelligence-assisted colonoscopy: Multicenter quasi-randomized controlled trial. Endosc Int Open 2025; 13:a25215169. [PMID: 40018072 PMCID: PMC11866038 DOI: 10.1055/a-2521-5169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/15/2025] [Indexed: 03/01/2025] Open
Abstract
Background and study aims Adenoma detection rate (ADR) is a key performance measure with variability among endoscopists. Artificial intelligence (AI) in colonoscopy could reduce this variability and has shown to improve ADR. This study assessed the impact of AI on ADR among Danish endoscopists of varying experience levels. Patients and methods We conducted a prospective, quasi-randomized, controlled, multicenter trial involving patients aged 18 and older undergoing screening, surveillance, and diagnostic colonoscopy at four centers. Participants were assigned to AI-assisted colonoscopy (GI Genius, Medtronic) or conventional colonoscopy. Endoscopists were classified as experts (> 1000 colonoscopies) or non-experts (≤ 1000 colonoscopies). The primary outcome was ADR. We performed a subgroup analysis stratified on endoscopist experience and a subset analysis of the screening population. Results A total of 795 patients were analyzed: 400 in the AI group and 395 in the control group. The AI group demonstrated a significantly higher ADR than the control group (59.1% vs. 46.6%, P < 0.001). The increase was significant among experts (59.9% vs. 47.3%, P < 0.002) but not among non-experts. AI assistance significantly improved ADR (74.4% vs. 58.1%, P = 0.003) in screening colonoscopies. Polyp detection rate (PDR) was also higher in the AI group (69.8% vs. 56.2%, P < 0.001). There was no significant difference in the non-neoplastic resection rate (NNRR) (15.1% vs. 17.1%, P = 0.542). Conclusions AI-assisted colonoscopy significantly increased ADR by 12.5% overall, with a notable 16.3% increase in the screening population. The unchanged NNRR indicates that the higher PDR was due to increased ADR, not unnecessary resections.
Collapse
Affiliation(s)
| | - Karoline Bendix Bräuner
- Department of Surgery, Zealand University Hospital Koge, Køge, Denmark
- Department of Surgery, Slagelse Hospital, Slagelse, Denmark
| | - Julia Bielik
- Department of Surgery, Holbæk Sygehus, Holbæk, Denmark
| | | | | | - Ismail Gögenur
- Department of Surgery, Zealand University Hospital Koge, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Mustafa Bulut
- Department of Surgery, Zealand University Hospital Koge, Køge, Denmark
- Department of Clinical Medicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Copenhagen Academy for Medical Education and Simulation (CAMES), Copenhagen, Denmark
| |
Collapse
|
11
|
Spadaccini M, Hassan C, Mori Y, Massimi D, Correale L, Facciorusso A, Patel HK, Rizkala T, Khalaf K, Ramai D, Rondonotti E, Maselli R, Rex DK, Bhandari P, Sharma P, Repici A. Variability in computer-aided detection effect on adenoma detection rate in randomized controlled trials: A meta-regression analysis. Dig Liver Dis 2025:S1590-8658(25)00205-1. [PMID: 39924430 DOI: 10.1016/j.dld.2025.01.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND Computer-aided detection (CADe) systems may increase adenoma detection rate (ADR) during colonoscopy. However, the variable results of CADe effects in different RCTs warrant investigation into factors influencing these results. AIMS Investigate the different variables possibly affecting the impact of CADe-assisted colonoscopy and its effect on ADR. METHODS We searched MEDLINE, EMBASE, and Scopus databases until July 2023 for RCTs reporting performance of CADe systems in the detection of colorectal neoplasia. The main outcome was pooled ADR. A random-effects meta-analysis was performed to obtain the pooled risk ratios (RR) with 95 % confidence intervals (CI)). To explore sources of heterogeneity, we conducted a meta-regression analysis using both univariable and multivariable mixed-effects models. Potential explanatory variables included factors influencing adenoma prevalence, such as patient gender, age, and colonoscopy indication. We also included both key (ADR), and minor (Withdrawal time) performance measures considered as quality indicators for colonoscopy. RESULTS Twenty-three randomized controlled trials (RCTs) on 19,077 patients were include. ADR was higher in the CADe group (46 % [95 % CI 39-52]) than in the standard colonoscopy group (38 % [95 % CI 31-46]) with a risk ratio of 1.22 [95 % CI 1.14-1.29]); and a substantial level of heterogeneity (I2 = 67.69 %). In the univariable meta-regression analysis, patient age, ADR in control arms, and withdrawal time were the strongest predictors of CADe effect on ADR (P < .001). In multivariable meta-regression, ADR in control arms, and withdrawal time were simultaneous significant predictors of the proportion of the CADe effect on ADR. CONCLUSION The substantial level of heterogeneity found appeared to be associated with variability in colonoscopy quality performances across the studies, namely ADR in control arm, and withdrawal time.
Collapse
Affiliation(s)
- Marco Spadaccini
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy.
| | - Cesare Hassan
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy
| | - Yuichi Mori
- University of Oslo, Clinical Effectiveness Research Group, Oslo, Norway; Showa University Northern Yokohama Hospital, Digestive Disease Center, Yokohama, Japan
| | - Davide Massimi
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy
| | - Loredana Correale
- Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy
| | - Antonio Facciorusso
- University of Oslo, Clinical Effectiveness Research Group, Oslo, Norway; University of Salento, Gastroenterology Unit, Department of Experimental Medicine, Lecce, Italy
| | - Harsh K Patel
- Kansas City VA Medical Center, Gastroenterology and Hepatology, Kansas City, United States
| | - Tommy Rizkala
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy
| | - Kareem Khalaf
- St. Michael's Hospital, University of Toronto, Division of Gastroenterology, Toronto, Ontario, Canada
| | - Daryl Ramai
- University of Utah Health, Gastroenterology and Hepatology, Salt Lake City, UT, USA
| | | | - Roberta Maselli
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy
| | - Douglas K Rex
- Indiana University School of Medicine, Division of Gastroenterology, Indianapolis, Indiana, USA
| | - Pradeep Bhandari
- Queen Alexandra Hospital, Department of Gastroenterology, Portsmouth, UK
| | - Prateek Sharma
- Kansas City VA Medical Center, Gastroenterology and Hepatology, Kansas City, United States
| | - Alessandro Repici
- Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; Humanitas Clinical and Research Center -IRCCS-, Endoscopy Unit, Rozzano, Italy
| |
Collapse
|
12
|
Cai Y, Chen X, Chen J, Liao J, Han M, Lin D, Hong X, Hu H, Hu J. Deep learning-assisted colonoscopy images for prediction of mismatch repair deficiency in colorectal cancer. Surg Endosc 2025; 39:859-867. [PMID: 39623175 DOI: 10.1007/s00464-024-11426-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Deficient mismatch repair or microsatellite instability is a major predictive biomarker for the efficacy of immune checkpoint inhibitors of colorectal cancer. However, routine testing has not been uniformly implemented due to cost and resource constraints. METHODS We developed and validated a deep learning-based classifiers to detect mismatch repair-deficient status from routine colonoscopy images. We obtained the colonoscopy images from the imaging database at Endoscopic Center of the Sixth Affiliated Hospital, Sun Yat-sen University. Colonoscopy images from a prospective trial (Neoadjuvant PD-1 blockade by toripalimab with or without celecoxib in mismatch repair-deficient or microsatellite instability-high locally advanced colorectal cancer) were used to test the model. RESULTS A total of 5226 eligible images from 892 tumors from the consecutive patients were utilized to develop and validate the deep learning model. 2105 colorectal cancer images from 306 tumors were randomly selected to form model development dataset with a class-balanced approach. 3121 images of 488 proficient mismatch repair tumors and 98 deficient mismatch repair tumors were used to form the independent dataset. The model achieved an AUROC of 0.948 (95% CI 0.919-0.977) on the test dataset. On the independent validation dataset, the AUROC was 0.807 (0.760-0.854), and the NPV in was 94.2% (95% CI 0.918-0.967). On the prospective trial dataset, the model identified 29 tumors among the 33 deficient mismatch repair tumors (87.88%). CONCLUSIONS The model achieved a high NPV in detecting deficient mismatch repair colorectal cancers. This model might serve as an automatic screening tool.
Collapse
Affiliation(s)
- Yue Cai
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, China
| | - Xijie Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Gastric Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junguo Chen
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - James Liao
- Guangzhou Aptiligent Technology Co. Ltd., Guangzhou, Guangdong, China
| | - Ming Han
- Guangzhou Aptiligent Technology Co. Ltd., Guangzhou, Guangdong, China
| | - Dezheng Lin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Endoscopic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoling Hong
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of General Surgery (Endoscopic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huabin Hu
- Department of Medical Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, China.
| | - Jiancong Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Department of General Surgery (Endoscopic Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Parikh M, Tejaswi S, Girotra T, Chopra S, Ramai D, Tabibian JH, Jagannath S, Ofosu A, Barakat MT, Mishra R, Girotra M. Use of Artificial Intelligence in Lower Gastrointestinal and Small Bowel Disorders: An Update Beyond Polyp Detection. J Clin Gastroenterol 2025; 59:121-128. [PMID: 39774596 DOI: 10.1097/mcg.0000000000002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Machine learning and its specialized forms, such as Artificial Neural Networks and Convolutional Neural Networks, are increasingly being used for detecting and managing gastrointestinal conditions. Recent advancements involve using Artificial Neural Network models to enhance predictive accuracy for severe lower gastrointestinal (LGI) bleeding outcomes, including the need for surgery. To this end, artificial intelligence (AI)-guided predictive models have shown promise in improving management outcomes. While much literature focuses on AI in early neoplasia detection, this review highlights AI's role in managing LGI and small bowel disorders, including risk stratification for LGI bleeding, quality control, evaluation of inflammatory bowel disease, and video capsule endoscopy reading. Overall, the integration of AI into routine clinical practice is still developing, with ongoing research aimed at addressing current limitations and gaps in patient care.
Collapse
Affiliation(s)
| | - Sooraj Tejaswi
- University of California, Davis
- Sutter Health, Sacramento
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Duan C, Sheng J, Ma X. Innovative approaches in colorectal cancer screening: advances in detection methods and the role of artificial intelligence. Therap Adv Gastroenterol 2025; 18:17562848251314829. [PMID: 39898356 PMCID: PMC11783499 DOI: 10.1177/17562848251314829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer globally and poses a significant health threat, making early detection crucial. This review paper explored emerging detection methods for early screening of CRC, including gut microbiota, metabolites, genetic markers, and artificial intelligence (AI)-based technologies. Current screening methods have their respective advantages and limitations, particularly in detecting precursors. First, the importance of the gut microbiome in CRC progression is discussed, highlighting how specific microbial alterations can serve as biomarkers for early detection, potentially enhancing diagnostic accuracy when combined with traditional screening methods. Next, research on metabolic reprogramming illustrates the relationship between metabolic changes and CRC, with studies developing metabolite-based detection models that show good sensitivity for early diagnosis. In terms of genetic markers, methylated DNA markers like SEPTIN9 have demonstrated high sensitivity, although further validation across diverse populations is necessary. Lastly, AI technology has shown immense potential in improving adenoma detection rates, significantly enhancing the quality of colonoscopic examinations through image recognition techniques. This review aims to provide a comprehensive perspective on new strategies for CRC screening, emphasizing the potential of noninvasive detection technologies and the prospects of AI and genomics in clinical applications. Despite several challenges, this review advocates for future large-scale prospective studies to validate the effectiveness and cost-effectiveness of these new screening methods while promoting the implementation of screening protocols tailored to individual characteristics.
Collapse
Affiliation(s)
- Changwei Duan
- Medical School of Chinese PLA, Beijing, China Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianqiu Sheng
- Medical School of Chinese PLA, Beijing 100853, China Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Beijing 100700, China
| | - Xianzong Ma
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
- Department of Gastroenterology, The Seventh Medical Center of Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100700, China
| |
Collapse
|
15
|
Morimoto S, Tanaka H, Takehara Y, Yamamoto N, Tanino F, Kamigaichi Y, Yamashita K, Takigawa H, Urabe Y, Kuwai T, Oka S. Efficiency of Real-time Computer-aided Polyp Detection during Surveillance Colonoscopy: A Pilot Study. J Anus Rectum Colon 2025; 9:127-133. [PMID: 39882234 PMCID: PMC11772792 DOI: 10.23922/jarc.2024-055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/26/2024] [Indexed: 01/31/2025] Open
Abstract
Objectives Studies have suggested that computer-aided polyp detection using artificial intelligence improves adenoma identification during colonoscopy. However, its real-world effectiveness remains unclear. Therefore, this study evaluated the usefulness of computer-aided detection during regular surveillance colonoscopy. Methods Consecutive patients who underwent surveillance colonoscopy with computer-aided detection between January and March 2023 and had undergone colonoscopy at least twice during the past 3 years were recruited. The clinicopathological findings of lesions identified using computer-aided detection were evaluated. The detection ability was sub-analyzed based on the expertise of the endoscopist and the presence of diminutive adenomas (size ≤5 mm). Results A total of 78 patients were included. Computer-aided detection identified 46 adenomas in 28 patients; however, no carcinomas were identified. The mean withdrawal time was 824 ± 353 s, and the mean tumor diameter was 3.3 mm (range, 2-8 mm). The most common gross type was 0-Is (70%), followed by 0-Isp (17%) and 0-IIa (13%). The most common tumor locations were the ascending colon and sigmoid colon (28%), followed by the transverse colon (26%), cecum (7%), descending colon (7%), and rectum (4%). Overall, 34.1% and 38.2% of patients with untreated diminutive adenomas and those with no adenomas, respectively, had newly detected adenomas. Endoscopist expertise did not affect the results. Conclusions Computer-aided detection may help identify adenomas during surveillance colonoscopy for patients with untreated diminutive adenomas and those with a history of endoscopic resection.
Collapse
Affiliation(s)
- Shin Morimoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hidenori Tanaka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yudai Takehara
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Noriko Yamamoto
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Fumiaki Tanino
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuki Kamigaichi
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ken Yamashita
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hidehiko Takigawa
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yuji Urabe
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshio Kuwai
- Gastrointestinal Endoscopy and Medicine, Hiroshima University Hospital, Hiroshima, Japan
| | - Shiro Oka
- Department of Gastroenterology, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
16
|
Hiratsuka Y, Hisabe T, Ohtsu K, Yasaka T, Takeda K, Miyaoka M, Ono Y, Kanemitsu T, Imamura K, Takeda T, Nimura S, Yao K. Evaluation of Artificial Intelligence: Computer-aided Detection of Colorectal Polyps. J Anus Rectum Colon 2025; 9:79-87. [PMID: 39882222 PMCID: PMC11772790 DOI: 10.23922/jarc.2024-057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/03/2024] [Indexed: 01/31/2025] Open
Abstract
Objectives Colonoscopy is the gold standard for screening cancer and precancerous lesions in the large intestine. Recently, remarkable advances in artificial intelligence (AI) have led to the development of various computer-aided detection (CADe) systems for colonoscopy. This study aimed to evaluate the usefulness of AI for colonoscopy using CAD-EYEⓇ (Fujifilm, Tokyo, Japan) to calculate the adenoma miss rate (AMR). Methods This randomized, open-label, single-center, tandem study was conducted at Fukuoka University Chikushi Hospital from February 2022 to November 2022. Patients were randomly assigned to the CADe or non-CADe group. Immediately after the completion of the first endoscopy by an endoscopist, a new endoscopist was assigned to perform the second endoscopy. As a result, different endoscopists performed the examinations in a tandem fashion. A missed lesion was defined as a newly detected colorectal polyp by the second endoscopy. Finally, the AMR was compared between the two groups. Results The study population comprised 48 patients in the CADe group and 46 patients in the non-CADe group. The AMR was 17.4% in the CADe group and 30.3% in the non-CADe group. Therefore, the AMR in the CADe group was statistically significantly lower than that in the non-CADe group (P=0.009). Conclusions The application of CAD-EYEⓇ to colonoscopy reduced the AMR. Overall, CAD-EYEⓇ might be useful for reducing missed colorectal adenomas.
Collapse
Affiliation(s)
- Yuya Hiratsuka
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Takashi Hisabe
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kensei Ohtsu
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Tatsuhisa Yasaka
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kazuhiro Takeda
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Masaki Miyaoka
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Yoichiro Ono
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Takao Kanemitsu
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kentaro Imamura
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Teruyuki Takeda
- Department of Gastroenterology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Satoshi Nimura
- Department of Pathology, Fukuoka University Chikushi Hospital, Chikushino, Japan
| | - Kenshi Yao
- Department of Endoscopy, Fukuoka University Chikushi Hospital, Chikushino, Japan
| |
Collapse
|
17
|
Kumazu Y, Kobayashi N, Senya S, Negishi Y, Kinoshita K, Fukui Y, Mita K, Osaragi T, Misumi T, Shinohara H. AI-based visualization of loose connective tissue as a dissectable layer in gastrointestinal surgery. Sci Rep 2025; 15:152. [PMID: 39747477 PMCID: PMC11695969 DOI: 10.1038/s41598-024-84044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
We aimed to develop an AI model that recognizes and displays loose connective tissue as a dissectable layer in real-time during gastrointestinal surgery and to evaluate its performance, including feasibility for clinical application. Training data were created under the supervision of gastrointestinal surgeons. Test images and videos were randomly sampled and model performance was evaluated visually by 10 external gastrointestinal surgeons. The mean Dice coefficient of the 50 images was 0.46. The AI model could detect at least 75% of the loose connective tissue in 91.8% of the images (459/500 responses). False positives were found for 52.6% of the images, but most were not judged significant enough to affect surgical judgment. When comparing the surgeon's annotation with the AI prediction image, 5 surgeons judged the AI image was closer to their own recognition. When viewing the AI video and raw video side-by-side, surgeons judged that in 99% of the AI videos, visualization was improved and stress levels were acceptable when viewing the AI prediction display. The AI model developed demonstrated performance at a level approaching that of a gastrointestinal surgeon. Such visualization of a safe dissectable layer may help to reduce intraoperative recognition errors and surgical complications.
Collapse
Affiliation(s)
- Yuta Kumazu
- Anaut Inc., 2-1-6-19F WeWork Hibiya Park Front, Uchisaiwaicho, Chiyodaku, Tokyo, 100-0011, Japan.
- Department of Surgery, Yokohama City University, Kanagawa, Japan.
| | - Nao Kobayashi
- Anaut Inc., 2-1-6-19F WeWork Hibiya Park Front, Uchisaiwaicho, Chiyodaku, Tokyo, 100-0011, Japan
- Department of Surgery, Tsudanuma Central General Hospital, Chiba, Japan
| | - Seigo Senya
- Anaut Inc., 2-1-6-19F WeWork Hibiya Park Front, Uchisaiwaicho, Chiyodaku, Tokyo, 100-0011, Japan
| | - Yuya Negishi
- Anaut Inc., 2-1-6-19F WeWork Hibiya Park Front, Uchisaiwaicho, Chiyodaku, Tokyo, 100-0011, Japan
| | - Kazuya Kinoshita
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yudai Fukui
- Department of Gastroenterological Surgery, Toranomon Hospital, Tokyo, Japan
| | - Kazuhito Mita
- Department of Surgery, Tsudanuma Central General Hospital, Chiba, Japan
| | - Tomohiko Osaragi
- Department of Surgery, Hadano Red Cross Hospital, Kanagawa, Japan
| | - Toshihiro Misumi
- Department of Data Science, National Cancer Center Hospital East, Chiba, Japan
| | - Hisashi Shinohara
- Department of Gastroenterological Surgery, Hyogo Medical University, Hyogo, Japan
| |
Collapse
|
18
|
Liu J, Zhou R, Liu C, Liu H, Cui Z, Guo Z, Zhao W, Zhong X, Zhang X, Li J, Wang S, Xing L, Zhao Y, Ma R, Ni J, Li Z, Li Y, Zuo X. Automatic Quality Control System and Adenoma Detection Rates During Routine Colonoscopy: A Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2457241. [PMID: 39883463 PMCID: PMC11783196 DOI: 10.1001/jamanetworkopen.2024.57241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/25/2024] [Indexed: 01/31/2025] Open
Abstract
Importance High-quality colonoscopy reduces the risks of colorectal cancer by increasing the adenoma detection rate. Routine use of an automatic quality control system (AQCS) to assist in colorectal adenoma detection should be considered. Objective To evaluate the effect of an AQCS on the adenoma detection rate among colonoscopists who were moderate- and low-level detectors during routine colonoscopy. Design, Setting, and Participants This multicenter, single-blind, randomized clinical trial was conducted at 6 centers in China from August 1, 2021, to September 30, 2022. Data were analyzed from March 1 to June 30, 2023. Individuals aged 18 to 80 years were enrolled. Exclusion criteria were a history of inflammatory bowel disease, advanced colorectal cancer, and polyposis syndromes; known colorectal polyps without complete removal previously; a history of colorectal surgery; known stenosis or obstruction with contraindication for biopsy or prior failed colonoscopy; pregnancy or lactation; and refusal to participate. Intention-to-treat and per-protocol analysis was used. Interventions Standard colonoscopy or AQCS-assisted colonoscopy. Main Outcomes and Measures Adenoma detection rate. Results A total of 1254 participants (mean [SD] age, 51.21 [12.10] years; 674 [53.7%] male) were randomized (627 standard colonoscopy, 627 AQCS-assisted colonoscopy). Intention-to-treat analysis showed a significantly higher adenoma detection rate in the AQCS-assisted group vs standard colonoscopy group (32.7% vs 22.6%; relative risk [RR], 1.60; 95% CI, 1.23-2.09; P < .001). The adenoma detection rates were significantly higher in the AQCS group when considering pathology (nonadvanced adenomas, 30.1% vs 21.2%; RR, 1.52; 95% CI, 1.16-1.99; P = .002), and morphology (flat or sessile, 29.3% vs 20.4%, RR, 1.52; 95% CI, 1.16-2.00; P = .003). Use of AQCS significantly increased the adenoma detection rate of both the lower-level detectors (30.0% vs 20.0%; RR, 1.71; 95% CI, 1.24-2.35; P = .001) and the medium-level detectors (38.1% vs 27.7%; RR, 1.61; 95% CI, 1.07-2.43; P = .02). Similar increases were found for adenoma detection rates in the academic and nonacademic centers (academic: 29.3% vs 20.8%; RR, 1.58; 95% CI, 1.10-2.29; P = .01; nonacademic: 36.1% vs 24.5%; RR, 1.74; 95% CI, 1.23-2.46; P = .002). The number of adenomas per colonoscopy was significantly higher in the AQCS-assisted group (0.86 vs 0.48; RR, 1.50; 95% CI, 1.17-1.91; P = .001). The mean withdrawal time without intervention was slightly increased with AQCS assistance (6.78 vs 6.46 minutes; RR, 1.38; 95% CI, 1.26-1.52; P < .001). No serious adverse events were reported. Conclusions and Relevance In this randomized clinical trial, AQCS assistance during routine colonoscopy increased adenoma detection rates and several related polyp parameters compared with standard colonoscopy in the lower- and medium-level detectors in academic and nonacademic settings. Routine use of AQCS to assist in colorectal adenoma detection and quality improvement should be considered. Trial Registration ClinicalTrials.gov Identifier: NCT04901130.
Collapse
Affiliation(s)
- Jing Liu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao, Shandong, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Haiyan Liu
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Gastroenterology, The First School of Clinical Medicine of Binzhou Medical University, Binzhou, Shandong, China
| | - Zhenqin Cui
- Department of Gastroenterology, Central Hospital of Shengli Oilfield, Dongying, Shandong, China
| | - Zhuang Guo
- Department of Gastroenterology, Central Hospital of Shengli Oilfield, Dongying, Shandong, China
| | - Weidong Zhao
- Department of Gastroenterology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Xiaoqin Zhong
- Department of Gastroenterology, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Xiaodong Zhang
- Department of Gastroenterology, Linyi People’s Hospital, Dezhou, Shandong, China
| | - Jing Li
- Department of Gastroenterology, Linyi People’s Hospital, Dezhou, Shandong, China
| | - Shihuan Wang
- Department of Gastroenterology, The People’s Hospital of Zhaoyuan City, Yantai, Shandong, China
| | - Li Xing
- Department of Gastroenterology, The People’s Hospital of Zhaoyuan City, Yantai, Shandong, China
| | - Yusha Zhao
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruiguang Ma
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiekun Ni
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Research Center for Digestive Disease, Jinan, Shandong, China
- Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Department of Gastroenterology, Qilu Hospital of Shandong University, Qingdao, Shandong, China
| |
Collapse
|
19
|
Makar J, Abdelmalak J, Con D, Hafeez B, Garg M. Use of artificial intelligence improves colonoscopy performance in adenoma detection: a systematic review and meta-analysis. Gastrointest Endosc 2025; 101:68-81.e8. [PMID: 39216648 DOI: 10.1016/j.gie.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Artificial intelligence (AI) is increasingly used to improve adenoma detection during colonoscopy. This meta-analysis aimed to provide an updated evaluation of computer-aided detection (CADe) systems and their impact on key colonoscopy quality indicators. METHODS We searched the EMBASE, PubMed, and MEDLINE databases from inception until February 15, 2024, for randomized control trials (RCTs) comparing the performance of CADe systems with routine unassisted colonoscopy in the detection of colorectal adenomas. RESULTS Twenty-eight RCTs were selected for inclusion involving 23,861 participants. Random-effects meta-analysis demonstrated a 20% increase in adenoma detection rate (risk ratio [RR], 1.20; 95% confidence interval [CI], 1.14-1.27; P < .01) and 55% decrease in adenoma miss rate (RR, 0.45; 95% CI, 0.37-0.54; P < .01) with AI-assisted colonoscopy. Subgroup analyses involving only expert endoscopists demonstrated a similar effect size (RR, 1.19; 95% CI, 1.11-1.27; P < .001), with similar findings seen in analysis of differing CADe systems and healthcare settings. CADe use also significantly increased adenomas per colonoscopy (weighted mean difference, 0.21; 95% CI, 0.14-0.29; P < .01), primarily because of increased diminutive lesion detection, with no significant difference seen in detection of advanced adenomas. Sessile serrated lesion detection (RR, 1.10; 95% CI, 0.93-1.30; P = .27) and miss rates (RR, 0.44; 95% CI, 0.16-1.19; P = .11) were similar. There was an average 0.15-minute prolongation of withdrawal time with AI-assisted colonoscopy (weighted mean difference, 0.15; 95% CI, 0.04-0.25; P = .01) and a 39% increase in the rate of non-neoplastic resection (RR, 1.39; 95% CI, 1.23-1.57; P < .001). CONCLUSIONS AI-assisted colonoscopy significantly improved adenoma detection but not sessile serrated lesion detection irrespective of endoscopist experience, system type, or healthcare setting.
Collapse
Affiliation(s)
- Jonathan Makar
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan Abdelmalak
- Department of Gastroenterology, Austin Hospital, Heidelberg, Victoria, Australia; Department of Gastroenterology, Alfred Hospital, Melbourne, Victoria, Australia; Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Danny Con
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia; Department of Gastroenterology, Austin Hospital, Heidelberg, Victoria, Australia
| | - Bilal Hafeez
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mayur Garg
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia; Department of Gastroenterology, Northern Health, Epping, Victoria, Australia
| |
Collapse
|
20
|
Khalaf K, Rizkala T, Repici A. The use of artificial intelligence in colonoscopic evaluations. Curr Opin Gastroenterol 2025; 41:3-8. [PMID: 39480883 DOI: 10.1097/mog.0000000000001063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
PURPOSE OF REVIEW This review aims to highlight the transformative impact of artificial intelligence in the field of gastrointestinal endoscopy, particularly in the detection and characterization of colorectal polyps. RECENT FINDINGS Over the past decade, artificial intelligence has significantly advanced the medical industry, including gastrointestinal endoscopy. Computer aided diagnosis - detection (CADe) systems have shown notable success in increasing ADR. Recent meta-analyses of RCTs have demonstrated that patients undergoing colonoscopy with CADe assistance had a higher ADR compared with conventional methods. Similarly, computer aided diagnosis - characterization (CADx) systems have proven effective in distinguishing between adenomatous and nonadenomatous polyps, enhancing diagnostic confidence and supporting cost-saving measures like the resect-and-discard strategy. Despite the high performance of these systems, the variability in real-world adoption highlights the importance of integrating artificial intelligence as an assistive tool rather than a replacement for human expertise. SUMMARY Artificial intelligence integration in colonoscopy, through CADe and CADx systems, marks a significant advancement in gastroenterology. These systems enhance lesion detection and characterization, leading to improved diagnostic accuracy, training outcomes, and clinical workflow efficiency. While artificial intelligence offers substantial benefits, the optimal approach involves using artificial intelligence to augment the expertise of endoscopists, ensuring that clinical decisions remain under human oversight.
Collapse
Affiliation(s)
- Kareem Khalaf
- Division of Gastroenterology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Tommy Rizkala
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele
- Humanitas Clinical and Research Center IRCCS, Endoscopy Unit, Rozzano, Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele
- Humanitas Clinical and Research Center IRCCS, Endoscopy Unit, Rozzano, Milan, Italy
| |
Collapse
|
21
|
Huang L, Xu M, Li Y, Dong Z, Lin J, Wang W, Wu L, Yu H. Gastric neoplasm detection of computer-aided detection-assisted esophagogastroduodenoscopy changes with implement scenarios: a real-world study. J Gastroenterol Hepatol 2024; 39:2787-2795. [PMID: 39469909 DOI: 10.1111/jgh.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/27/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND AND AIM The implementation of computer-aided detection (CAD) devices in esophagogastroduodenoscopy (EGD) could autonomously identify gastric precancerous lesions and neoplasms and reduce the miss rate of gastric neoplasms in prospective trials. However, there is still insufficient evidence of their use in real-life clinical practice. METHODS A real-world, two-center study was conducted at Wenzhou Central Hospital (WCH) and Renmin Hospital of Wuhan University (RHWU). High biopsy rate and low biopsy rate strategies were adopted, and CAD devices were applied in 2019 and 2021 at WCH and RHWU, respectively. We compared differences in gastric precancerous and neoplasm detection of EGD before and after the use of CAD devices in the first half of the year. RESULTS A total of 33 885 patients were included and 32 886 patients were ultimately analyzed. In WCH of which biopsy rate >95%, with the implementation of CAD, more the number of early gastric cancer divided by all gastric neoplasm (EGC/GN) (0.35% vs 0.59%, P = 0.028, OR [95% CI] = 1.65 [1.0-2.60]) was found, while gastric neoplasm detection rate (1.39% vs 1.36%, P = 0.897, OR [95% CI] = 0.98 [0.76-1.26]) remained stable. In RHWU of which biopsy rate <20%, the gastric neoplasm detection rate (1.78% vs 3.23%, P < 0.001, OR [95% CI] = 1.84 [1.33-2.54]) nearly doubled after the implementation of CAD, while there was no significant change in the EGC/GN. CONCLUSION The application of CAD devices devoted to distinct increases in gastric neoplasm detection according to different biopsy strategies, which implied that CAD devices demonstrated assistance on gastric neoplasm detection while varied effectiveness according to different implementation scenarios.
Collapse
Affiliation(s)
- Li Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Xu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxia Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiejun Lin
- Department of Gastroenterology, Wenzhou Sixth People's Hospital, Wenzhou Central Hospital Medical Group, Wenzhou, China
| | - Wen Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianlian Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial Intelligence Endoscopy Interventional Treatment of Hubei Province, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Li S, Xu M, Meng Y, Sun H, Zhang T, Yang H, Li Y, Ma X. The application of the combination between artificial intelligence and endoscopy in gastrointestinal tumors. MEDCOMM – ONCOLOGY 2024; 3. [DOI: 10.1002/mog2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/03/2024] [Indexed: 01/04/2025]
Abstract
AbstractGastrointestinal (GI) tumors have always been a major type of malignant tumor and a leading cause of tumor‐related deaths worldwide. The main principles of modern medicine for GI tumors are early prevention, early diagnosis, and early treatment, with early diagnosis being the most effective measure. Endoscopy, due to its ability to visualize lesions, has been one of the primary modalities for screening, diagnosing, and treating GI tumors. However, a qualified endoscopist often requires long training and extensive experience, which to some extent limits the wider use of endoscopy. With advances in data science, artificial intelligence (AI) has brought a new development direction for the endoscopy of GI tumors. AI can quickly process large quantities of data and images and improve diagnostic accuracy with some training, greatly reducing the workload of endoscopists and assisting them in early diagnosis. Therefore, this review focuses on the combined application of endoscopy and AI in GI tumors in recent years, describing the latest research progress on the main types of tumors and their performance in clinical trials, the application of multimodal AI in endoscopy, the development of endoscopy, and the potential applications of AI within it, with the aim of providing a reference for subsequent research.
Collapse
Affiliation(s)
- Shen Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research, Sichuan University Chengdu Sichuan China
| | - Yuanling Meng
- West China School of Stomatology Sichuan University Chengdu Sichuan China
| | - Haozhen Sun
- College of Life Sciences Sichuan University Chengdu Sichuan China
| | - Tao Zhang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Hanle Yang
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Yueyi Li
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| | - Xuelei Ma
- Department of Biotherapy Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu China
| |
Collapse
|
23
|
Soleymanjahi S, Huebner J, Elmansy L, Rajashekar N, Lüdtke N, Paracha R, Thompson R, Grimshaw AA, Foroutan F, Sultan S, Shung DL. Artificial Intelligence-Assisted Colonoscopy for Polyp Detection : A Systematic Review and Meta-analysis. Ann Intern Med 2024; 177:1652-1663. [PMID: 39531400 DOI: 10.7326/annals-24-00981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Randomized clinical trials (RCTs) of computer-aided detection (CADe) system-enhanced colonoscopy compared with conventional colonoscopy suggest increased adenoma detection rate (ADR) and decreased adenoma miss rate (AMR), but the effect on detection of advanced colorectal neoplasia (ACN) is unclear. PURPOSE To conduct a systematic review to compare performance of CADe-enhanced and conventional colonoscopy. DATA SOURCES Cochrane Library, Google Scholar, Ovid EMBASE, Ovid MEDLINE, PubMed, Scopus, and Web of Science Core Collection databases were searched through February 2024. STUDY SELECTION Published RCTs comparing CADe-enhanced and conventional colonoscopy. DATA EXTRACTION Average adenoma per colonoscopy (APC) and ACN per colonoscopy were primary outcomes. Adenoma detection rate, AMR, and ACN detection rate (ACN DR) were secondary outcomes. Balancing outcomes included withdrawal time and resection of nonneoplastic polyps (NNPs). Subgroup analyses were done by neural network architecture. DATA SYNTHESIS Forty-four RCTs with 36 201 cases were included. Computer-aided detection-enhanced colonoscopies have higher average APC (12 090 of 12 279 [0.98] vs. 9690 of 12 292 [0.78], incidence rate difference [IRD] = 0.22 [95% CI, 0.16 to 0.28]) and higher ADR (7098 of 16 253 [44.7%] vs. 5825 of 15 855 [36.7%], rate ratio [RR] = 1.21 [CI, 1.15 to 1.28]). Average ACN per colonoscopy was similar (1512 of 9296 [0.16] vs. 1392 of 9121 [0.15], IRD = 0.01 [CI, -0.01 to 0.02]), but ACN DR was higher with CADe system use (1260 of 9899 [12.7%] vs. 1119 of 9746 [11.5%], RR = 1.16 [CI, 1.02 to 1.32]). Using CADe systems resulted in resection of almost 2 extra NNPs per 10 colonoscopies and longer total withdrawal time (0.53 minutes [CI, 0.30 to 0.77]). LIMITATION Statistically significant heterogeneity in quality and sample size and inability to blind endoscopists to the intervention in included studies may affect the performance estimates. CONCLUSION Computer-aided detection-enhanced colonoscopies have increased APC and detection rate but no difference in ACN per colonoscopy and a small increase in ACN DR. There is minimal increase in procedure time and no difference in performance across neural network architectures. PRIMARY FUNDING SOURCE None. (PROSPERO: CRD42023422835).
Collapse
Affiliation(s)
- Saeed Soleymanjahi
- Division of Gastroenterology, Mass General Brigham, Harvard School of Medicine, Boston, Massachusetts (S.Soleymanjahi)
| | - Jack Huebner
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut (J.H., L.E., N.R., R.P., R.T.)
| | - Lina Elmansy
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut (J.H., L.E., N.R., R.P., R.T.)
| | - Niroop Rajashekar
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut (J.H., L.E., N.R., R.P., R.T.)
| | - Nando Lüdtke
- Section of Digestive Diseases, Department of Medicine, Yale School of Medicine, New Haven, Connecticut (N.L.)
| | - Rumzah Paracha
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut (J.H., L.E., N.R., R.P., R.T.)
| | - Rachel Thompson
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut (J.H., L.E., N.R., R.P., R.T.)
| | - Alyssa A Grimshaw
- Cushing/Whitney Medical Library, Yale University, New Haven, Connecticut (A.A.G.)
| | | | - Shahnaz Sultan
- Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota, Minneapolis, Minnesota (S.Sultan)
| | - Dennis L Shung
- Section of Digestive Diseases, Clinical and Translational Research Accelerator, and Department of Biomedical Informatics and Data Science, Department of Medicine, Yale School of Medicine, New Haven, Connecticut (D.L.S.)
| |
Collapse
|
24
|
Castillo-Iturra J, Sánchez A, Balaguer F. Colonoscopic surveillance in Lynch syndrome: guidelines in perspective. Fam Cancer 2024; 23:459-468. [PMID: 39066849 PMCID: PMC11512898 DOI: 10.1007/s10689-024-00414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Lynch syndrome predisposes to a high risk of colorectal cancer and colonoscopy remains the primary preventive strategy. The prevention of colorectal cancer through colonoscopy relies on identifying and removing adenomas, the main precursor lesion. Nevertheless, colonoscopy is not an optimal strategy since post-colonoscopy colorectal cancer remains an important issue. In continuation of a 2021 journal review, the present article seeks to offer an updated perspective by examining relevant articles from the past 3 years. We place recent findings in the context of existing guidelines, with a specific focus on colonoscopy surveillance. Key aspects explored include colonoscopy quality standards, timing of initiation, and surveillance intervals. Our review provides a comprehensive analysis of adenoma-related insights in Lynch syndrome, delving into emerging technologies like virtual chromoendoscopy and artificial intelligence-assisted endoscopy. This review aims to contribute valuable insights into the topic of colonoscopy surveillance in Lynch syndrome.
Collapse
Affiliation(s)
- Joaquín Castillo-Iturra
- Department of Gastroenterology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ariadna Sánchez
- Department of Gastroenterology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Balaguer
- Department of Gastroenterology, Hospital Clínic de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salud, Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
25
|
Bush N, Khashab M, Akshintala VS. Current and Emerging Applications of Artificial Intelligence (AI) in the Management of Pancreatobiliary (PB) disorders. Curr Gastroenterol Rep 2024; 26:304-309. [PMID: 39134866 DOI: 10.1007/s11894-024-00942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW: In this review, we aim to summarize the existing literature and future directions on the use of artificial intelligence (AI) for the diagnosis and treatment of PB (pancreaticobiliary) disorders. RECENT FINDINGS: AI models have been developed to aid in the diagnosis and management of PB disorders such as pancreatic adenocarcinoma (PDAC), pancreatic neuroendocrine tumors (pNETs), acute pancreatitis, chronic pancreatitis, autoimmune pancreatitis, choledocholithiasis, indeterminate biliary strictures, cholangiocarcinoma and endoscopic procedures such as ERCP, EUS, and cholangioscopy. Recent studies have integrated radiological, endoscopic and pathological data to develop models to aid in better detection and prognostication of these disorders. AI is an indispensable proponent in the future practice of medicine. It has been extensively studied and approved for use in the detection of colonic polyps. AI models based on clinical, laboratory, and radiomics have been developed to aid in the diagnosis and management of various PB disorders and its application is ever expanding. Despite promising results, these AI-based models need further external validation to be clinically applicable.
Collapse
Affiliation(s)
- Nikhil Bush
- Department of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mouen Khashab
- Department of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Venkata S Akshintala
- Department of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
26
|
Thiruvengadam NR, Solaimani P, Shrestha M, Buller S, Carson R, Reyes-Garcia B, Gnass RD, Wang B, Albasha N, Leonor P, Saumoy M, Coimbra R, Tabuenca A, Srikureja W, Serrao S. The Efficacy of Real-time Computer-aided Detection of Colonic Neoplasia in Community Practice: A Pragmatic Randomized Controlled Trial. Clin Gastroenterol Hepatol 2024; 22:2221-2230.e15. [PMID: 38437999 DOI: 10.1016/j.cgh.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND & AIMS The use of computer-aided detection (CADe) has increased the adenoma detection rates (ADRs) during colorectal cancer (CRC) screening/surveillance in randomized controlled trials (RCTs) but has not shown benefit in real-world implementation studies. We performed a single-center pragmatic RCT to evaluate the impact of real-time CADe on ADRs in colonoscopy performed by community gastroenterologists. METHODS We enrolled 1100 patients undergoing colonoscopy for CRC screening, surveillance, positive fecal-immunohistochemical tests, and diagnostic indications at one community-based center from September 2022 to March 2023. Patients were randomly assigned (1:1) to traditional colonoscopy or real-time CADe. Blinded pathologists analyzed histopathologic findings. The primary outcome was ADR (the percentage of patients with at least 1 histologically proven adenoma or carcinoma). Secondary outcomes were adenomas detected per colonoscopy (APC), sessile-serrated lesion detection rate, and non-neoplastic resection rate. RESULTS The median age was 55.5 years (interquartile range, 50-62 years), 61% were female, 72.7% were of Hispanic ethnicity, and 9.1% had inadequate bowel preparation. The ADR for the CADe group was significantly higher than the traditional colonoscopy group (42.5% vs 34.4%; P = .005). The mean APC was significantly higher in the CADe group compared with the traditional colonoscopy group (0.89 ± 1.46 vs 0.60 ± 1.12; P < .001). The improvement in adenoma detection was driven by increased detection of <5 mm adenomas. CADe had a higher sessile-serrated lesion detection rate than traditional colonoscopy (4.7% vs 2.0%; P = .01). The improvement in ADR with CADe was significantly higher in the first half of the study (47.2% vs 33.7%; P = .002) compared with the second half (38.7% vs 34.9%; P = .33). CONCLUSIONS In a single-center pragmatic RCT, real-time CADe modestly improved ADR and APC in average-detector community endoscopists. (ClinicalTrials.gov number, NCT05963724).
Collapse
Affiliation(s)
- Nikhil R Thiruvengadam
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California.
| | - Pejman Solaimani
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Manish Shrestha
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Seth Buller
- Loma Linda University School of Medicine, Loma Linda, California
| | - Rachel Carson
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Breanna Reyes-Garcia
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Ronaldo D Gnass
- Department of Pathology, Riverside University Health System, Moreno Valley, California
| | - Bing Wang
- Department of Pathology, Loma Linda University School of Medicine, Loma Linda, California
| | - Natalie Albasha
- University of California Riverside School of Medicine, Riverside, California; Department of Medicine, Scripps Green Hospital, La Jolla, California
| | - Paul Leonor
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Monica Saumoy
- Center for Digestive Health, Penn Medicine Princeton Medical Center, Plainsboro, New Jersey
| | - Raul Coimbra
- Comparative Effectiveness and Clinical Outcomes Research Center, Riverside University Health System, Moreno Valley, California; Department of Surgery, Riverside University Health System, Moreno Valley, California
| | - Arnold Tabuenca
- Department of Surgery, Riverside University Health System, Moreno Valley, California; Department of Surgery, University of California Riverside School of Medicine, Riverside, California
| | - Wichit Srikureja
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| | - Steve Serrao
- Division of Gastroenterology and Hepatology, Riverside University Health System, Moreno Valley, California; Division of Gastroenterology and Hepatology, Loma Linda University Health, Loma Linda, California
| |
Collapse
|
27
|
Maas MHJ, Rath T, Spada C, Soons E, Forbes N, Kashin S, Cesaro P, Eickhoff A, Vanbiervliet G, Salvi D, Belletrutti PJ, Siersema PD. A computer-aided detection system in the everyday setting of diagnostic, screening, and surveillance colonoscopy: an international, randomized trial. Endoscopy 2024; 56:843-850. [PMID: 38749482 PMCID: PMC11524745 DOI: 10.1055/a-2328-2844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/15/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Computer-aided detection (CADe) has been developed to improve detection during colonoscopy. After initial reports of high efficacy, there has been an increasing recognition of variability in the effectiveness of CADe systems. The aim of this study was to evaluate a CADe system in a varied colonoscopy population. METHODS A multicenter, randomized trial was conducted at seven hospitals (both university and non-university) in Europe and Canada. Participants referred for diagnostic, non-immunochemical fecal occult blood test (iFOBT) screening, or surveillance colonoscopy were randomized (1:1) to undergo CADe-assisted or conventional colonoscopy by experienced endoscopists. Participants with insufficient bowel preparation were excluded from the analysis. The primary outcome was adenoma detection rate (ADR). Secondary outcomes included adenomas per colonoscopy (APC) and sessile serrated lesions (SSLs) per colonoscopy. RESULTS 581 participants were enrolled, of whom 497 were included in the final analysis: 250 in the CADe arm and 247 in the conventional colonoscopy arm. The indication was surveillance in 202/497 colonoscopies (40.6 %), diagnostic in 199/497 (40.0 %), and non-iFOBT screening in 96/497 (19.3 %). Overall, ADR (38.4 % vs. 37.7 %; P = 0.43) and APC (0.66 vs. 0.66; P = 0.97) were similar between CADe and conventional colonoscopy. SSLs per colonoscopy was increased (0.30 vs. 0.19; P = 0.049) in the CADe arm vs. the conventional colonoscopy arm. CONCLUSIONS In this study conducted by experienced endoscopists, CADe did not result in a statistically significant increase in ADR. However, the ADR of our control group substantially surpassed our sample size assumptions, increasing the risk of an underpowered trial.
Collapse
Affiliation(s)
- Michiel H. J. Maas
- Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Timo Rath
- Department of Medicine I, Division of Gastroenterology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Cristiano Spada
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
- Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elsa Soons
- Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nauzer Forbes
- Department of Medicine, University of Calgary, Calgary, Canada
| | - Sergey Kashin
- Department of Endoscopy, Yaroslavl Regional Cancer Hospital, Yaroslavl, Russia
| | - Paola Cesaro
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Axel Eickhoff
- Gastroenterology, Diabetology, Infectiology, Klinikum Hanau, Hanau, Germany
| | | | - Daniele Salvi
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
- Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Peter D. Siersema
- Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, the Netherlands
- ErasmusMC – University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
28
|
Rønborg SN, Ujjal S, Kroijer R, Ploug M. Assessing the potential of artificial intelligence to enhance colonoscopy adenoma detection in clinical practice: a prospective observational trial. Clin Endosc 2024; 57:783-789. [PMID: 39188117 PMCID: PMC11637665 DOI: 10.5946/ce.2024.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND/AIMS This study aimed to evaluate the effectiveness of the GI Genius (Medtronic) module in clinical practice, focusing on the adenoma detection rate (ADR) during colonoscopy. Computer-aided polyp detection (CADe) systems using artificial intelligence have been shown to improve adenoma detection in controlled trials. However, the effectiveness of these systems in clinical practice has recently been questioned. METHODS This single-center prospective observational study was conducted at the University Hospital of Southern Denmark and included all individuals referred for colonoscopy between November 2020 and January 2021. The primary outcome was ADR, comparing patients examined with CADe to those examined without it. The selection of patients to be examined with the CADe module was completely random. RESULTS A total of 502 patients were analyzed (318 in the control group and 184 in the CADe group). The overall ADR was 32.1% with a slight increase in the CADe group (34.7% vs. 30.5%). Multivariable analysis showed a very modest and statistically insignificant increase in ADR (risk ratio, 1.12; 95% confidence interval, 0.88-1.43). CONCLUSIONS The use of CADe in clinical practice did not increase ADR with statistical significance when compared to colonoscopy without CADe. These findings suggest that the impact of CADe systems in everyday clinical practice are modest.
Collapse
Affiliation(s)
- Søren Nicolaj Rønborg
- Department of Surgical Gastroenterology, Esbjerg Hospital, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Suresh Ujjal
- Department of Surgical Gastroenterology, Esbjerg Hospital, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Rasmus Kroijer
- Department of Surgical Gastroenterology, Esbjerg Hospital, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Magnus Ploug
- Department of Surgical Gastroenterology, Esbjerg Hospital, University Hospital of Southern Denmark, Esbjerg, Denmark
- Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark
| |
Collapse
|
29
|
Park DK, Kim EJ, Im JP, Lim H, Lim YJ, Byeon JS, Kim KO, Chung JW, Kim YJ. A prospective multicenter randomized controlled trial on artificial intelligence assisted colonoscopy for enhanced polyp detection. Sci Rep 2024; 14:25453. [PMID: 39455850 PMCID: PMC11512038 DOI: 10.1038/s41598-024-77079-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Colon polyp detection and removal via colonoscopy are essential for colorectal cancer screening and prevention. This study aimed to develop a colon polyp detection program based on the RetinaNet algorithm and verify its clinical utility. To develop the AI-assisted program, the dataset was fully anonymized and divided into 10 folds for 10-fold cross-validation. Each fold consisted of 9,639 training images and 1,070 validation images. Video data from 56 patients were used for model training, and transfer learning was performed using the developed still image-based model. The final model was developed as a real-time polyp-detection program for endoscopy. To evaluate the model's performance, a prospective randomized controlled trial was conducted at six institutions to compare the polyp detection rates (PDR). A total of 805 patients were included. The group that utilized the AI model showed significantly higher PDR and adenoma detection rate (ADR) than the group that underwent colonoscopy without AI assistance. Multivariate analysis revealed an OR of 1.50 for cases where polyps were detected. The AI-assisted polyp-detection program is clinically beneficial for detecting polyps during colonoscopy. By utilizing this AI-assisted program, clinicians can improve adenoma detection rates, ultimately leading to enhanced cancer prevention.
Collapse
Affiliation(s)
- Dong Kyun Park
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
- Health IT Research Center, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Eui Joo Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Lim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Republic of Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyoung Oh Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Jun-Won Chung
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea
| | - Yoon Jae Kim
- Division of Gastroenterology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, 21, Namdong-daero 774 beon-gil, Namdong-gu, Incheon, 21565, Republic of Korea.
- Health IT Research Center, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| |
Collapse
|
30
|
Li SW, Liu X, Sun SY. Advances in endoscopic diagnosis and management of colorectal cancer. World J Gastrointest Oncol 2024; 16:4045-4051. [PMID: 39473956 PMCID: PMC11514676 DOI: 10.4251/wjgo.v16.i10.4045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 09/26/2024] Open
Abstract
Colorectal cancer (CRC) is a leading global health concern, and early identification and precise prognosis play a vital role in enhancing patient results. Endoscopy is a minimally invasive imaging technique that is crucial for the screening, diagnosis, and treatment of CRC. This editorial discusses the importance of advances in endoscopic techniques, the integration of artificial intelligence, and the potential of novel technologies in enhancing the diagnosis and management of CRC.
Collapse
Affiliation(s)
- Shi-Wei Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Xiang Liu
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Si-Yu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
31
|
Mota J, Almeida MJ, Martins M, Mendes F, Cardoso P, Afonso J, Ribeiro T, Ferreira J, Fonseca F, Limbert M, Lopes S, Macedo G, Castro Poças F, Mascarenhas M. Artificial Intelligence in Coloproctology: A Review of Emerging Technologies and Clinical Applications. J Clin Med 2024; 13:5842. [PMID: 39407902 PMCID: PMC11477032 DOI: 10.3390/jcm13195842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a transformative tool across several specialties, namely gastroenterology, where it has the potential to optimize both diagnosis and treatment as well as enhance patient care. Coloproctology, due to its highly prevalent pathologies and tremendous potential to cause significant mortality and morbidity, has drawn a lot of attention regarding AI applications. In fact, its application has yielded impressive outcomes in various domains, colonoscopy being one prominent example, where it aids in the detection of polyps and early signs of colorectal cancer with high accuracy and efficiency. With a less explored path but equivalent promise, AI-powered capsule endoscopy ensures accurate and time-efficient video readings, already detecting a wide spectrum of anomalies. High-resolution anoscopy is an area that has been growing in interest in recent years, with efforts being made to integrate AI. There are other areas, such as functional studies, that are currently in the early stages, but evidence is expected to emerge soon. According to the current state of research, AI is anticipated to empower gastroenterologists in the decision-making process, paving the way for a more precise approach to diagnosing and treating patients. This review aims to provide the state-of-the-art use of AI in coloproctology while also reflecting on future directions and perspectives.
Collapse
Affiliation(s)
- Joana Mota
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Maria João Almeida
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Miguel Martins
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Francisco Mendes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Pedro Cardoso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - João Afonso
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - Tiago Ribeiro
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
| | - João Ferreira
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-065 Porto, Portugal;
- DigestAID—Digestive Artificial Intelligence Development, Rua Alfredo Allen n.° 455/461, 4200-135 Porto, Portugal
| | - Filipa Fonseca
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO Lisboa), 1099-023 Lisboa, Portugal; (F.F.); (M.L.)
| | - Manuel Limbert
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPO Lisboa), 1099-023 Lisboa, Portugal; (F.F.); (M.L.)
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
| | - Susana Lopes
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| | - Guilherme Macedo
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| | - Fernando Castro Poças
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Department of Gastroenterology, Santo António University Hospital, 4099-001 Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), 4050-313 Porto, Portugal
| | - Miguel Mascarenhas
- Precision Medicine Unit, Department of Gastroenterology, São João University Hospital, 4200-427 Porto, Portugal; (J.M.); (M.J.A.); (M.M.); (F.M.); (P.C.); (J.A.); (T.R.); (S.L.); (G.M.)
- WGO Gastroenterology and Hepatology Training Center, 4200-047 Porto, Portugal
- Artificial Intelligence Group of the Portuguese Society of Coloproctology, 1050-117 Lisboa, Portugal;
- Faculty of Medicine, University of Porto, 4200-047 Porto, Portugal
| |
Collapse
|
32
|
Ip BWK, Lee DJK, Tan KY. Delivering a high-quality colonoscopy service fit for the 21 st century. Artif Intell Gastrointest Endosc 2024; 5:92742. [DOI: 10.37126/aige.v5.i3.92742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/12/2024] [Accepted: 05/11/2024] [Indexed: 09/05/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer globally. There is a concerning increase in its incidence among younger individuals. Colonoscopy remains the gold standard for CRC diagnosis. With the introduction of population-based bowel screening and increased public awareness, there has been a significant rise in referrals for colonoscopy. Healthcare providers worldwide will need to strategically evaluate how to allocate resources to adequately train the next generation of colonoscopists who will need to provide accurate endoscopic assessment and treatment for premalignant polyps and early CRC. This review outlines the current workload challenges faced by colonoscopists whilst exploring emerging technologies such as artificial intelligence for adenoma detection. Additionally, advanced endoscopic surgical techniques like endoscopic submucosal dissection are discussed.
Collapse
Affiliation(s)
- Brian Wing Kin Ip
- Department of General Surgery, Khoo Teck Puat Hospital, Singapore 768828, Singapore
| | - Daniel Jin Keat Lee
- Department of General Surgery, Khoo Teck Puat Hospital, Singapore 768828, Singapore
| | - Kok Yang Tan
- Department of Surgery, Khoo Teck Puat Hospital, Singapore 768828, Singapore
| |
Collapse
|
33
|
Ortiz O, Daca-Alvarez M, Rivero-Sanchez L, Gimeno-Garcia AZ, Carrillo-Palau M, Alvarez V, Ledo-Rodriguez A, Ricciardiello L, Pierantoni C, Hüneburg R, Nattermann J, Bisschops R, Tejpar S, Huerta A, Riu Pons F, Alvarez-Urturi C, López-Vicente J, Repici A, Hassan C, Cid L, Cavestro GM, Romero-Mascarell C, Gordillo J, Puig I, Herraiz M, Betes M, Herrero J, Jover R, Balaguer F, Pellisé M. An artificial intelligence-assisted system versus white light endoscopy alone for adenoma detection in individuals with Lynch syndrome (TIMELY): an international, multicentre, randomised controlled trial. Lancet Gastroenterol Hepatol 2024; 9:802-810. [PMID: 39033774 DOI: 10.1016/s2468-1253(24)00187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Computer-aided detection (CADe) systems for colonoscopy have been shown to increase small polyp detection during colonoscopy in the general population. People with Lynch syndrome represent an ideal target population for CADe-assisted colonoscopy because adenomas, the primary cancer precursor lesions, are characterised by their small size and higher likelihood of showing advanced histology. We aimed to evaluate the performance of CADe-assisted colonoscopy in detecting adenomas in individuals with Lynch syndrome. METHODS TIMELY was an international, multicentre, parallel, randomised controlled trial done in 11 academic centres and six community centres in Belgium, Germany, Italy, and Spain. We enrolled individuals aged 18 years or older with pathogenic or likely pathogenic MLH1, MSH2, MSH6, or EPCAM variants. Participants were consecutively randomly assigned (1:1) to either CADe (GI Genius) assisted white light endoscopy (WLE) or WLE alone. A centre-stratified randomisation sequence was generated through a computer-generated system with a separate randomisation list for each centre according to block-permuted randomisation (block size 26 patients per centre). Allocation was automatically provided by the online AEG-REDCap database. Participants were masked to the random assignment but endoscopists were not. The primary outcome was the mean number of adenomas per colonoscopy, calculated by dividing the total number of adenomas detected by the total number of colonoscopies and assessed in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT04909671. FINDINGS Between Sept 13, 2021, and April 6, 2023, 456 participants were screened for eligibility, 430 of whom were randomly assigned to receive CADe-assisted colonoscopy (n=214) or WLE (n=216). 256 (60%) participants were female and 174 (40%) were male. In the intention-to-treat analysis, the mean number of adenomas per colonoscopy was 0·64 (SD 1·57) in the CADe group and 0·64 (1·17) in the WLE group (adjusted rate ratio 1·03 [95% CI 0·72-1·47); p=0·87). No adverse events were reported during the trial. INTERPRETATION In this multicentre international trial, CADe did not improve the detection of adenomas in individuals with Lynch syndrome. High-quality procedures and thorough inspection and exposure of the colonic mucosa remain the cornerstone in surveillance of Lynch syndrome. FUNDING Spanish Gastroenterology Association, Spanish Society of Digestive Endoscopy, European Society of Gastrointestinal Endoscopy, Societat Catalana de Digestologia, Instituto Carlos III, Beca de la Marato de TV3 2020. Co-funded by the European Union.
Collapse
Affiliation(s)
- Oswaldo Ortiz
- Hospital Clinic Barcelona, Gastroenterology Department, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomédiques August Pi i Sunyer, Barcelona, Spain
| | - Maria Daca-Alvarez
- Hospital Clinic Barcelona, Gastroenterology Department, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomédiques August Pi i Sunyer, Barcelona, Spain
| | - Liseth Rivero-Sanchez
- Hospital Clinic Barcelona, Gastroenterology Department, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomédiques August Pi i Sunyer, Barcelona, Spain
| | | | - Marta Carrillo-Palau
- Hospital Universitario de Canarias, Digestive System Service, Santa Cruz de Tenerife, Spain
| | - Victoria Alvarez
- Complejo Hospitalario de Pontevedra, Department of Gastroenterology, Pontevedra, Spain
| | | | - Luigi Ricciardiello
- IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Gastroenterology, Hepatology, and Nutrition, University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | | | - Robert Hüneburg
- Department of Internal Medicine I and National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany; European Reference Network for Genetic Tumor Risk Syndromes (ERN Genturis), Bonn, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I and National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany; European Reference Network for Genetic Tumor Risk Syndromes (ERN Genturis), Bonn, Germany
| | - Raf Bisschops
- Gastroenterology Department, University Hospital Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Gastroenterology Department, University Hospital Leuven, Leuven, Belgium
| | - Alain Huerta
- Hospital Galdakao-Usansolo, Department of Gastroenterology, Galdakao, Spain
| | - Faust Riu Pons
- Gastroenterology Department, Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Jorge López-Vicente
- Hospital Universitario de Móstoles, Digestive System Service, Móstoles, Spain
| | - Alessandro Repici
- Gastroenterology Department, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Cessare Hassan
- Gastroenterology Department, IRCCS Humanitas Research Hospital, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Lucia Cid
- Hospital Alvaro Cunqueiro, Galicia, Spain; Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Giulia Martina Cavestro
- Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Jordi Gordillo
- Hospital de la Santa Creu i Sant Pau, Gastroenterology Unit, Barcelona, Spain
| | - Ignasi Puig
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Vic, Spain; Digestive Diseases Department, Althaia Xarxa Assistencial Universitària de Manresa, Manresa, Spain; Facultat de Medicina, Universitat de Vic-Central de Cataluña (UVIC-UCC), Vic, Spain
| | - Maite Herraiz
- University of Navarra Clinic-IdiSNA, Gastroenterology Department, Pamplona, Spain
| | - Maite Betes
- University of Navarra Clinic-IdiSNA, Gastroenterology Department, Pamplona, Spain
| | - Jesús Herrero
- Complexo Hospitalario Universitario de Ourense, Instituto de Investigación Biomédica Galicia Sur, CIBERehd, Ourense, Spain
| | - Rodrigo Jover
- Hospital Universitario de Alicante, Pais Valencia, Spain
| | - Francesc Balaguer
- Hospital Clinic Barcelona, Gastroenterology Department, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomédiques August Pi i Sunyer, Barcelona, Spain; University of Barcelona, Barcelona, Spain
| | - Maria Pellisé
- Hospital Clinic Barcelona, Gastroenterology Department, Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Institut d'Investigacions Biomédiques August Pi i Sunyer, Barcelona, Spain; University of Barcelona, Barcelona, Spain.
| |
Collapse
|
34
|
Zhang C, Yao L, Jiang R, Wang J, Wu H, Li X, Wu Z, Luo R, Luo C, Tan X, Wang W, Xiao B, Hu H, Yu H. Assessment of the role of false-positive alerts in computer-aided polyp detection for assistance capabilities. J Gastroenterol Hepatol 2024; 39:1623-1635. [PMID: 38744667 DOI: 10.1111/jgh.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND AND AIM False positives (FPs) pose a significant challenge in the application of artificial intelligence (AI) for polyp detection during colonoscopy. The study aimed to quantitatively evaluate the impact of computer-aided polyp detection (CADe) systems' FPs on endoscopists. METHODS The model's FPs were categorized into four gradients: 0-5, 5-10, 10-15, and 15-20 FPs per minute (FPPM). Fifty-six colonoscopy videos were collected for a crossover study involving 10 endoscopists. Polyp missed rate (PMR) was set as primary outcome. Subsequently, to further verify the impact of FPPM on the assistance capability of AI in clinical environments, a secondary analysis was conducted on a prospective randomized controlled trial (RCT) from Renmin Hospital of Wuhan University in China from July 1 to October 15, 2020, with the adenoma detection rate (ADR) as primary outcome. RESULTS Compared with routine group, CADe reduced PMR when FPPM was less than 5. However, with the continuous increase of FPPM, the beneficial effect of CADe gradually weakens. For secondary analysis of RCT, a total of 956 patients were enrolled. In AI-assisted group, ADR is higher when FPPM ≤ 5 compared with FPPM > 5 (CADe group: 27.78% vs 11.90%; P = 0.014; odds ratio [OR], 0.351; 95% confidence interval [CI], 0.152-0.812; COMBO group: 38.40% vs 23.46%, P = 0.029; OR, 0.427; 95% CI, 0.199-0.916). After AI intervention, ADR increased when FPPM ≤ 5 (27.78% vs 14.76%; P = 0.001; OR, 0.399; 95% CI, 0.231-0.690), but no statistically significant difference was found when FPPM > 5 (11.90% vs 14.76%, P = 0.788; OR, 1.111; 95% CI, 0.514-2.403). CONCLUSION The level of FPs of CADe does affect its effectiveness as an aid to endoscopists, with its best effect when FPPM is less than 5.
Collapse
Affiliation(s)
- Chenxia Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Liwen Yao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Ruiqing Jiang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Jing Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Huiling Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Xun Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Zhifeng Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Renquan Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Chaijie Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Xia Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Wen Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Bing Xiao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Huiyan Hu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Engineering Research Center for Artificial lntelligence Endoscopy Interventional Treatment of Hubei Province, Wuhan, China
| |
Collapse
|
35
|
Mwango A, Akhtar TS, Abbas S, Abbasi DS, Khan A. Effect of artificial intelligence-aided colonoscopy on the adenoma detection rate: A systematic review. INTERNATIONAL JOURNAL OF GASTROINTESTINAL INTERVENTION 2024; 13:65-73. [DOI: 10.18528/ijgii240013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- Anson Mwango
- Department of Clinical Medicine and Therapeutics, University of Nairobi, Nairobi, Kenya
- Faculty of Life Science and Education, University of South Wales, Cardiff, United Kingdom
| | - Tayyab Saeed Akhtar
- Faculty of Life Science and Education, University of South Wales, Cardiff, United Kingdom
- Center for Liver and Digestive Diseases, Holy Family Hospital, Rawalpindi, Pakistan
| | - Sameen Abbas
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Dua Sadaf Abbasi
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Amjad Khan
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
36
|
Wang Y, He C. ENDOANGEL improves detection of missed colorectal adenomas in second colonoscopy: A retrospective study. Medicine (Baltimore) 2024; 103:e38938. [PMID: 38996141 PMCID: PMC11245239 DOI: 10.1097/md.0000000000038938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The ENDOANGEL (EN) computer-assisted detection technique has emerged as a promising tool for enhancing the detection rate of colorectal adenomas during colonoscopies. However, its efficacy in identifying missed adenomas during subsequent colonoscopies remains unclear. Thus, we herein aimed to compare the adenoma miss rate (AMR) between EN-assisted and standard colonoscopies. Data from patients who underwent a second colonoscopy (EN-assisted or standard) within 6 months between September 2022 and May 2023 were analyzed. The EN-assisted group exhibited a significantly higher AMR (24.3% vs 11.9%, P = .005) than the standard group. After adjusting for potential confounders, multivariable analysis revealed that the EN-assisted group had a better ability to detect missed adenomas than the standard group (odds ratio = 2.89; 95% confidence interval = 1.14-7.80, P = .029). These findings suggest that EN-assisted colonoscopy represents a valuable advancement in improving AMR compared with standard colonoscopy. The integration of EN-assisted colonoscopy into routine clinical practice may offer significant benefits to patients requiring hospital resection of lesions following adenoma detection during their first colonoscopy.
Collapse
Affiliation(s)
- Yundong Wang
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| | - Chiyi He
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, People’s Republic of China
| |
Collapse
|
37
|
Introzzi L, Zonca J, Cabitza F, Cherubini P, Reverberi C. Enhancing human-AI collaboration: The case of colonoscopy. Dig Liver Dis 2024; 56:1131-1139. [PMID: 37940501 DOI: 10.1016/j.dld.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Diagnostic errors impact patient health and healthcare costs. Artificial Intelligence (AI) shows promise in mitigating this burden by supporting Medical Doctors in decision-making. However, the mere display of excellent or even superhuman performance by AI in specific tasks does not guarantee a positive impact on medical practice. Effective AI assistance should target the primary causes of human errors and foster effective collaborative decision-making with human experts who remain the ultimate decision-makers. In this narrative review, we apply these principles to the specific scenario of AI assistance during colonoscopy. By unraveling the neurocognitive foundations of the colonoscopy procedure, we identify multiple bottlenecks in perception, attention, and decision-making that contribute to diagnostic errors, shedding light on potential interventions to mitigate them. Furthermore, we explored how existing AI devices fare in clinical practice and whether they achieved an optimal integration with the human decision-maker. We argue that to foster optimal Human-AI collaboration, future research should expand our knowledge of factors influencing AI's impact, establish evidence-based cognitive models, and develop training programs based on them. These efforts will enhance human-AI collaboration, ultimately improving diagnostic accuracy and patient outcomes. The principles illuminated in this review hold more general value, extending their relevance to a wide array of medical procedures and beyond.
Collapse
Affiliation(s)
- Luca Introzzi
- Department of Psychology, Università Milano - Bicocca, Milano, Italy
| | - Joshua Zonca
- Department of Psychology, Università Milano - Bicocca, Milano, Italy; Milan Center for Neuroscience, Università Milano - Bicocca, Milano, Italy
| | - Federico Cabitza
- Department of Informatics, Systems and Communication, Università Milano - Bicocca, Milano, Italy; IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Paolo Cherubini
- Department of Brain and Behavioral Sciences, Università Statale di Pavia, Pavia, Italy
| | - Carlo Reverberi
- Department of Psychology, Università Milano - Bicocca, Milano, Italy; Milan Center for Neuroscience, Università Milano - Bicocca, Milano, Italy.
| |
Collapse
|
38
|
Spadaccini M, Troya J, Khalaf K, Facciorusso A, Maselli R, Hann A, Repici A. Artificial Intelligence-assisted colonoscopy and colorectal cancer screening: Where are we going? Dig Liver Dis 2024; 56:1148-1155. [PMID: 38458884 DOI: 10.1016/j.dld.2024.01.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Colorectal cancer is a significant global health concern, necessitating effective screening strategies to reduce its incidence and mortality rates. Colonoscopy plays a crucial role in the detection and removal of colorectal neoplastic precursors. However, there are limitations and variations in the performance of endoscopists, leading to missed lesions and suboptimal outcomes. The emergence of artificial intelligence (AI) in endoscopy offers promising opportunities to improve the quality and efficacy of screening colonoscopies. In particular, AI applications, including computer-aided detection (CADe) and computer-aided characterization (CADx), have demonstrated the potential to enhance adenoma detection and optical diagnosis accuracy. Additionally, AI-assisted quality control systems aim to standardize the endoscopic examination process. This narrative review provides an overview of AI principles and discusses the current knowledge on AI-assisted endoscopy in the context of screening colonoscopies. It highlights the significant role of AI in improving lesion detection, characterization, and quality assurance during colonoscopy. However, further well-designed studies are needed to validate the clinical impact and cost-effectiveness of AI-assisted colonoscopy before its widespread implementation.
Collapse
Affiliation(s)
- Marco Spadaccini
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy.
| | - Joel Troya
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Kareem Khalaf
- Division of Gastroenterology, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Antonio Facciorusso
- Gastroenterology Unit, Department of Surgical and Medical Sciences, University of Foggia, Foggia, Italy
| | - Roberta Maselli
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| | - Alexander Hann
- Interventional and Experimental Endoscopy (InExEn), Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Alessandro Repici
- Department of Endoscopy, Humanitas Research Hospital, IRCCS, 20089 Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, 20089 Rozzano, Italy
| |
Collapse
|
39
|
Chow KW, Bell MT, Cumpian N, Amour M, Hsu RH, Eysselein VE, Srivastava N, Fleischman MW, Reicher S. Long-term impact of artificial intelligence on colorectal adenoma detection in high-risk colonoscopy. World J Gastrointest Endosc 2024; 16:335-342. [PMID: 38946853 PMCID: PMC11212514 DOI: 10.4253/wjge.v16.i6.335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Improved adenoma detection rate (ADR) has been demonstrated with artificial intelligence (AI)-assisted colonoscopy. However, data on the real-world application of AI and its effect on colorectal cancer (CRC) screening outcomes is limited. AIM To analyze the long-term impact of AI on a diverse at-risk patient population undergoing diagnostic colonoscopy for positive CRC screening tests or symptoms. METHODS AI software (GI Genius, Medtronic) was implemented into the standard procedure protocol in November 2022. Data was collected on patient demographics, procedure indication, polyp size, location, and pathology. CRC screening outcomes were evaluated before and at different intervals after AI introduction with one year of follow-up. RESULTS We evaluated 1008 colonoscopies (278 pre-AI, 255 early post-AI, 285 established post-AI, and 190 late post-AI). The ADR was 38.1% pre-AI, 42.0% early post-AI (P = 0.77), 40.0% established post-AI (P = 0.44), and 39.5% late post-AI (P = 0.77). There were no significant differences in polyp detection rate (PDR, baseline 59.7%), advanced ADR (baseline 16.2%), and non-neoplastic PDR (baseline 30.0%) before and after AI introduction. CONCLUSION In patients with an increased pre-test probability of having an abnormal colonoscopy, the current generation of AI did not yield enhanced CRC screening metrics over high-quality colonoscopy. Although the potential of AI in colonoscopy is undisputed, current AI technology may not universally elevate screening metrics across all situations and patient populations. Future studies that analyze different AI systems across various patient populations are needed to determine the most effective role of AI in optimizing CRC screening in clinical practice.
Collapse
Affiliation(s)
- Kenneth W Chow
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Matthew T Bell
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Nicholas Cumpian
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Maryanne Amour
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Ryan H Hsu
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, United States
| | - Viktor E Eysselein
- Department of Gastroenterology, Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Neetika Srivastava
- Department of Gastroenterology, Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Michael W Fleischman
- Department of Gastroenterology, Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Sofiya Reicher
- Department of Gastroenterology, Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| |
Collapse
|
40
|
Lingam G, Shakir T, Kader R, Chand M. Role of artificial intelligence in colorectal cancer. Artif Intell Gastrointest Endosc 2024; 5:90723. [DOI: 10.37126/aige.v5.i2.90723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/11/2024] Open
Abstract
The sphere of artificial intelligence (AI) is ever expanding. Applications for clinical practice have been emerging over recent years. Although its uptake has been most prominent in endoscopy, this represents only one aspect of holistic patient care. There are a multitude of other potential avenues in which gastrointestinal care may be involved. We aim to review the role of AI in colorectal cancer as a whole. We performed broad scoping and focused searches of the applications of AI in the field of colorectal cancer. All trials including qualitative research were included from the year 2000 onwards. Studies were grouped into pre-operative, intra-operative and post-operative aspects. Pre-operatively, the major use is with endoscopic recognition. Colonoscopy has embraced the use for human derived classifications such as Narrow-band Imaging International Colorectal Endoscopic, Japan Narrow-band Imaging Expert Team, Paris and Kudo. However, novel detection and diagnostic methods have arisen from advances in AI classification. Intra-operatively, adjuncts such as image enhanced identification of structures and assessment of perfusion have led to improvements in clinical outcomes. Post-operatively, monitoring and surveillance have taken strides with potential socioeconomic and environmental savings. The uses of AI within the umbrella of colorectal surgery are multiple. We have identified existing technologies which are already augmenting cancer care. The future applications are exciting and could at least match, if not surpass human standards.
Collapse
Affiliation(s)
- Gita Lingam
- Department of General Surgery, Princess Alexandra Hospital, Harlow CM20 1QX, United Kingdom
| | - Taner Shakir
- Department of Colorectal Surgery, University College London, London W1W 7TY, United Kingdom
| | - Rawen Kader
- Department of Gastroenterology, University College London, University College London Hospitals Nhs Foundation Trust, London W1B, United Kingdom
| | - Manish Chand
- Gastroenterological Intervention Centre, University College London, London W1W 7TS, United Kingdom
| |
Collapse
|
41
|
Kawai T, Kawai Y, Akimito Y, Hamada M, Iwata E, Niikura R, Nagata N, Sugimoto M, Yanagisawa K, Fukuzawa M, Itoi T. Investigation of the relationship between colonoscopy insertion difficulty factors and endoscope shape using an endoscopic position detection unit. J Clin Biochem Nutr 2024; 74:245-252. [PMID: 38799137 PMCID: PMC11111465 DOI: 10.3164/jcbn.23-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/12/2023] [Indexed: 05/29/2024] Open
Abstract
In this study, we investigated the relationship between the cecal intubation time (CIT) and the form and method used for passing through the sigmoid/descending colon junction (SDJ) and the hepatic flexure using an endoscopic position detection unit (UPD), with reference to various factors [age, sex, body mass index (BMI), history of abdominal and pelvic surgery, and diverticulum]. A total of 152 patients underwent colonoscopy with UPD. The mean age was 66.9 ± 12.4 years, and the male to female ratio was 3.6:1. The average CIT time was 14.3 ± 8.2 min. Age, number of experienced endoscopies, history of abdominal and pelvic surgery, BMI, and diverticulum were associated with prolonged CIT; SDJ passage pattern was straight: 8.6 ± 5.0, alpha loop: 11.8 ± 5.6, puzzle ring-like loop: 20.2 ± 5.0, reverse alpha loop: 22.4 ± 9.7, and other loop: 24.7 ± 10.5. The hepatic flexure passing method was in the following order: right rotation maneuver: 12.6 ± 6.6, push maneuver: 15.1 ± 5.9, and right rotation with positional change maneuver: 20.5 ± 7.2. In conclusion, colonoscopy with UPD revealed an association between CIT and SDJ passage pattern and hepatic flexure passing method.
Collapse
Affiliation(s)
- Takashi Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Yusuke Kawai
- Department of Gastroenterological Endoscopy, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Yoshika Akimito
- Department of Gastroenterological Endoscopy, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Mariko Hamada
- Department of Gastroenterological Endoscopy, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Eri Iwata
- Department of Gastroenterological Endoscopy, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Ryota Niikura
- Department of Gastroenterological Endoscopy, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Naoyoshi Nagata
- Department of Gastroenterological Endoscopy, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Mitsushige Sugimoto
- Department of Gastroenterological Endoscopy, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Kyosuke Yanagisawa
- Department of Gastroenterological Endoscopy, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Masakatsu Fukuzawa
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Takao Itoi
- Department of Gastroenterology and Hepatology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
42
|
Savino A, Rondonotti E, Rocchetto S, Piagnani A, Bina N, Di Domenico P, Segatta F, Radaelli F. GI genius endoscopy module: a clinical profile. Expert Rev Med Devices 2024; 21:359-372. [PMID: 38618982 DOI: 10.1080/17434440.2024.2342508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION The identification of early-stage colorectal cancers (CRC) and the resection of pre-cancerous neoplastic lesions through colonoscopy allows to decrease both CRC incidence and mortality. However, colonoscopy miss rates up to 26% for adenomas and 9% for advanced adenomas have been reported. In recent years, artificial intelligence (AI) systems have been emerging as easy-to-use tools, potentially lowering the risk of missing lesions. AREAS COVERED This review paper focuses on GI Genius device (Medtronic Co. Minneapolis, MN, U.S.A.) a computer-assisted tool designed to assist endoscopists during standard white-light colonoscopies in detecting mucosal lesions. EXPERT OPINION Randomized controlled trials (RCTs) suggest that GI Genius is a safe and effective tool for improving adenoma detection, especially in CRC screening and surveillance colonoscopies. However, its impact seems to be less significant among experienced endoscopists and in real-world clinical scenarios compared to the controlled conditions of RCTs. Furthermore, it appears that GI Genius mainly enhances the detection of non-advanced, small polyps, but does not significantly impact the identification of advanced and difficult-to-detect adenoma. When using GI Genius, no complications were documented. Only a small number of studies reported an increased in withdrawal time or the removal of non-neoplastic lesions.
Collapse
Affiliation(s)
- Alberto Savino
- Division of Gastroenterology, Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | | | - Simone Rocchetto
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Gastroenterology and Hepatology, University of Milan, Milan, Italy
| | - Alessandra Piagnani
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Gastroenterology and Hepatology, University of Milan, Milan, Italy
| | - Niccolò Bina
- Gastroenterology Unit, Valduce Hospital, Como, Italy
| | - Pasquale Di Domenico
- Gastrointestinal Unit, Department of Medicine, Surgery & Dentistry Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| | - Francesco Segatta
- Gastroenterology Unit, Valduce Hospital, Como, Italy
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Gastroenterology and Hepatology, University of Milan, Milan, Italy
| | | |
Collapse
|
43
|
Han R, Acosta JN, Shakeri Z, Ioannidis JPA, Topol EJ, Rajpurkar P. Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review. Lancet Digit Health 2024; 6:e367-e373. [PMID: 38670745 PMCID: PMC11068159 DOI: 10.1016/s2589-7500(24)00047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
This scoping review of randomised controlled trials on artificial intelligence (AI) in clinical practice reveals an expanding interest in AI across clinical specialties and locations. The USA and China are leading in the number of trials, with a focus on deep learning systems for medical imaging, particularly in gastroenterology and radiology. A majority of trials (70 [81%] of 86) report positive primary endpoints, primarily related to diagnostic yield or performance; however, the predominance of single-centre trials, little demographic reporting, and varying reports of operational efficiency raise concerns about the generalisability and practicality of these results. Despite the promising outcomes, considering the likelihood of publication bias and the need for more comprehensive research including multicentre trials, diverse outcome measures, and improved reporting standards is crucial. Future AI trials should prioritise patient-relevant outcomes to fully understand AI's true effects and limitations in health care.
Collapse
Affiliation(s)
- Ryan Han
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Department of Computer Science, Stanford University, Stanford, CA, USA; University of California Los Angeles-Caltech Medical Scientist Training Program, Los Angeles, CA, USA
| | - Julián N Acosta
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Rad AI, San Francisco, CA, USA
| | - Zahra Shakeri
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - John P A Ioannidis
- Stanford Prevention Research Center, Department of Medicine, Stanford University, Stanford, CA, USA; Meta-Research Innovation Center at Stanford, Stanford University, Stanford, CA, USA
| | - Eric J Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA.
| | - Pranav Rajpurkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Okumura T, Imai K, Misawa M, Kudo SE, Hotta K, Ito S, Kishida Y, Takada K, Kawata N, Maeda Y, Yoshida M, Yamamoto Y, Minamide T, Ishiwatari H, Sato J, Matsubayashi H, Ono H. Evaluating false-positive detection in a computer-aided detection system for colonoscopy. J Gastroenterol Hepatol 2024; 39:927-934. [PMID: 38273460 DOI: 10.1111/jgh.16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND AND AIM Computer-aided detection (CADe) systems can efficiently detect polyps during colonoscopy. However, false-positive (FP) activation is a major limitation of CADe. We aimed to compare the rate and causes of FP using CADe before and after an update designed to reduce FP. METHODS We analyzed CADe-assisted colonoscopy videos recorded between July 2022 and October 2022. The number and causes of FPs and excessive time spent by the endoscopist on FP (ET) were compared pre- and post-update using 1:1 propensity score matching. RESULTS During the study period, 191 colonoscopy videos (94 and 97 in the pre- and post-update groups, respectively) were recorded. Propensity score matching resulted in 146 videos (73 in each group). The mean number of FPs and median ET per colonoscopy were significantly lower in the post-update group than those in the pre-update group (4.2 ± 3.7 vs 18.1 ± 11.1; P < 0.001 and 0 vs 16 s; P < 0.001, respectively). Mucosal tags, bubbles, and folds had the strongest association with decreased FP post-update (pre-update vs post-update: 4.3 ± 3.6 vs 0.4 ± 0.8, 0.32 ± 0.70 vs 0.04 ± 0.20, and 8.6 ± 6.7 vs 1.6 ± 1.7, respectively). There was no significant decrease in the true positive rate (post-update vs pre-update: 95.0% vs 99.2%; P = 0.09) or the adenoma detection rate (post-update vs pre-update: 52.1% vs 49.3%; P = 0.87). CONCLUSIONS The updated CADe can reduce FP without impairing polyp detection. A reduction in FP may help relieve the burden on endoscopists.
Collapse
Affiliation(s)
- Taishi Okumura
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kenichiro Imai
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Masashi Misawa
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Shin-Ei Kudo
- Digestive Disease Center, Showa University Northern Yokohama Hospital, Yokohama, Japan
| | - Kinichi Hotta
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Sayo Ito
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Kazunori Takada
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Noboru Kawata
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yuki Maeda
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Masao Yoshida
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yoichi Yamamoto
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | | | | | - Junya Sato
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | | | - Hiroyuki Ono
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
45
|
Lee MCM, Parker CH, Liu LWC, Farahvash A, Jeyalingam T. Impact of study design on adenoma detection in the evaluation of artificial intelligence-aided colonoscopy: a systematic review and meta-analysis. Gastrointest Endosc 2024; 99:676-687.e16. [PMID: 38272274 DOI: 10.1016/j.gie.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND AND AIMS Randomized controlled trials (RCTs) have reported that artificial intelligence (AI) improves endoscopic polyp detection. Different methodologies-namely, parallel and tandem designs-have been used to evaluate the efficacy of AI-assisted colonoscopy in RCTs. Systematic reviews and meta-analyses have reported a pooled effect that includes both study designs. However, it is unclear whether there are inconsistencies in the reported results of these 2 designs. Here, we aimed to determine whether study characteristics moderate between-trial differences in outcomes when evaluating the effectiveness of AI-assisted polyp detection. METHODS A systematic search of Ovid MEDLINE, Embase, Cochrane Central, Web of Science, and IEEE Xplore was performed through March 1, 2023, for RCTs comparing AI-assisted colonoscopy with routine high-definition colonoscopy in polyp detection. The primary outcome of interest was the impact of study type on the adenoma detection rate (ADR). Secondary outcomes included the impact of the study type on adenomas per colonoscopy and withdrawal time, as well as the impact of geographic location, AI system, and endoscopist experience on ADR. Pooled event analysis was performed using a random-effects model. RESULTS Twenty-four RCTs involving 17,413 colonoscopies (AI assisted: 8680; non-AI assisted: 8733) were included. AI-assisted colonoscopy improved overall ADR (risk ratio [RR], 1.24; 95% confidence interval [CI], 1.17-1.31; I2 = 53%; P < .001). Tandem studies collectively demonstrated improved ADR in AI-aided colonoscopies (RR, 1.18; 95% CI, 1.08-1.30; I2 = 0%; P < .001), as did parallel studies (RR, 1.26; 95% CI, 1.17-1.35; I2 = 62%; P < .001), with no statistical subgroup difference between study design. Both tandem and parallel study designs revealed improvement in adenomas per colonoscopy in AI-aided colonoscopies, but this improvement was more marked among tandem studies (P < .001). AI assistance significantly increased withdrawal times for parallel (P = .002), but not tandem, studies. ADR improvement was more marked among studies conducted in Asia compared to Europe and North America in a subgroup analysis (P = .007). Type of AI system used or endoscopist experience did not affect overall improvement in ADR. CONCLUSIONS Either parallel or tandem study design can capture the improvement in ADR resulting from the use of AI-assisted polyp detection systems. Tandem studies powered to detect differences in endoscopic performance through paired comparison may be a resource-efficient method of evaluating new AI-assisted technologies.
Collapse
Affiliation(s)
- Michelle C M Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Colleen H Parker
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Louis W C Liu
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Armin Farahvash
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Thurarshen Jeyalingam
- Division of Gastroenterology and Hepatology, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Gangwani MK, Haghbin H, Ishtiaq R, Hasan F, Dillard J, Jaber F, Dahiya DS, Ali H, Salim S, Lee-Smith W, Sohail AH, Inamdar S, Aziz M, Hart B. Single Versus Second Observer vs Artificial Intelligence to Increase the ADENOMA Detection Rate of Colonoscopy-A Network Analysis. Dig Dis Sci 2024; 69:1380-1388. [PMID: 38436866 PMCID: PMC11026252 DOI: 10.1007/s10620-024-08341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND AND AIMS Screening colonoscopy has significantly contributed to the reduction of the incidence of colorectal cancer (CRC) and its associated mortality, with adenoma detection rate (ADR) as the quality marker. To increase the ADR, various solutions have been proposed including the utilization of Artificial Intelligence (AI) and employing second observers during colonoscopies. In the interest of AI improving ADR independently, without a second observer, and the operational similarity between AI and second observer, this network meta-analysis aims at evaluating the effectiveness of AI, second observer, and a single observer in improving ADR. METHODS We searched the Medline, Embase, Cochrane, Web of Science Core Collection, Korean Citation Index, SciELO, Global Index Medicus, and Cochrane. A direct head-to-head comparator analysis and network meta-analysis were performed using the random-effects model. The odds ratio (OR) was calculated with a 95% confidence interval (CI) and p-value < 0.05 was considered statistically significant. RESULTS We analyzed 26 studies, involving 22,560 subjects. In the direct comparative analysis, AI demonstrated higher ADR (OR: 0.668, 95% CI 0.595-0.749, p < 0.001) than single observer. Dual observer demonstrated a higher ADR (OR: 0.771, 95% CI 0.688-0.865, p < 0.001) than single operator. In network meta-analysis, results were consistent on the network meta-analysis, maintaining consistency. No statistical difference was noted when comparing AI to second observer. (RR 1.1 (0.9-1.2, p = 0.3). Results were consistent when evaluating only RCTs. Net ranking provided higher score to AI followed by second observer followed by single observer. CONCLUSION Artificial Intelligence and second-observer colonoscopy showed superior success in Adenoma Detection Rate when compared to single-observer colonoscopy. Although not statistically significant, net ranking model favors the superiority of AI to the second observer.
Collapse
Affiliation(s)
| | - Hossein Haghbin
- Department of Gastroenterology and Hepatology, Ascension Providence Hospital, Southfield, MI, USA
| | - Rizwan Ishtiaq
- Department of Medicine, St Francis Hospital and Medical Center, Hartford, CT, USA
| | - Fariha Hasan
- Department of Internal Medicine, Cooper University Hospital, Camden, NJ, USA
| | - Julia Dillard
- Department of Medicine, University of Toledo Medical Center, Toledo, OH, USA
| | - Fouad Jaber
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Dushyant Singh Dahiya
- Department of Medicine, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Hassam Ali
- Department of Gastroenterology and Hepatology, East Carolina University Health, Greenville, NC, USA
| | - Shaharyar Salim
- Department of Internal Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Wade Lee-Smith
- University of Toledo Libraries, University of Toledo, Toledo, OH, USA
| | - Amir Humza Sohail
- Department of General Surgery, New York University Langone Health, Long Island, NY, USA
| | - Sumant Inamdar
- Department of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Muhammad Aziz
- Department of Gastroenterology and Hepatology, University of Toledo Medical Center, Toledo, OH, USA
| | - Benjamin Hart
- Depertment of Hepatology and Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
47
|
Karsenti D. Standard screening high-definition colonoscopy without any optimization device is no longer relevant: Time to move to optimized screening colonoscopy. Endosc Int Open 2024; 12:E463-E466. [PMID: 38550767 PMCID: PMC10978091 DOI: 10.1055/a-2280-7096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/16/2024] [Indexed: 11/13/2024] Open
Abstract
Optimizing the adenoma detection rate (ADR) is a major goal in colorectal cancer (CCR) screening, as it has long been established that ADR is inversely proportional to the risk of post-colonoscopy CRC occurrence. To achieve this goal, many optimization devices have been developed, and numerous randomized controlled trials have been conducted to evaluate the benefits of these devices compared with a "standard arm," which corresponds to date to high-definition white light (HD-WLI) colonoscopy. Numerous studies have confirmed the positive impact of various optimization devices, such as caps, computer-aided detection, and contrast-enhanced technologies. Moreover, the different ways in which the devices can impact ADR make them complementary. However, despite substantial and consistent data, practices remain unchanged, and HD-WLI colonoscopy, considered the "standard," is still routinely performed without any optimization devices. The objective of this viewpoint is to understand the barriers to change and to show why standard screening colonoscopy without the use of any optimization devices should no longer be considered relevant in 2024.
Collapse
Affiliation(s)
- David Karsenti
- Digestive Endoscopy Unit, Clinique Paris-Bercy, Charenton-le-Pont, France
- Centre d'Explorations Digestives, Paris, France
| |
Collapse
|
48
|
Lau LHS, Ho JCL, Lai JCT, Ho AHY, Wu CWK, Lo VWH, Lai CMS, Scheppach MW, Sia F, Ho KHK, Xiao X, Yip TCF, Lam TYT, Kwok HYH, Chan HCH, Lui RN, Chan TT, Wong MTL, Ho MF, Ko RCW, Hon SF, Chu S, Futaba K, Ng SSM, Yip HC, Tang RSY, Wong VWS, Chan FKL, Chiu PWY. Effect of Real-Time Computer-Aided Polyp Detection System (ENDO-AID) on Adenoma Detection in Endoscopists-in-Training: A Randomized Trial. Clin Gastroenterol Hepatol 2024; 22:630-641.e4. [PMID: 37918685 DOI: 10.1016/j.cgh.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND The effect of computer-aided polyp detection (CADe) on adenoma detection rate (ADR) among endoscopists-in-training remains unknown. METHODS We performed a single-blind, parallel-group, randomized controlled trial in Hong Kong between April 2021 and July 2022 (NCT04838951). Eligible subjects undergoing screening/surveillance/diagnostic colonoscopies were randomized 1:1 to receive colonoscopies with CADe (ENDO-AID[OIP-1]) or not (control) during withdrawal. Procedures were performed by endoscopists-in-training with <500 procedures and <3 years' experience. Randomization was stratified by patient age, sex, and endoscopist experience (beginner vs intermediate level, <200 vs 200-500 procedures). Image enhancement and distal attachment devices were disallowed. Subjects with incomplete colonoscopies or inadequate bowel preparation were excluded. Treatment allocation was blinded to outcome assessors. The primary outcome was ADR. Secondary outcomes were ADR for different adenoma sizes and locations, mean number of adenomas, and non-neoplastic resection rate. RESULTS A total of 386 and 380 subjects were randomized to CADe and control groups, respectively. The overall ADR was significantly higher in the CADe group than in the control group (57.5% vs 44.5%; adjusted relative risk, 1.41; 95% CI, 1.17-1.72; P < .001). The ADRs for <5 mm (40.4% vs 25.0%) and 5- to 10-mm adenomas (36.8% vs 29.2%) were higher in the CADe group. The ADRs were higher in the CADe group in both the right colon (42.0% vs 30.8%) and left colon (34.5% vs 27.6%), but there was no significant difference in advanced ADR. The ADRs were higher in the CADe group among beginner (60.0% vs 41.9%) and intermediate-level (56.5% vs 45.5%) endoscopists. Mean number of adenomas (1.48 vs 0.86) and non-neoplastic resection rate (52.1% vs 35.0%) were higher in the CADe group. CONCLUSIONS Among endoscopists-in-training, the use of CADe during colonoscopies was associated with increased overall ADR. (ClinicalTrials.gov, Number: NCT04838951).
Collapse
Affiliation(s)
- Louis H S Lau
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jacky C L Ho
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Jimmy C T Lai
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Agnes H Y Ho
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Claudia W K Wu
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Vincent W H Lo
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Carol M S Lai
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Markus W Scheppach
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; Gastroenterology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Felix Sia
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR
| | - Kyle H K Ho
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xiang Xiao
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; Medical Data Analytic Centre, The Chinese University of Hong Kong, Hong Kong SAR
| | - Terry C F Yip
- Medical Data Analytic Centre, The Chinese University of Hong Kong, Hong Kong SAR
| | - Thomas Y T Lam
- Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Hong Kong SAR
| | - Hanson Y H Kwok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Heyson C H Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rashid N Lui
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Ting-Ting Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Marc T L Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Man-Fung Ho
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rachel C W Ko
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Sok-Fei Hon
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Simon Chu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Koari Futaba
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Simon S M Ng
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Hon-Chi Yip
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR
| | - Raymond S Y Tang
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Francis K L Chan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Philip W Y Chiu
- Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR; Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
49
|
Bravo MC, Jiménez R, Parrado-Hernández E, Fernández JJ, Pellicer A. Predicting the effectiveness of drugs used for treating cardiovascular conditions in newborn infants. Pediatr Res 2024; 95:1124-1131. [PMID: 38092963 DOI: 10.1038/s41390-023-02964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/08/2023] [Accepted: 11/27/2023] [Indexed: 03/09/2024]
Abstract
BACKGROUND Cardiovascular support (CVS) treatment failure (TF) is associated with a poor prognosis in preterm infants. METHODS Medical charts of infants with a birth weight <1500 g who received either dopamine (Dp) or dobutamine (Db), were reviewed. Treatment response (TR) occurred if blood pressure increased >3rd centile for gestational age or superior vena cava flow was maintained >55 ml/kg/min, with decreased lactate or less negative base excess, without additional CVS. A predictive model of Dp and Db on TR was designed and the impact of TR on survival was analyzed. RESULTS Sixty-six infants (median gestational age 27.3 weeks, median birth weight 864 g) received Dp (n = 44) or Db (n = 22). TR occurred in 59% of the cases treated with Dp and 31% with Db, p = 0.04. Machine learning identified a model that correctly labeled Db response in 90% of the cases and Dp response in 61.4%. Sixteen infants died (9% of the TR group, 39% of the TF group; p = 0.004). Brain or gut morbidity-free survival was observed in 52% vs 30% in the TR and TF groups, respectively (p = 0.08). CONCLUSIONS New predictive models can anticipate Db but not Dp effectiveness in preterm infants. These algorithms may help the clinicians in the decision-making process. IMPACT Failure of cardiovascular support treatment increases the risk of mortality in very low birth weight infants. A predictive model built with machine learning techniques can help anticipate treatment response to dobutamine with high accuracy. Predictive models based on artificial intelligence may guide the clinicians in the decision-making process.
Collapse
Affiliation(s)
- María Carmen Bravo
- Department of Neonatology, La Paz University Hospital and IdiPaz (La Paz Hospital Institute for Health Research), Madrid, Spain.
| | - Raquel Jiménez
- Department of Neonatology, La Paz University Hospital and IdiPaz (La Paz Hospital Institute for Health Research), Madrid, Spain
- Department of Signal Theory and Communications, Carlos III University, Madrid, Spain
| | | | | | - Adelina Pellicer
- Department of Neonatology, La Paz University Hospital and IdiPaz (La Paz Hospital Institute for Health Research), Madrid, Spain
| |
Collapse
|
50
|
Maas MHJ, Neumann H, Shirin H, Katz LH, Benson AA, Kahloon A, Soons E, Hazzan R, Landsman MJ, Lebwohl B, Lewis SK, Sivanathan V, Ngamruengphong S, Jacob H, Siersema PD. A computer-aided polyp detection system in screening and surveillance colonoscopy: an international, multicentre, randomised, tandem trial. Lancet Digit Health 2024; 6:e157-e165. [PMID: 38395537 DOI: 10.1016/s2589-7500(23)00242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Studies on the effect of computer-aided detection (CAD) in a daily clinical screening and surveillance colonoscopy population practice are scarce. The aim of this study was to evaluate a novel CAD system in a screening and surveillance colonoscopy population. METHODS This multicentre, randomised, controlled trial was done in ten hospitals in Europe, the USA, and Israel by 31 endoscopists. Patients referred for non-immunochemical faecal occult blood test (iFOBT) screening or surveillance colonoscopy were included. Patients were randomomly assigned to CAD-assisted colonoscopy or conventional colonoscopy; a subset was further randomly assigned to undergo tandem colonoscopy: CAD followed by conventional colonoscopy or conventional colonoscopy followed by CAD. Primary objectives included adenoma per colonoscopy (APC) and adenoma per extraction (APE). Secondary objectives included adenoma miss rate (AMR) in the tandem colonoscopies. The study was registered at ClinicalTrials.gov, NCT04640792. FINDINGS A total of 916 patients were included in the modified intention-to-treat analysis: 449 in the CAD group and 467 in the conventional colonoscopy group. APC was higher with CAD compared with conventional colonoscopy (0·70 vs 0·51, p=0·015; 314 adenomas per 449 colonoscopies vs 238 adenomas per 467 colonoscopies; poisson effect ratio 1·372 [95% CI 1·068-1·769]), while showing non-inferiority of APE compared with conventional colonoscopy (0·59 vs 0·66; p<0·001 for non-inferiority; 314 of 536 extractions vs 238 of 360 extractions). AMR in the 127 (61 with CAD first, 66 with conventional colonoscopy first) patients completing tandem colonoscopy was 19% (11 of 59 detected during the second pass) in the CAD first group and 36% (16 of 45 detected during the second pass) in the conventional colonoscopy first group (p=0·024). INTERPRETATION CAD increased adenoma detection in non-iFOBT screening and surveillance colonoscopies and reduced adenoma miss rates compared with conventional colonoscopy, without an increase in the resection of non-adenomatous lesions. FUNDING Magentiq Eye.
Collapse
Affiliation(s)
- Michiel H J Maas
- Department of Gastroenterology & Hepatology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Helmut Neumann
- University Medical Center Mainz, Interventional Endoscopy Center, I Medizinische Klinik und Poliklinik, Mainz, Germany
| | - Haim Shirin
- Institute of Gastroenterology and Liver Diseases, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Lior H Katz
- Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Institute of Gastroenterology and Liver Diseases, Jerusalem, Israel
| | - Ariel A Benson
- Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Institute of Gastroenterology and Liver Diseases, Jerusalem, Israel
| | - Arslan Kahloon
- College of Medicine, Division of Gastroenterology, University of Tennessee, Chattanooga, TN, USA
| | - Elsa Soons
- Department of Gastroenterology & Hepatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rawi Hazzan
- Assuta Centers, Haifa Gastroenterology Institute, Haifa, Israel
| | - Marc J Landsman
- Department of Gastroenterology, MetroHealth Medical Center, Cleveland, OH, USA
| | - Benjamin Lebwohl
- Department of Gastroenterology, Columbia University Irving Medical Center, New York, NY, USA
| | - Suzanne K Lewis
- Department of Gastroenterology, Columbia University Irving Medical Center, New York, NY, USA
| | - Visvakanth Sivanathan
- University Medical Center Mainz, Interventional Endoscopy Center, I Medizinische Klinik und Poliklinik, Mainz, Germany
| | | | - Harold Jacob
- Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Institute of Gastroenterology and Liver Diseases, Jerusalem, Israel
| | - Peter D Siersema
- Department of Gastroenterology & Hepatology, Radboud University Medical Center, Nijmegen, Netherlands; Department of Gastroenterology & Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|