1
|
Thakkar K, Karajgi AR, Kallamvalappil AM, Avanthika C, Jhaveri S, Shandilya A, Anusheel, Al-Masri R. Sudden cardiac death in childhood hypertrophic cardiomyopathy. Dis Mon 2023; 69:101548. [PMID: 36931945 DOI: 10.1016/j.disamonth.2023.101548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The most prevalent cause of mortality in children with hypertrophic cardiomyopathy (HCM) is sudden cardiac death (SCD), which happens more frequently than in adult patients. Risk stratification tactics have generally been drawn from adult practice, however emerging data has revealed significant disparities between children and adult cohorts, implying the need for pediatric-specific risk stratification methodologies. We conducted an all-language literature search on Medline, Cochrane, Embase, and Google Scholar until October 2021. The following search strings and Medical Subject Heading (MeSH) terms were used: "HCM," "SCD," "Sudden Cardiac Death," and "Childhood Onset HCM." We explored the literature on the risk of SCD in HCM for its epidemiology, pathophysiology, the role of various genes and their influence, associated complications leading to SCD and preventive and treatment modalities. Childhood-onset HCM is linked to significant life-long morbidity and mortality, including a higher SCD rate in children than in adults. The present focus is on symptom relief and avoiding illness-related consequences, but the prospect of future disease-modifying medicines offers an intriguing opportunity to alter disease expression and outcomes in these young individuals. Current preventive recommendations promote implantable cardioverter defibrillator placement based on cumulative risk factor thresholds, although they have been demonstrated to have weak discriminating capacity. This article addresses questions and discusses the etiology, risk factors, and method to risk stratification for SCD in children with HCM.
Collapse
Affiliation(s)
- Keval Thakkar
- G.M.E.R.S. Medical College and General Hospital, Gandhinagar, India
| | | | | | - Chaithanya Avanthika
- Karnataka Institute of Medical /Sciences, PB Rd, Vidya Nagar, Hubli, Karnataka, India.
| | | | | | - Anusheel
- Ryazan State I P Pavlov Medical Institute, Ryazan, Russia
| | - Rayan Al-Masri
- Jordan University of Science and technology, Irbid, Jordan
| |
Collapse
|
2
|
Di Toro A, Urtis M, Narula N, Giuliani L, Grasso M, Pasotti M, Pellegrini C, Serio A, Pilotto A, Antoniazzi E, Rampino T, Magrassi L, Valentini A, Cavallini A, Scelsi L, Ghio S, Abelli M, Olivotto I, Porcu M, Gavazzi A, Kodama T, Arbustini E. Impediments to Heart Transplantation in Adults With MELAS:m.3243A>G Cardiomyopathy. J Am Coll Cardiol 2022; 80:1431-1443. [DOI: 10.1016/j.jacc.2022.04.067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 01/07/2023]
|
3
|
Monda E, Rubino M, Lioncino M, Di Fraia F, Pacileo R, Verrillo F, Cirillo A, Caiazza M, Fusco A, Esposito A, Fimiani F, Palmiero G, Pacileo G, Calabrò P, Russo MG, Limongelli G. Hypertrophic Cardiomyopathy in Children: Pathophysiology, Diagnosis, and Treatment of Non-sarcomeric Causes. Front Pediatr 2021; 9:632293. [PMID: 33718303 PMCID: PMC7947260 DOI: 10.3389/fped.2021.632293] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a myocardial disease characterized by left ventricular hypertrophy not solely explained by abnormal loading conditions. Despite its rare prevalence in pediatric age, HCM carries a relevant risk of mortality and morbidity in both infants and children. Pediatric HCM is a large heterogeneous group of disorders. Other than mutations in sarcomeric genes, which represent the most important cause of HCM in adults, childhood HCM includes a high prevalence of non-sarcomeric causes, including inherited errors of metabolism (i.e., glycogen storage diseases, lysosomal storage diseases, and fatty acid oxidation disorders), malformation syndromes, neuromuscular diseases, and mitochondrial disease, which globally represent up to 35% of children with HCM. The age of presentation and the underlying etiology significantly impact the prognosis of children with HCM. Moreover, in recent years, different targeted approaches for non-sarcomeric etiologies of HCM have emerged. Therefore, the etiological diagnosis is a fundamental step in designing specific management and therapy in these subjects. The present review aims to provide an overview of the non-sarcomeric causes of HCM in children, focusing on the pathophysiology, clinical features, diagnosis, and treatment of these rare disorders.
Collapse
Affiliation(s)
- Emanuele Monda
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marta Rubino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Lioncino
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Di Fraia
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Roberta Pacileo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Verrillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annapaola Cirillo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Caiazza
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Adelaide Fusco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Augusto Esposito
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabio Fimiani
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Palmiero
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Pacileo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Giovanna Russo
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, London, United Kingdom
| |
Collapse
|
4
|
Nasser NH, Simri MM, Bishara NK, Habib MG, Nasir NN. Children with heart transplants: Lessons learned from 774 visits at a primary community clinic. Pediatr Transplant 2020; 24:e13617. [PMID: 31880042 DOI: 10.1111/petr.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/05/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
Aims Unexpected decompensation of PHTRs may surprise, when the patient is at home. If the PHTR lives a distance from transplant center, the task of identifying risk factors of allograft rejection/dysfunction falls primarily on the PCP in the PCC, whether or not they are knowledgeable toward pediatric heart-transplantation. Methods We reviewed the medical reports of three heart-transplanted children in our periphery clinic between the years 2005 and 2019. Results The unexpected death of one patient, hours after he left our health facility, was the impetus for writing this article. Another heart transplant child attended our periphery clinic for 774 visits. Majority of visits were casual, others were scheduled, and the rest were for administrative affairs. We referred the PHTR to the transplantation center in 9% of all visits. In remaining 91% visits, we handled problems locally. Conclusions One of the important lessons we have learned through handling the PHTR at the PCC is that, during daily workflows and dealing with the occasional visits of a heart transplant child, related critical clinical information to allograft rejection or its dysfunction can easily evade from awareness of the attending physician. Through this study, we demonstrated that a program of summoning the PHTR to "initiated monthly visits" at the PCC enables the PCP to be maximally aware of critical clinical information, in addition to limiting futile referrals of 91% of the visits to specialized centers, without adversely affecting the prognosis.
Collapse
Affiliation(s)
- Nadim H Nasser
- Clalit Health Organization, Haifa, Israel.,Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | | | | | - Mona G Habib
- A Pediatric Neurologist at Pediatric Neurology Unit, Rambam Medical Center, Haifa, Israel
| | - Nadir N Nasir
- General Surgery Department, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
5
|
Weiner JG, Lambert AN, Thurm C, Hall M, Soslow JH, Reimschisel TE, Bearl DW, Dodd DA, Feingold B, Godown J. Heart Transplantation in Children with Mitochondrial Disease. J Pediatr 2020; 217:46-51.e4. [PMID: 31711761 PMCID: PMC7012680 DOI: 10.1016/j.jpeds.2019.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/19/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To compare the outcomes and comorbidities of children with mitochondrial disease undergoing heart transplantation with children without mitochondrial disease. STUDY DESIGN Using a unique linkage between the Pediatric Health Information System and Scientific Registry of Transplant Recipients databases, pediatric heart transplantation recipients from 2002 to 2016 with a diagnosis of cardiomyopathy were included. Post heart transplantation survival and morbidities were compared between patients with and without mitochondrial disease. RESULTS A total of 1330 patients were included, including 47 (3.5%) with mitochondrial disease. Survival after heart transplantation was similar between patients with and without mitochondrial disease over a median follow-up of 4 years. Patients with mitochondrial disease were more likely to have a stroke after heart transplantation (11% vs 3%; P = .009), require a longer duration of mechanical ventilation after heart transplantation (3 days vs 1 day; P < .001), and have a longer intensive care unit stay after heart transplantation (10 vs 6 days; P = .007). The absence of a hospital readmission within the first post-transplant year was similar among patients with and without mitochondrial disease (61.7% vs 51%; P = .14). However, patients with mitochondrial disease who were readmitted demonstrated a longer length of stay compared with those without (median, 14 days vs 8 days; P = .03). CONCLUSIONS Patients with mitochondrial disease can successfully undergo heart transplantation with survival comparable with patients without mitochondrial disease. Patients with mitochondrial disease have greater risk for post-heart transplantation morbidities including stroke, prolonged mechanical ventilation, and longer intensive care unit and readmission length of stay. These results suggest that the presence of mitochondrial disease should not be an absolute contraindication to heart transplantation in the appropriate clinical setting.
Collapse
Affiliation(s)
- Jeffrey G. Weiner
- Pediatric Cardiology, Monroe Carell Jr. Children’s Hospital, Nashville, TN
| | - Andrea N. Lambert
- Pediatric Cardiology, Monroe Carell Jr. Children’s Hospital, Nashville, TN
| | - Cary Thurm
- Children’s Hospital Association, Lenexa, KS
| | - Matt Hall
- Children’s Hospital Association, Lenexa, KS
| | - Jonathan H. Soslow
- Pediatric Cardiology, Monroe Carell Jr. Children’s Hospital, Nashville, TN
| | | | - David W. Bearl
- Pediatric Cardiology, Monroe Carell Jr. Children’s Hospital, Nashville, TN
| | - Debra A. Dodd
- Pediatric Cardiology, Monroe Carell Jr. Children’s Hospital, Nashville, TN
| | - Brian Feingold
- Pediatrics and Clinical and Translational Science, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Justin Godown
- Pediatric Cardiology, Monroe Carell Jr. Children’s Hospital, Nashville, TN
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Mitochondrial disorders are an increasingly recognized cause of heart dysfunction, with the primary manifestations being cardiomyopathy and conduction defects. This review focuses on the complex genetics of mitochondrial disease and recently discovered conditions that affect mitochondrial function. RECENT FINDINGS Next-generation sequencing techniques, especially whole-exome sequencing, have led to the discovery of a number of conditions that cause mitochondrial dysfunction and subsequent cardiac abnormalities. Nuclear DNA defects are the main cause of mitochondrial disease in children, with disease pathogenesis being related to either abnormalities in specific mitochondrial electron transport chain subunits or in proteins related to subunit or mitochondrial DNA maintenance, mitochondrial protein translation, lipid bilayer structure, or other aspects of mitochondrial function. SUMMARY Currently, symptomatic therapy using standard medications targeting relief of complications is the primary approach to treatment. There are no US Food and Drug Administration-approved therapies for the specific treatment of mitochondrial disease. However, on the basis of recent advances in understanding of the pathophysiology of these complex disorders, various novel approaches are either in clinical trials or in development.
Collapse
Affiliation(s)
- Gregory M Enns
- Department of Pediatrics, Stanford University, Stanford, California, USA
| |
Collapse
|
7
|
Marsico F, D'Andrea C, Parente A, De Martino F, Capasso L, Raimondi F, Paolillo S, Dellegrottaglie S, Marciano C, Trimarco B, Perrone Filardi P. Hypertrophic cardiomyopathy in mitochondrial disorders: description of an uncommon clinical case. Eur J Heart Fail 2017; 19:1201-1204. [DOI: 10.1002/ejhf.858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/25/2017] [Accepted: 03/28/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Fabio Marsico
- Department of Advanced Biomedical Sciences; University of Naples Federico II; Naples Italy
| | - Claudia D'Andrea
- Department of Advanced Biomedical Sciences; University of Naples Federico II; Naples Italy
| | - Antonio Parente
- Department of Advanced Biomedical Sciences; University of Naples Federico II; Naples Italy
| | - Fabiana De Martino
- Department of Advanced Biomedical Sciences; University of Naples Federico II; Naples Italy
| | - Letizia Capasso
- Department of Translational Medical Sciences; University of Naples Federico II; Naples Italy
| | - Francesco Raimondi
- Department of Translational Medical Sciences; University of Naples Federico II; Naples Italy
| | | | | | | | - Bruno Trimarco
- Department of Advanced Biomedical Sciences; University of Naples Federico II; Naples Italy
| | | |
Collapse
|
8
|
Hsu YHR, Yogasundaram H, Parajuli N, Valtuille L, Sergi C, Oudit GY. MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis. Heart Fail Rev 2016; 21:103-116. [PMID: 26712328 DOI: 10.1007/s10741-015-9524-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.
Collapse
Affiliation(s)
- Ying-Han R Hsu
- Department of Laboratory Medicine and Pathology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Haran Yogasundaram
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Nirmal Parajuli
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Lucas Valtuille
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, 8440 112 Street NW, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
9
|
Brunel-Guitton C, Levtova A, Sasarman F. Mitochondrial Diseases and Cardiomyopathies. Can J Cardiol 2015; 31:1360-76. [DOI: 10.1016/j.cjca.2015.08.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/31/2022] Open
|
10
|
Abstract
Mitochondrial dysfunction has been shown to be involved in the pathophysiology of arrhythmia, not only in inherited cardiomyopathy due to specific mutations in the mitochondrial DNA but also in acquired cardiomyopathy such as ischemic or diabetic cardiomyopathy. This article briefly discusses the basics of mitochondrial physiology and details the mechanisms generating arrhythmias due to mitochondrial dysfunction. The clinical spectrum of inherited and acquired cardiomyopathies associated with mitochondrial dysfunction is discussed followed by general aspects of the management of mitochondrial cardiomyopathy and related arrhythmia.
Collapse
Affiliation(s)
- David Montaigne
- Lille University, Inserm U1011, European Genomic Institute for Diabetes, Place de Verdun-amphi J&K, Lille F-59045, France; Institut Pasteur de Lille, Boulevard Louis XV, Lille F-59019, France; Cardiovascular Explorations Department, University Hospital of Lille, Lille F-59000, France.
| | - Anju Duva Pentiah
- Cardiovascular Explorations Department, University Hospital of Lille, Lille F-59000, France; Division of Cardiomyopathy, Department of Cardiology, University Hospital of Lille, Rue du Pr Laguesse, Lille F-59000, France
| |
Collapse
|
11
|
Cardiomyopathy in neurological disorders. Cardiovasc Pathol 2013; 22:389-400. [PMID: 23433859 DOI: 10.1016/j.carpath.2012.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/26/2012] [Accepted: 12/30/2012] [Indexed: 12/13/2022] Open
Abstract
According to the American Heart Association, cardiomyopathies are classified as primary (solely or predominantly confined to heart muscle), secondary (those showing pathological myocardial involvement as part of a neuromuscular disorder) and those in which cardiomyopathy is the first/predominant manifestation of a neuromuscular disorder. Cardiomyopathies may be further classified as hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, or unclassified cardiomyopathy (noncompaction, Takotsubo-cardiomyopathy). This review focuses on secondary cardiomyopathies and those in which cardiomyopathy is the predominant manifestation of a myopathy. Any of them may cause neurological disease, and any of them may be a manifestation of a neurological disorder. Neurological disease most frequently caused by cardiomyopathies is ischemic stroke, followed by transitory ischemic attack, syncope, or vertigo. Neurological disease, which most frequently manifests with cardiomyopathies are the neuromuscular disorders. Most commonly associated with cardiomyopathies are muscular dystrophies, myofibrillar myopathies, congenital myopathies and metabolic myopathies. Management of neurological disease caused by cardiomyopathies is not at variance from the same neurological disorders due to other causes. Management of secondary cardiomyopathies is not different from that of cardiomyopathies due to other causes either. Patients with neuromuscular disorders require early cardiologic investigations and close follow-ups, patients with cardiomyopathies require neurological investigation and avoidance of muscle toxic medication if a neuromuscular disorder is diagnosed. Which patients with cardiomyopathy profit most from primary stroke prevention is unsolved and requires further investigations.
Collapse
|
12
|
Bates MGD, Bourke JP, Giordano C, d'Amati G, Turnbull DM, Taylor RW. Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management. Eur Heart J 2012; 33:3023-33. [PMID: 22936362 PMCID: PMC3530901 DOI: 10.1093/eurheartj/ehs275] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/16/2012] [Accepted: 08/07/2012] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial disease refers to a heterogenous group of genetic disorders that result from dysfunction of the final common pathway of energy metabolism. Mitochondrial DNA mutations affect key components of the respiratory chain and account for the majority of mitochondrial disease in adults. Owing to critical dependence of the heart on oxidative metabolism, cardiac involvement in mitochondrial disease is common and may occur as the principal clinical manifestation or part of multisystem disease. Recent advances in our understanding of the clinical spectrum and genetic aetiology of cardiac involvement in mitochondrial DNA disease have important implications for cardiologists in terms of the investigation and multi-disciplinary management of patients.
Collapse
Affiliation(s)
- Matthew G. D. Bates
- Wellcome Trust Centre for Mitochondrial
Research, Institute for Ageing and Health, The Medical School,
Newcastle University, Newcastle upon Tyne NE2 4HH,
UK
- Newcastle upon Tyne Hospitals NHS Foundation
Trust, Newcastle upon Tyne NE7 7DN,
UK
| | - John P. Bourke
- Newcastle upon Tyne Hospitals NHS Foundation
Trust, Newcastle upon Tyne NE7 7DN,
UK
| | - Carla Giordano
- Department of Radiology, Oncology and
Pathology, Sapienza University,
Rome, Italy
| | - Giulia d'Amati
- Department of Radiology, Oncology and
Pathology, Sapienza University,
Rome, Italy
| | - Douglass M. Turnbull
- Wellcome Trust Centre for Mitochondrial
Research, Institute for Ageing and Health, The Medical School,
Newcastle University, Newcastle upon Tyne NE2 4HH,
UK
- Newcastle upon Tyne Hospitals NHS Foundation
Trust, Newcastle upon Tyne NE7 7DN,
UK
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial
Research, Institute for Ageing and Health, The Medical School,
Newcastle University, Newcastle upon Tyne NE2 4HH,
UK
| |
Collapse
|
13
|
Schiff M, Bénit P, Jacobs HT, Vockley J, Rustin P. Therapies in inborn errors of oxidative metabolism. Trends Endocrinol Metab 2012; 23:488-95. [PMID: 22633959 PMCID: PMC4135311 DOI: 10.1016/j.tem.2012.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 11/21/2022]
Abstract
Mitochondrial diseases encompass a wide range of presentations and mechanisms, dictating a need to consider both broad-based and disease-specific therapies. The manifestations of mitochondrial dysfunction and the response to therapy vary between individuals. This probably reflects the genetic complexity of mitochondrial biology, which requires an excess of 2000 genes for proper function, with numerous interfering epigenetic and environmental factors. Accordingly, we are increasingly aware of the complexity of these diseases which involve far more than merely decreased ATP supply. Indeed, recent therapeutic progress has addressed only specific disease entities. In this review present and prospective therapeutic approaches will be discussed on the basis of targets and mechanism of action, but with a broad outlook on their potential applications.
Collapse
Affiliation(s)
- Manuel Schiff
- Institut National de la Santé et de la Recherche Médicale Unité 676, Hôpital Robert Debré, F-75019 Paris, France
| | | | | | | | | |
Collapse
|
14
|
Finsterer J. Stroke and Stroke-like Episodes in Muscle Disease. Open Neurol J 2012; 6:26-36. [PMID: 22715346 PMCID: PMC3377871 DOI: 10.2174/1874205x01206010026] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/02/2012] [Accepted: 04/11/2012] [Indexed: 12/13/2022] Open
Abstract
Background: Though not obvious at a first glance, myopathies may be associated with ischemic stroke. Stroke-like episodes resemble ischemic stroke only to some extent but are a unique feature of certain mitochondrial disorders with a pathogenesis at variance from that of ischemic stroke. Only limited data are available about ischemic stroke in pri-mary myopathies and the management of stroke-like episodes in mitochondrial disorders. This review aims to summarize and discuss current knowledge about stroke in myopathies and to delineate stroke-like episodes from ischemic stroke. Methods: Literature review via PubMED using the search terms “stroke”, “cerebrovascular”, “ischemic event”, “stroke-like episode”, “stroke-mimic”, “mitochondrial disorder”. Results: Stroke in myopathies is most frequently cardioembolic due to atrial fibrillation or atrial flutter, dilated cardio-myopathy, or left-ventricular hypertrabeculation (noncompaction). The second most frequent cause of stroke in myopathies is angiopathy from atherosclerosis or vasculitis, which may be a feature of inflammatory myopathies. Athero-sclerosis may either result from classical risk factors, such as diabetes, arterial hypertension, hyperlpidemia, or smoking, associated with muscle disease, or may be an inherent feature of a mitochondrial disorder. In case of severe heart failure from cardiomyopathy as a manifestation of muscle disease low flow infarcts may occur. Thrombophilic stroke has been described in polymyositis and dermatomyositis in association with anti-phospholipid syndrome. Stroke-like episodes occur particularly in mitochondrial encephalopathy, lactacidosis and stroke-likeepisode syndrome but rarely also in Leigh-syndrome and other mitochondrial disorders. Stroke-like episodes are at variance from ischemic stroke, pathogenically, clinically and on imaging. They may be the manifestation of a vascular, metabolic or epileptic process and present with predominantly vasogenic but also cytotoxic edema on MRI. Differentiation between ischemic stroke and stroke-like episodes is essential in terms of management and prognosis. Management of ischemic stroke in patients with myopathy is not at variance from the treatment of ischemic stroke in non-myopathic patients. There is no standardized treatment of stroke-like episodes but there is increasing evidence that these patients profit from the administration of L-arginine and conse-quent antiepileptic treatment if associated with seizure activity. Conclusions: Ischemic stroke may be a complication of myopathy and needs to be delineated from stroke-like episodes, which are unique to mitochondrial disorders, particularly mitochondrial encephalopathy, lactacidosis and stroke-likeepisode syndrome. Ischemic stroke in myopathies is most frequently cardioembolic and treatment is not at variance from non-myopathic ischemic stroke. Treatment of stroke-like episodes is not standardized but seems to respond to L-arginine and adequate antiepileptic treatment.
Collapse
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Danube University Krems, Austria
| |
Collapse
|
15
|
Golden AS, Law YM, Shurtleff H, Warner M, Saneto RP. Mitochondrial electron transport chain deficiency, cardiomyopathy, and long-term cardiac transplant outcome. Pediatr Transplant 2012; 16:265-8. [PMID: 22248292 DOI: 10.1111/j.1399-3046.2011.01635.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organ transplantation in multisystemic mitochondrial cytopathies is usually not performed because of perceived untoward complications. We report three patients with demonstrated oxidative phosphorylation defects and dilated cardiomyopathy who underwent cardiac transplant. All three patients tolerated immunosuppression medications and have had an excellent long-term outcome. Our results suggest that with proper patient selection in this population, cardiac transplantation is feasible and can have good outcomes.
Collapse
Affiliation(s)
- Alana S Golden
- Division of Pediatric Neurology, Seattle Children's Hospital and University of Washington, Seattle, WA 98105, USA
| | | | | | | | | |
Collapse
|
16
|
Bates MGD, Nesbitt V, Kirk R, He L, Blakely EL, Alston CL, Brodlie M, Hasan A, Taylor RW, McFarland R. Mitochondrial respiratory chain disease in children undergoing cardiac transplantation: a prospective study. Int J Cardiol 2011; 155:305-6. [PMID: 22188990 DOI: 10.1016/j.ijcard.2011.11.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/27/2011] [Indexed: 11/16/2022]
|
17
|
Cwerman-Thibault H, Sahel JA, Corral-Debrinski M. Mitochondrial medicine: to a new era of gene therapy for mitochondrial DNA mutations. J Inherit Metab Dis 2011; 34:327-44. [PMID: 20571866 DOI: 10.1007/s10545-010-9131-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/12/2010] [Accepted: 05/17/2010] [Indexed: 01/01/2023]
Abstract
Mitochondrial disorders can no longer be ignored in most medical disciplines. Such disorders include specific and widespread organ involvement, with tissue degeneration or tumor formation. Primary or secondary actors, mitochondrial dysfunctions also play a role in the aging process. Despite progresses made in identification of their molecular bases, nearly everything remains to be done as regards therapy. Research dealing with mitochondrial physiology and pathology has >20 years of history around the world. We are involved, as are many other laboratories, in the challenge of finding ways to fight these diseases. However, our main limitation is the scarcety of animal models required for both understanding the molecular mechanisms underlying the diseases and evaluating therapeutic strategies. This is especially true for diseases due to mutations in mitochondrial DNA (mtDNA), since an authentic genetic model of mtDNA mutations is technically a very difficult task due to both the inability of manipulating the mitochondrial genome of living mammalian cells and to its multicopy nature. This has led researchers in the field to consider the prospect of gene therapy approaches that can roughly be divided into three groups: (1) import of wild-type copies or relevant sections of DNA or RNA into mitochondria, (2) manipulation of mitochondrial genetic content, and (3) rescue of a defect by expression of an engineered gene product from the nucleus (allotopic or xenotropic expression). We briefly introduce these concepts and indicate where promising progress has been made in the last decade.
Collapse
|
18
|
Nesbitt V, Whittaker RG, Turnbull DM, McFarland R, Taylor RW. mtDNA disease for the neurologist. FUTURE NEUROLOGY 2011. [DOI: 10.2217/fnl.10.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inherited and acquired mutations of mtDNA cause an extraordinary group of diseases that are associated with a diverse panoply of neurological and non-neurological features. These diseases are surprisingly common and are often severely debilitating and readily transmitted through families. Remarkable advances in understanding molecular mechanisms have been made since the first pathogenic mtDNA mutations were identified in 1988, and while widely available genetic techniques have facilitated diagnosis, the complexities of mitochondrial genetics leave the neurologist facing important challenges in recognizing, managing and counseling patients with mtDNA mutations. In this article, we will discuss the clinical phenotypes associated with mtDNA disease, current diagnostic strategies, disease management and genetic counseling, as well as presenting new developments in preventing disease transmission and secondary complications.
Collapse
Affiliation(s)
- Victoria Nesbitt
- Mitochondrial Research Group, Institute for Ageing & Health, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Roger G Whittaker
- Mitochondrial Research Group, Institute for Ageing & Health, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Douglass M Turnbull
- Mitochondrial Research Group, Institute for Ageing & Health, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | - Robert McFarland
- Mitochondrial Research Group, Institute for Ageing & Health, The Medical School, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | | |
Collapse
|
19
|
Abstract
Until even only a few years ago, the idea that effective therapies for human mitochondrial disorders resulting from the dysfunction of the respiratory chain/oxidative phosphorylation system (OxPhos) could be developed was unimaginable. The obstacles to treating diseases caused by mutations in either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA), and which had the potential to affect nearly every organ system, seemed overwhelming. However, although clinically applicable therapies remain largely in the future, the landscape has changed dramatically and we can now envision the possibility of treating some of these disorders. Among these are techniques to upregulate mitochondrial biogenesis, enhance organellar fusion and fission, "shift heteroplasmy" and eliminate the burden of mutant mtDNAs via cytoplasmic transfer.
Collapse
Affiliation(s)
- Eric A Schon
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| | | | | | | |
Collapse
|
20
|
Fayssoil A. Heart diseases in mitochondrial encephalomyopathy, lactic acidosis, and stroke syndrome. ACTA ACUST UNITED AC 2010; 15:284-7. [PMID: 19925507 DOI: 10.1111/j.1751-7133.2009.00108.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke (MELAS) syndrome is a mitochondrial genetic disorder caused by a point mutation, resulting in the substitution of guanine for adenine at nucleotide 3243 (A3243G) of mitochondrial DNA. This disease is characterized by a multisystem disorder with variable manifestations. The authors review heart involvement in this disease.
Collapse
Affiliation(s)
- Abdallah Fayssoil
- Critical Care Medicine, Boulevard Raymond-Poincare, Raymond Poincare Hospital, Garches, Ile de France 92380, France.
| |
Collapse
|
21
|
Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:297-348. [PMID: 20078222 DOI: 10.1146/annurev.pathol.4.110807.092314] [Citation(s) in RCA: 523] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been linked to a wide range of degenerative and metabolic diseases, cancer, and aging. All these clinical manifestations arise from the central role of bioenergetics in cell biology. Although genetic therapies are maturing as the rules of bioenergetic genetics are clarified, metabolic therapies have been ineffectual. This failure results from our limited appreciation of the role of bioenergetics as the interface between the environment and the cell. A systems approach, which, ironically, was first successfully applied over 80 years ago with the introduction of the ketogenic diet, is required. Analysis of the many ways that a shift from carbohydrate glycolytic metabolism to fatty acid and ketone oxidative metabolism may modulate metabolism, signal transduction pathways, and the epigenome gives us an appreciation of the ketogenic diet and the potential for bioenergetic therapeutics.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics and Departments of Biological Chemistry, Ecology and Evolutionary Biology, and Pediatrics, University of California at Irvine, Irvine, California 92697-3940, USA.
| | | | | |
Collapse
|
22
|
Vater Y, Dembo G, Martay K, Klein Y, Vitin A, Weinbroum AA. Drug management in emergent liver transplantation of mitochondrial disorder carriers: review of the literature. Clin Transplant 2010; 24:E43-53. [PMID: 20141521 DOI: 10.1111/j.1399-0012.2009.01203.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mitochondrial respiratory-chain disorders (MRCD) lead to progressive disabling of neurological and cellular conditions that involve muscles, brain, kidney, and liver dysfunction. Affected individuals may need surgery, including orthotopic liver transplantation (OLT). Surgery poses anesthesia challenges because of the prolonged use of anesthetic drugs and sedatives, which may inhibit oxidative phosphorylation, mimic mitochondrial cytopathic disorders, or unveil them ex novo. MATERIALS AND METHODS We conducted a multilingual PubMed search of surgical and non-surgical anesthesia reports between the years 1992 and 2008, where anesthetic drugs were used in MRCD patients, especially for those undergoing urgent OLTs. RESULTS There were 51 case reports of 210 anesthesia and critical care interventions in patients with MRCD, a large part of them were children. Data pertaining to the safe usage of anesthesia and perioperative drugs were limited and conflicting. We found no article that addressed the issue of perioperative handling of urgent OLT in MRCD patients. We therefore suggest our own - although limited - experience for such occasions. CONCLUSION There are no randomized, controlled, trial-based indications regarding safe anesthetic drugs to be used perioperatively in MRCD carriers. Consultation among geneticists, anesthesiologists, intensivists, and surgeons is essential in patients with known/suspected metabolic syndrome for planning appropriate perioperative care.
Collapse
Affiliation(s)
- Youri Vater
- Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
23
|
DiMauro S, Hirano M. Pathogenesis and treatment of mitochondrial disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:139-70. [PMID: 20225024 PMCID: PMC10440730 DOI: 10.1007/978-90-481-2813-6_10] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 50 years, our understanding of the biochemical and molecular causes of mitochondrial diseases, defined restrictively as disorders due to defects of the mitochondrial respiratory chain (RC), has made great strides. Mitochondrial diseases can be due to mutations in mitochondrial DNA (mtDNA) or in nuclear DNA (nDNA) and each group can be subdivided into more specific classes. Thus, mtDNA-related disorders can result from mutations in genes affecting protein synthesis in toto or mutations in protein-coding genes. Mendelian mitochondrial disorders can be attributed to mutations in genes that (i) encode subunits of the RC ("direct hits"); (ii) encode assembly proteins or RC complexes ("indirect hits"); (iii) encode factors needed for mtDNA maintenance, replication, or translation (intergenomic signaling); (iv) encode components of the mitochondrial protein import machinery; (v) control the synthesis and composition of mitochondrial membrane phospholipids; and (vi) encode proteins involved in mitochondrial dynamics.In contrast to this wealth of knowledge about etiology, our understanding of pathogenic mechanism is very limited. We discuss pathogenic factors that can influence clinical expression, especially ATP shortage and reactive oxygen radicals (ROS) excess. Therapeutic options are limited and fall into three modalities: (i) symptomatic interventions, which are palliative but crucial for day-to-day management; (ii) radical approaches aimed at correcting the biochemical or molecular error, which are interesting but still largely experimental; and (iii) pharmacological means of interfering with the pathogenic cascade of events (e.g. boosting ATP production or scavenging ROS), which are inconsistently and incompletely effective, but can be safe and helpful.
Collapse
Affiliation(s)
- Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, 3-313 Russ Berrie Medical Science Pavilion, New York, NY 10032, USA.
| | | |
Collapse
|
24
|
Dimauro S, Rustin P. A critical approach to the therapy of mitochondrial respiratory chain and oxidative phosphorylation diseases. Biochim Biophys Acta Mol Basis Dis 2008; 1792:1159-67. [PMID: 19026744 DOI: 10.1016/j.bbadis.2008.10.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/09/2008] [Accepted: 10/11/2008] [Indexed: 12/17/2022]
Abstract
Taking advantage of a series of questions raised by an association of patients with mitochondrial disease, this review, after a brief overview of basic concepts of mitochondrial bioenergetics and genetics, discusses the pros and cons of a number of practical options in the field of mitochondrial therapy. This makes it clear that, in contrast to the spectacular progress in our understanding of the biochemical and molecular bases of the mitochondrial diseases defined restrictively as disorders due to defects in the mitochondrial respiratory chain, we are still extremely limited in our ability to treat these conditions. We finally discussed the emerging genetic-based strategies that show some promise, even if much work remains to be done.
Collapse
Affiliation(s)
- Salvatore Dimauro
- Department of Neurology, Columbia University Medical Center, 313 Russ Berrie Medical Science Pavilion, 1150 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
25
|
Horvath R, Gorman G, Chinnery PF. How can we treat mitochondrial encephalomyopathies? Approaches to therapy. Neurotherapeutics 2008; 5:558-68. [PMID: 19019307 PMCID: PMC4514691 DOI: 10.1016/j.nurt.2008.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mitochondrial disorders are a heterogeneous group of diseases affecting different organs (brain, muscle, liver, and heart), and the severity of the disease is highly variable. The chronicity and heterogeneity, both clinically and genetically, means that many patients require surveillance follow-up over their lifetime, often involving multiple disciplines. Although our understanding of the genetic defects and their pathological impact underlying mitochondrial diseases has increased over the past decade, this has not been paralleled with regards to treatment. Currently, no definitive pharmacological treatment exists for patients with mitochondrial dysfunction, except for patients with primary deficiency of coenzyme Q10. Pharmacological and nonpharmacological treatments increasingly being investigated include ketogenic diet, exercise, and gene therapy. Management is aimed primarily at minimizing disability, preventing complications, and providing prognostic information and genetic counseling based on current best practice. Here, we evaluate therapies used previously and review current and future treatment modalities for both adults and children with mitochondrial disease.
Collapse
Affiliation(s)
- Rita Horvath
- Mitochondrial Research Group, School of Neuroscience, University of Newcastle upon Tyne, UK
| | - Grainne Gorman
- Mitochondrial Research Group, School of Neuroscience, University of Newcastle upon Tyne, UK
| | - Patrick F. Chinnery
- Mitochondrial Research Group, School of Neuroscience, University of Newcastle upon Tyne, UK
| |
Collapse
|
26
|
Abstract
Myopathies are frequently not confined to the skeletal muscles but also involve other organs or tissues. One of the most frequently affected organ in addition to the skeletal muscle is the heart (cardiac involvement, CI). CI manifests as impulse generation or conduction defects, focal or diffuse myocardial thickening, dilation of the cardiac cavities, relaxation abnormality, hypertrophic, dilated, restrictive cardiomyopathy, apical form of hypertrophic cardiomyopathy, noncompaction, Takotsubo phenomenon, secondary valve insufficiency, intra-cardiac thrombus formation, or heart failure with systolic or diastolic dysfunction. CI occurs in dystrophinopathies, Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy, limb girdle muscular dystrophies, laminopathies, congenital muscular dystrophies, myotonic dystrophies, congenital myopathies, metabolic myopathies, desminopathies, myofibrillar myopathy, Barth syndrome, McLeod syndrome, Senger's syndrome, and Bethlem myopathy. Patients with myopathy should be cardiologically investigated as soon as their neurological diagnosis is established, since supportive cardiac therapy is available, which markedly influences prognosis and outcome of CI in these patients.
Collapse
|
27
|
Schmauss D, Sodian R, Klopstock T, Deutsch MA, Kaczmarek I, Roemer U, Reichart B, Daebritz SH. Cardiac transplantation in a 14-yr-old patient with mitochondrial encephalomyopathy. Pediatr Transplant 2007; 11:560-2. [PMID: 17631029 DOI: 10.1111/j.1399-3046.2007.00719.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a rare case of a successful cardiac transplantation in a patient suffering from cardiomyopathy and complex mitochondrial disease. The patient presented with severe heart failure and malignant ventricular arrhythmias requiring implantation of a defibrillator and advanced medical treatment. The patient was listed for urgent heart transplantation and received a donor heart after 36 days. One yr post-operatively, the patient has completely recovered.
Collapse
Affiliation(s)
- D Schmauss
- Department of Cardiac Surgery, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Therapy for mitochondrial diseases is woefully inadequate. However, lack of a cure does not equate with lack of treatment. Palliative therapy is dictated by good medical practice and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of noxious metabolites is centered on combating lactic acidosis, but extends to other metabolites. Attempts to bypass blocks in the respiratory chain by administration of electron acceptors have not been successful, but this may be amenable to genetic engineering. Administration of metabolites and cofactors is the mainstay of real-life therapy and is especially important in disorders due to primary deficiencies of specific compounds, such as carnitine or coenzyme Q10 (CoQ10). There is increasing interest in the administration of reactive oxygen radicals (ROS) scavengers, both in primary mitochondrial diseases and in neurodegenerative diseases. Gene therapy is a challenge because of polyplasmy and heteroplasmy, but novel experimental approaches are being pursued. One important strategy is to decrease the ratio of mutant to wild-type mitochondrial genomes ("gene shifting") by different means: (1) converting mutated mitochondrial DNA (mtDNA) genes into normal nuclear DNA genes ("allotopic expression"); (2) importing cognate genes from other species ("xenotopic expression"); (3) correcting mtDNA mutations by importing specific restriction endonucleases; (4) selecting for respiratory function; and (5) inducing muscle regeneration. Germline therapy raises ethical problems but is being considered for prevention of maternal transmission of mtDNA mutations. Preventive therapy through genetic counseling and prenatal diagnosis is becoming increasingly important for nuclear DNA-related disorders.
Collapse
Affiliation(s)
- Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, 4-420 College of Physicians and Surgeons, 630 West 168th Street, New York, New York 10032, USA.
| | | | | |
Collapse
|
29
|
Bhati RS, Sheridan BC, Mill MR, Selzman CH. Heart Transplantation for Progressive Cardiomyopathy as a Manifestation of MELAS Syndrome. J Heart Lung Transplant 2005; 24:2286-9. [PMID: 16364883 DOI: 10.1016/j.healun.2005.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 04/13/2005] [Accepted: 05/22/2005] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial diseases represent a heterogeneous group of disorders associated with a wide array of clinical manifestations. The presentation of patients with mitochondrial pathology largely depends upon the dysfunction of organ systems with large metabolic/energy requirements, including cardiac, neurologic, and musculoskeletal. In particular, mitochondrial myocardial disease can be progressive resulting in congestive heart failure and end-stage heart disease. This article reviews the role of heart transplantation for a particular variant of mitochondrial disorder, mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, and discusses perioperative management issues related to transplantation for mitochondrial cardiomyopathies.
Collapse
Affiliation(s)
- Rajendra S Bhati
- Division of Cardiothoracic Surgery, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|