1
|
Han PL, Li K, Jiang Y, Gao Y, Guo YK, Yang ZG, Li Y. Additive effect of admission hyperglycemia on left ventricular stiffness in patients following acute myocardial infarction verified by CMR tissue tracking. Cardiovasc Diabetol 2024; 23:210. [PMID: 38902730 PMCID: PMC11191232 DOI: 10.1186/s12933-024-02295-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Stress hyperglycemia occurs frequently in patients following acute myocardial infarction (AMI) and may aggravate myocardial stiffness, but relevant evidence is still lacking. Accordingly, this study aimed to examine the impact of admission stress hyperglycemia on left ventricular (LV) myocardial deformation in patients following AMI. METHODS A total of 171 patients with first AMI (96 with normoglycemia and 75 with hyperglycemia) underwent cardiac magnetic resonance (CMR) examination were included. AMI patients were classified according to admission blood glucose level (aBGL): < 7.8 mmol/L (n = 96), 7.8-11.1 mmol/L (n = 41) and ≥ 11.1 mmol/L (n = 34). LV strains, including global radial/circumferential/longitudinal peak strain (PS)/peak systolic strain rate (PSSR)/peak diastolic strain rate (PDSR), were measured and compared between groups. Further, subgroup analyses were separately conducted for AMI patients with and without diabetes. Multivariate analysis was employed to assess the independent association between aBGL and LV global PS in AMI patients. RESULTS LV global PS, PSSR and PDSR were decreased in radial, circumferential and longitudinal directions in hyperglycemic AMI patients compared with normoglycemic AMI patients (all P < 0.05). These differences were more obvious in patients with diabetes than those without diabetes. AMI patients with aBGL between 7.8 and 11.1 mmol/L demonstrated significant decreased radial and longitudinal PS, radial PSSR, and radial and longitudinal PDSR than those with aBGL < 7.8 mmol/L (all P < 0.05). AMI patients with aBGL ≥ 11.1 mmol/L showed significantly decreased PS, PSSR and PDSR in all three directions than those with aBGL < 7.8 mmol/L, and decreased longitudinal PSSR than those with aBGL between 7.8 and 11.1 (all P < 0.05). Further, aBGL was significantly and independently associated with radial (β = - 0.166, P = 0.003) and longitudinal (β = 0.143, P = 0.008) PS. CONCLUSIONS Hyperglycemia may exacerbate LV myocardial stiffness in patients experienced first AMI, leading to reduction in LV strains. aBGL was an independent indicator of impaired LV global PS in AMI patients. Blood glucose monitoring is more valuable for AMI patients with diabetes.
Collapse
Affiliation(s)
- Pei-Lun Han
- Department of Radiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kang Li
- Department of Radiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| | - Yu Jiang
- Department of Radiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Gao
- Department of Radiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-Kun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhi-Gang Yang
- Department of Radiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuan Li
- Department of Radiology and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Bhatt N, Orbach A, Biswas L, Strauss BH, Connelly K, Ghugre NR, Wright GA, Roifman I. Evaluating a novel accelerated free-breathing late gadolinium enhancement imaging sequence for assessment of myocardial injury. Magn Reson Imaging 2024; 108:40-46. [PMID: 38309379 DOI: 10.1016/j.mri.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Cardiac magnetic resonance imaging (MRI), including late gadolinium enhancement (LGE), plays an important role in the diagnosis and prognostication of ischemic and non-ischemic myocardial injury. Conventional LGE sequences require patients to perform multiple breath-holds and require long acquisition times. In this study, we compare image quality and assessment of myocardial LGE using an accelerated free-breathing sequence to the conventional standard-of-care sequence. METHODS In this prospective cohort study, a total of 41 patients post Coronavirus 2019 (COVID-19) infection were included. Studies were performed on a 1.5 Tesla scanner with LGE imaging acquired using a conventional inversion recovery rapid gradient echo (conventional LGE) sequence followed by the novel accelerated free-breathing (FB-LGE) sequence. Image quality was visually scored (ordinal scale from 1 to 5) and compared between conventional and free-breathing sequences using the Wilcoxon rank sum test. Presence of per-segment LGE was identified according to the American Heart Association 16-segment myocardial model and compared across both conventional LGE and FB-LGE sequences using a two-sided chi-square test. The perpatient LGE extent was also evaluated using both sequences and compared using the Wilcoxon rank sum test. Interobserver variability in detection of per-segment LGE and per-patient LGE extent was evaluated using Cohen's kappa statistic and interclass correlation (ICC), respectively. RESULTS The mean acquisition time for the FB-LGE sequence was 17 s compared to 413 s for the conventional LGE sequence (P < 0.001). Assessment of image quality was similar between both sequences (P = 0.19). There were no statistically significant differences in LGE assessed using the FB-LGE versus conventional LGE on a per-segment (P = 0.42) and per-patient (P = 0.06) basis. Interobserver variability in LGE assessment for FB-LGE was good for per-segment (= 0.71) and per-patient extent (ICC = 0.92) analyses. CONCLUSIONS The accelerated FB-LGE sequence performed comparably to the conventional standard-of-care LGE sequence in a cohort of patients post COVID-19 infection in a fraction of the time and without the need for breath-holding. Such a sequence could impact clinical practice by increasing cardiac MRI throughput and accessibility for frail or acutely ill patients unable to perform breath-holding.
Collapse
Affiliation(s)
- Nitish Bhatt
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ady Orbach
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Labonny Biswas
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Bradley H Strauss
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Kim Connelly
- Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada
| | - Nilesh R Ghugre
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Graham A Wright
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Idan Roifman
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
3
|
Qin C, Murali S, Lee E, Supramaniam V, Hausenloy DJ, Obungoloch J, Brecher J, Lin R, Ding H, Akudjedu TN, Anazodo UC, Jagannathan NR, Ntusi NAB, Simonetti OP, Campbell-Washburn AE, Niendorf T, Mammen R, Adeleke S. Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems. Eur Heart J Cardiovasc Imaging 2022; 23:e246-e260. [PMID: 35157038 PMCID: PMC9159744 DOI: 10.1093/ehjci/jeab286] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular disease continues to be a major burden facing healthcare systems worldwide. In the developed world, cardiovascular magnetic resonance (CMR) is a well-established non-invasive imaging modality in the diagnosis of cardiovascular disease. However, there is significant global inequality in availability and access to CMR due to its high cost, technical demands as well as existing disparities in healthcare and technical infrastructures across high-income and low-income countries. Recent renewed interest in low-field CMR has been spurred by the clinical need to provide sustainable imaging technology capable of yielding diagnosticquality images whilst also being tailored to the local populations and healthcare ecosystems. This review aims to evaluate the technical, practical and cost considerations of low field CMR whilst also exploring the key barriers to implementing sustainable MRI in both the developing and developed world.
Collapse
Affiliation(s)
- Cathy Qin
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Sanjana Murali
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Elsa Lee
- School of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | | - Derek J Hausenloy
- Division of Medicine, University College London, London, UK
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Hatter Cardiovascular Institue, UCL Institute of Cardiovascular Sciences, University College London, London, UK
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Johnes Obungoloch
- Department of Biomedical Engineering, Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Rongyu Lin
- School of Medicine, University College London, London, UK
| | - Hao Ding
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Theophilus N Akudjedu
- Institute of Medical Imaging and Visualisation, Faculty of Health and Social Science, Bournemouth University, Poole, UK
| | | | - Naranamangalam R Jagannathan
- Department of Electrical Engineering, Indian Institute of Technology, Chennai, India
- Department of Radiology, Sri Ramachandra University Medical College, Chennai, India
- Department of Radiology, Chettinad Hospital and Research Institute, Kelambakkam, India
| | - Ntobeko A B Ntusi
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Orlando P Simonetti
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Regina Mammen
- Department of Cardiology, The Essex Cardiothoracic Centre, Basildon, UK
| | - Sola Adeleke
- School of Cancer & Pharmaceutical Sciences, King’s College London, Queen Square, London WC1N 3BG, UK
- High Dimensional Neurology, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
4
|
Schmid J, Kamml C, Zweiker D, Hatz D, Schmidt A, Reiter U, Toth GG, Fuchsjäger M, Zirlik A, Binder JS, Rainer PP. Cardiac Magnetic Resonance Imaging Right Ventricular Longitudinal Strain Predicts Mortality in Patients Undergoing TAVI. Front Cardiovasc Med 2021; 8:644500. [PMID: 34026866 PMCID: PMC8137844 DOI: 10.3389/fcvm.2021.644500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/19/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Right ventricular (RV) function predicts survival in numerous cardiac conditions, including left heart disease. The reference standard for non-invasive assessment of RV function is cardiac magnetic resonance imaging (CMR). The aim of this study was to investigate the association between pre-procedural CMR-derived RV functional parameters and mortality in patients undergoing transcatheter aortic valve implantation (TAVI). Methods: Patients scheduled for TAVI were recruited to undergo pre-procedural CMR. Volumetric function and global longitudinal and circumferential strain (GLS and GCS) of the RV and left ventricle (LV) were measured. The association with the primary endpoint (1-year all-cause mortality) was analyzed with Cox regression. Results: Of 133 patients undergoing CMR, 113 patients were included in the analysis. Mean age was 81.8 ± 5.8 years, and 65% were female. Median follow-up was 3.9 [IQR 2.3–4.7] years. All-cause and cardiovascular mortality was 14 and 12% at 1 year, and 28 and 20% at 3 years, respectively. One-year all-cause mortality was significantly predicted by RV GLS [HR = 1.109 (95% CI: 1.023–1.203); p = 0.012], RV ejection fraction [HR = 0.956 (95% CI: 0.929–0.985); p = 0.003], RV end-diastolic volume index [HR = 1.009 (95% CI: 1.001–1.018); p = 0.025], and RV end-systolic volume index [HR = 1.010 (95% CI: 1.003–1.017); p = 0.005]. In receiver operating characteristic (ROC) analysis for 1-year all-cause mortality, the area under the curve was 0.705 (RV GLS) and 0.673 (RV EF). Associations decreased in strength at longer follow-up. None of the LV parameters was associated with mortality. Conclusions: RV function predicts intermediate-term mortality in TAVI patients while LV parameters were not associated with outcomes. Inclusion of easily obtainable RV GLS may improve future risk scores.
Collapse
Affiliation(s)
- Johannes Schmid
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Claus Kamml
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - David Zweiker
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,Third Medical Department of Cardiology and Intensive Care, Wilhelminenhospital, Vienna, Austria
| | - Dominik Hatz
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Albrecht Schmidt
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Ursula Reiter
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Gabor G Toth
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Michael Fuchsjäger
- Division of General Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | - Andreas Zirlik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Josepha S Binder
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria.,BioTechMed Graz, Graz, Austria
| |
Collapse
|
5
|
Terenicheva MA, Stukalova OV, Shakhnovich RM, Ternovoy SK. The role of cardiac magnetic resonance imaging (cardiovascular magnetic resonance) in defining the prognosis of patients with acute ST-segment elevation myocardial infarction. Part 1. Indications and contraindications to cardiovascular magnetic resonance. TERAPEVT ARKH 2021; 93:497-501. [DOI: 10.26442/00403660.2021.04.200687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
Recently, the role of cardiac magnetic resonance imaging (cardiovascular magnetic resonance) in the diagnosis of coronary artery disease and acute myocardial infarction has increased significantly. This method is defined as the gold standard for differentiation between ischemic vs non-ischemic and acute vs chronic myocardial injury. This part of the review summarizes the main methods of cardiovascular magnetic resonance, its safety, indications and contraindications.
Collapse
|
6
|
Ochs MM, Kajzar I, Salatzki J, Ochs AT, Riffel J, Osman N, Katus HA, Friedrich MG. Hyperventilation/Breath-Hold Maneuver to Detect Myocardial Ischemia by Strain-Encoded CMR: Diagnostic Accuracy of a Needle-Free Stress Protocol. JACC Cardiovasc Imaging 2021; 14:1932-1944. [PMID: 33865775 DOI: 10.1016/j.jcmg.2021.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the diagnostic accuracy of a fast, needle-free test for myocardial ischemia using fast Strain-ENCoded (fSENC) cardiovascular MR (CMR) after a hyperventilation/breath-hold maneuver (HVBH). BACKGROUND Myocardial stress testing is one of the most frequent diagnostic tests performed. Recent data indicate that CMR first-pass perfusion outperforms other modalities. Its use, however, is limited by the need for both, a vasodilatory stress and the intravenous application of gadolinium. Both are associated with added cost, safety concerns, and patient inconvenience. The combination of 2 novel CMR approaches, fSENC, an ultrafast technique to visualize myocardial strain, and HVBH, a physiological vasodilator, may overcome these limitations. METHODS Patients referred for CMR stress testing underwent an extended protocol to evaluate 3 different tests: 1) adenosine-perfusion; 2) adenosine-strain; and 3) HVBH-strain. Diagnostic accuracy was assessed using quantitative coronary angiography as reference. RESULTS A total of 122 patients (age 66 ± 11years; 80% men) suspected of obstructive coronary artery disease were enrolled. All participants completed the protocol without significant adverse events. Adenosine-strain and HVBH-strain provided significantly better diagnostic accuracy than adenosine-perfusion, both on a patient level (adenosine-strain: sensitivity 82%, specificity 83%; HVBH-strain: sensitivity 81%, specificity 86% vs. adenosine-perfusion: sensitivity 67%, specificity 92%; p < 0.05) and territory level (adenosine-strain: sensitivity 67%, specificity 93%; HVBH-strain: sensitivity 63%, specificity 95% vs. adenosine-perfusion: sensitivity 49%, specificity 96%; p < 0.05). However, these differences in diagnostic accuracy disappear by excluding patients with history of coronary artery bypass graft or previous myocardial infarction. The response of longitudinal strain differs significantly between ischemic and nonischemic segments to adenosine (ΔLSischemic = 0.6 ± 5.4%, ΔLSnonischemic = -0.9 ± 2.7%; p < 0.05) and HVBH (ΔLSischemic = 1.3% ± 3.8%, ΔLSnonischemic = -0.3 ± 1.8%; p = 0.002). Test duration of HVBH-strain (t = 64 ± 2 s) was significantly shorter compared with adenosine-strain (t = 184 ± 59 s; p < 0.0001) and adenosine-perfusion (t = adenosine-perfusion: 172 ± 59 s; p < 0.0001). CONCLUSIONS HVBH-strain has a high diagnostic accuracy in detecting significant coronary artery stenosis. It is not only significantly faster than any other method but also neither requires contrast agents nor pharmacological stressors.
Collapse
Affiliation(s)
- Marco M Ochs
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Germany.
| | - Isabelle Kajzar
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Germany
| | - Janek Salatzki
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Germany
| | - Andreas T Ochs
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Germany
| | - Johannes Riffel
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Germany
| | - Nael Osman
- MyocardialSolutions, Morrisville, North Carolina, USA
| | - Hugo A Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Germany
| | - Matthias G Friedrich
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg, Germany; Departments of Medicine and Diagnostic Radiology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Yan WF, Gao Y, Zhang Y, Guo YK, Wang J, Jiang L, Li Y, Yang ZG. Impact of type 2 diabetes mellitus on left ventricular diastolic function in patients with essential hypertension: evaluation by volume-time curve of cardiac magnetic resonance. Cardiovasc Diabetol 2021; 20:73. [PMID: 33766020 PMCID: PMC7993470 DOI: 10.1186/s12933-021-01262-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Background Essential hypertension and type 2 diabetes mellitus (T2DM) are two common chronic diseases that often coexist, and both of these diseases can cause heart damage. However, the additive effects of essential hypertension complicated with T2DM on left ventricle (LV) diastolic function have not been fully illustrated. This study aims to investigate whether T2DM affects the diastolic function of the LV in patients with essential hypertension using the volume-time curve from cardiac magnetic resonance (CMR). Methods A total of 124 essential hypertension patients, including 48 with T2DM [HTN(T2DM +) group] and 76 without T2DM [HTN(T2DM-) group], and 52 normal controls who underwent CMR scans were included in this study. LV volume-time curve parameters, including the peak ejection rate (PER), time to peak ejection rate (PET), peak filling rate (PFR), time to peak filling rate from end-systole (PFT), PER normalized to end-diastolic volume (PER/EDV), and PFR normalized to EDV (PFR/EDV), were measured and compared among the three groups. Multivariate linear regression analyses were performed to determine the effects of T2DM on LV diastolic dysfunction in patients with hypertension. Pearson correlation was used to analyse the correlation between the volume-time curve and myocardial strain parameters. Results PFR and PFR/EDV decreased from the control group, through HTN(T2DM −), to HTN(T2DM +) group. PFT in the HTN(T2DM-) group and HTN(T2DM +) group was significantly longer than that in the control group. The LV remodelling index in the HTN(T2DM −) and HTN(T2DM +) groups was higher than that in the normal control group, but there was no significant difference between the HTN(T2DM −) and HTN(T2DM +) groups. Multiple regression analyses controlling for covariates of systolic blood pressure, age, sex, and heart rate demonstrated that T2DM was independently associated with PFR/EDV (β = 0.252, p < 0.05). The volume-time curve method has good repeatability, and there is a significant correlation between volume-time curve parameters (PER/EDV and PFR/EDV) and myocardial peak strain rate, especially circumferential peak strain rate, which exhibited the highest correlation (r = − 0.756 ~ 0.795). Conclusions T2DM exacerbates LV diastolic dysfunction in patients with essential hypertension. The LV filling model changes reflected by the CMR volume-time curve could provide more information for early clinical intervention.
Collapse
Affiliation(s)
- Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yi Zhang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, 20# South Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Affiliation(s)
- Catherine M Otto
- Division of Cardiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|