1
|
Wu L, Zhou K, Zheng Y, Zeng Y, Zeng G, Cheng Z, Peng Y. Efficient Separation and Enrichment of Rubidium in Salt Lake Brine Using High-Performance PAN-KCuFC-PEG Adsorption Composite. Molecules 2025; 30:1273. [PMID: 40142051 PMCID: PMC11944588 DOI: 10.3390/molecules30061273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Salt lake brine contains abundant rubidium resources; however, the separation of rubidium from brine with a high K content remains a significant challenge in metallurgical processes and materials science. In this study, PAN-KCuFC-PEG particles were synthesized by phase transformation, using hydrophilic polyacrylonitrile (PAN) as the skeleton structure, potassium cupric ferricyanide (KCuFC) as the active component and water-soluble polymer polyethylene glycol (PEG) as the pore regulator. Characterization revealed that the addition of PEG increased the pore volume of PAN-KCuFC-PEG by 63% and the BET surface area by 172%. KCuFC powder was uniformly dispersed in PAN-KCuFC-PEG, and its crystal structure remained stable after loading. In static adsorption experiments, the maximum adsorption capacity of PAN-KCuFC-PEG for Rb+ reached 190 mg/g. The adsorption behavior followed a pseudo-second-order kinetic model, with the rate jointly controlled by external diffusion, intraparticle diffusion, and chemical reaction. In the column experiment, PAN-KCuFC-PEG was used to adsorb Qarhan Salt Lake brine (K: 26,000 mg/L, Rb: 65 mg/L). NH4Cl was employed for elution and desorption of PAN-KCuFC-PEG. During the adsorption-desorption process, the separation factor between Rb and K reached 160, the desorption rate reached 96.6%, and the overall yield was 68.3%. The enrichment and separation of Rb were successfully achieved.
Collapse
Affiliation(s)
| | - Kun Zhou
- School of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; (L.W.); (Y.Z.); (Y.Z.); (G.Z.); (Z.C.); (Y.P.)
| | | | | | | | | | | |
Collapse
|
2
|
Li S, Hamdi M, Dutta K, Fraum TJ, Luo J, Laforest R, Shoghi KI. FAST (fast analytical simulator of tracer)-PET: an accurate and efficient PET analytical simulation tool. Phys Med Biol 2024; 69:165020. [PMID: 39047765 DOI: 10.1088/1361-6560/ad6743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Objective.Simulation of positron emission tomography (PET) images is an essential tool in the development and validation of quantitative imaging workflows and advanced image processing pipelines. Existing Monte Carlo or analytical PET simulators often compromise on either efficiency or accuracy. We aim to develop and validate fast analytical simulator of tracer (FAST)-PET, a novel analytical framework, to simulate PET images accurately and efficiently.Approach. FAST-PET simulates PET images by performing precise forward projection, scatter, and random estimation that match the scanner geometry and statistics. Although the same process should be applicable to other scanner models, we focus on the Siemens Biograph Vision-600 in this work. Calibration and validation of FAST-PET were performed through comparison with an experimental scan of a National Electrical Manufacturers Association (NEMA) Image Quality (IQ) phantom. Further validation was conducted between FAST-PET and Geant4 Application for Tomographic Emission (GATE) quantitatively in clinical image simulations in terms of intensity-based and texture-based features and task-based tumor segmentation.Main results.According to the NEMA IQ phantom simulation, FAST-PET's simulated images exhibited partial volume effects and noise levels comparable to experimental images, with a relative bias of the recovery coefficient RC within 10% for all spheres and a coefficient of variation for the background region within 6% across various acquisition times. FAST-PET generated clinical PET images exhibit high quantitative accuracy and texture comparable to GATE (correlation coefficients of all features over 0.95) but with ∼100-fold lower computation time. The tumor segmentation masks comparison between both methods exhibited significant overlap and shape similarity with high concordance CCC > 0.97 across measures.Significance.FAST-PET generated PET images with high quantitative accuracy comparable to GATE, making it ideal for applications requiring extensive PET image simulations such as virtual imaging trials, and the development and validation of image processing pipelines.
Collapse
Affiliation(s)
- Suya Li
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
| | - Mahdjoub Hamdi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
| | - Kaushik Dutta
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St Louis, MO, United States of America
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, United States of America
- Imaging Science Program, McKelvey School of Engineering, Washington University in St Louis, St Louis, MO, United States of America
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, United States of America
| |
Collapse
|
3
|
Chassé M, Pees A, Lindberg A, Liang SH, Vasdev N. Spirocyclic Iodonium Ylides for Fluorine-18 Radiolabeling of Non-Activated Arenes: From Concept to Clinical Research. CHEM REC 2023; 23:e202300072. [PMID: 37183954 DOI: 10.1002/tcr.202300072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Positron emission tomography (PET) is a powerful imaging tool for drug discovery, clinical diagnosis, and monitoring of disease progression. Fluorine-18 is the most common radionuclide used for PET, but advances in radiotracer development have been limited by the historical lack of methodologies and precursors amenable to radiolabeling with fluorine-18. Radiolabeling of electron-rich (hetero)aromatic rings remains a long-standing challenge in the production of PET radiopharmaceuticals. In this personal account, we discuss the history of spirocyclic iodonium ylide precursors, from inception to applications in clinical research, for the incorporation of fluorine-18 into complex non-activated (hetero)aromatic rings.
Collapse
Affiliation(s)
- Melissa Chassé
- Institute of Medical Science, University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Neil Vasdev
- Institute of Medical Science, University of Toronto, 1 Kings College Circle, Toronto, ON M5S 1A8, Canada
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), 250 College Street, Toronto, ON M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
4
|
Berruezo A, Penela D, Jáuregui B, de Asmundis C, Peretto G, Marrouche N, Trayanova N, de Chillou C. Twenty-five years of research in cardiac imaging in electrophysiology procedures for atrial and ventricular arrhythmias. Europace 2023; 25:euad183. [PMID: 37622578 PMCID: PMC10450789 DOI: 10.1093/europace/euad183] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 08/26/2023] Open
Abstract
Catheter ablation is nowadays considered the treatment of choice for numerous cardiac arrhythmias in different clinical scenarios. Fluoroscopy has traditionally been the primary imaging modality for catheter ablation, providing real-time visualization of catheter navigation. However, its limitations, such as inadequate soft tissue visualization and exposure to ionizing radiation, have prompted the integration of alternative imaging modalities. Over the years, advancements in imaging techniques have played a pivotal role in enhancing the safety, efficacy, and efficiency of catheter ablation procedures. This manuscript aims to explore the utility of imaging, including electroanatomical mapping, cardiac computed tomography, echocardiography, cardiac magnetic resonance, and nuclear cardiology exams, in helping electrophysiology procedures. These techniques enable accurate anatomical guidance, identification of critical structures and substrates, and real-time monitoring of complications, ultimately enhancing procedural safety and success rates. Incorporating advanced imaging technologies into routine clinical practice has the potential to further improve clinical outcomes of catheter ablation procedures and pave the way for more personalized and precise ablation therapies in the future.
Collapse
Affiliation(s)
- Antonio Berruezo
- Arrhythmia Unit, Teknon Medical Centre, Carrer de Vilana, 12, 08022 Barcelona, Spain
| | - Diego Penela
- Arrhythmia Unit, Humanitas Research Hospital, Via Alessandro Manzoni, 56, 20089 Rozzano Milan, Italy
| | - Beatriz Jáuregui
- Arrhythmia Unit - Miguel Servet University Hospital, P.º de Isabel la Católica, 1-3, 50009 Zaragoza, Spain
| | - Carlo de Asmundis
- Heart Rhythm Management Centre, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Blvd Géneral Jacques 137, 1050 Ixelles, Brussels, Belgium
| | - Giovanni Peretto
- Arrhythmia Unit, Ospedale San Raffaele Hospital, Via Olgettina, 60, 20132 Milan, Italy
| | - Nassir Marrouche
- Department of Cardiology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA 70112, USA
| | - Natalia Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Applied Math and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Christian de Chillou
- INSERM IADI U1254, University Hospital Nancy, University of Lorraine, 29 Av. du Maréchal de Lattre de Tassigny, 54000 Nancy, France
| |
Collapse
|
5
|
Winuprasith T, Koirala P, McClements DJ, Khomein P. Emulsion Technology in Nuclear Medicine: Targeted Radionuclide Therapies, Radiosensitizers, and Imaging Agents. Int J Nanomedicine 2023; 18:4449-4470. [PMID: 37555189 PMCID: PMC10406121 DOI: 10.2147/ijn.s416737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Radiopharmaceuticals serve as a major part of nuclear medicine contributing to both diagnosis and treatment of several diseases, especially cancers. Currently, most radiopharmaceuticals are based on small molecules with targeting ability. However, some concerns over their stability or non-specific interactions leading to off-target localization are among the major challenges that need to be overcome. Emulsion technology has great potential for the fabrication of carrier systems for radiopharmaceuticals. It can be used to create particles with different compositions, structures, sizes, and surface characteristics from a wide range of generally recognized as safe (GRAS) materials, which allows their functionality to be tuned for specific applications. In particular, it is possible to carry out surface modifications to introduce targeting and stealth properties, as well as to control the particle dimensions to manipulate diffusion and penetration properties. Moreover, emulsion preparation methods are usually simple, economic, robust, and scalable, which makes them suitable for medical applications. In this review, we highlight the potential of emulsion technology in nuclear medicine for developing targeted radionuclide therapies, for use as radiosensitizers, and for application in radiotracer delivery in gamma imaging techniques.
Collapse
Affiliation(s)
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - David J McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Piyachai Khomein
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
6
|
Hoog C, Verrecchia-Ramos E, Dejust S, Lalire P, Sezin G, Moubtakir A, El Farsaoui K, Caquot PA, Guendouzen S, Morland D, Papathanassiou D. Implementation of xSPECT, xSPECT bone and Broadquant from literature, clinical survey and innovative phantom study with task-based image quality assessment. Phys Med 2023; 112:102611. [PMID: 37329742 DOI: 10.1016/j.ejmp.2023.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023] Open
Abstract
OBJECTIVE From patient and phantom studies, we aimed to highlight an original implementation process and share a two-years experience clinical feedback on xSPECT (xS), xSPECT Bone (xB) and Broadquant quantification (Siemens) for 99mTc-bone and 177Lu-NET (neuroendocrine tumors) imaging. METHODS Firstly, we checked the relevance of implemented protocols and Broadquant module on the basis of literature and with a homogeneous phantom study respectively. Then, we described xS and xB behaviours with reconstruction parameters (10i-0mm to 40i-20mm) and optimized the protocols through a blinded survey (7 physicians). Finally, the preferred 99mTc-bone reconstruction was assessed through an IEC NEMA phantom including liquid bone spheres. Conventional SNR, CNR, spatial resolution, Q.%error, and recovery curves; and innovative NPS, TTF and detectability score d' were performed (ImQuest software). We also sought to review the adoption of these tools in clinical routine and showed the potential of quantitative xB in the context of theranostics (Xofigo®). RESULTS We showed the need of optimization of implemented reconstruction algorithms and pointed out a decay correction particularity with Broadquant. Preferred parameters were 1s-25i-8mm and 1s-25i-5mm for xS/xB-bone and xS-NET imaging respectively. The phantom study highlighted the different image quality especially for the enhanced spatial resolution xB algorithm (1/TTF10%=2.1 mm) and showed F3D and xB shared the best performances in terms of image quality and quantification. xS was generally less efficient. CONCLUSIONS Qualitative F3D still remains the clinical standard, xB and Broadquant offer challenging perspectives in theranostics. We introduced the potential of innovative metrics for image quality analysis and showed how CT tools should be adapted to fit nuclear medicine imaging.
Collapse
Affiliation(s)
| | | | | | - Paul Lalire
- Nuclear Medicine Department, Institut Godinot, Reims, France
| | - Ghali Sezin
- Nuclear Medicine Department, Institut Godinot, Reims, France
| | | | | | | | | | - David Morland
- Nuclear Medicine Department, Institut Godinot, Reims, France; UFR de médecine, université de Reims-Champagne Ardenne, 1, rue Cognacq-Jay, 51095 Reims cedex, France; CReSTIC Centre de recherche en sciences et technologies de l'information et de la communication, EA 3804, université de Reims-Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Dimitri Papathanassiou
- Nuclear Medicine Department, Institut Godinot, Reims, France; UFR de médecine, université de Reims-Champagne Ardenne, 1, rue Cognacq-Jay, 51095 Reims cedex, France; CReSTIC Centre de recherche en sciences et technologies de l'information et de la communication, EA 3804, université de Reims-Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
7
|
Freire M, Barrio J, Cucarella N, Valladares C, Gonzalez-Montoro A, de Alfonso C, Benlloch JM, Gonzalez AJ. Position estimation using neural networks in semi-monolithic PET detectors. Phys Med Biol 2022; 67. [PMID: 36384047 DOI: 10.1088/1361-6560/aca389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Objective. The goal of this work is to experimentally compare the 3D spatial and energy resolution of a semi-monolithic detector suitable for total-body positron emission tomography (TB-PET) scanners using different surface crystal treatments and silicon photomultiplier (SiPM) models.Approach. An array of 1 × 8 lutetium yttrium oxyorthosilicate (LYSO) slabs of 25.8 × 3.1 × 20 mm3separated with Enhanced Specular Reflector (ESR) was coupled to an array of 8 × 8 SiPMs. Three different treatments for the crystal were evaluated: ESR + RR + B,with lateral faces black (B) painted and a retroreflector (RR) layer added to the top face; ESR +RR, with lateral faces covered with ESR and a RR layer on the top face and; All ESR, with lateral and top sides with ESR. Additionally, two SiPM array models from Hamamatsu Photonics belonging to the series S13361-3050AE-08 (S13) and S14161-3050AS-08 (S14) have been compared. Coincidence data was experimentally acquired using a22Na point source, a pinhole collimator, a reference detector and moving the detector under study in 1 mm steps in thex- andDOI- directions. The spatial performance was evaluated by implementing a neural network (NN) technique for the impact position estimation in thex- (monolithic) andDOIdirections.Results. Energy resolution values of 16 ± 1%, 11 ± 1%, 16 ± 1%, 15 ± 1%, and 13 ± 1% were obtained for theS13-ESR + B + RR,S13-AllESR,S14-ESR + B + RR,S14-ESR + RR,andS14-AllESR, respectively. Regarding positioning accuracy, mean average error of 1.1 ± 0.5, 1.3 ± 0.5 and 1.3 ± 0.5 were estimated for thex- direction and 1.7 ± 0.8, 2.0 ± 0.9 and 2.2 ± 1.0 for theDOI- direction, for the ESR + B + RR, ESR + RR and All ESR cases, respectively, regardless of the SiPM model.Significance. Overall, the obtained results show that the proposed semi-monolithic detectors are good candidates for building TB-PET scanners.
Collapse
Affiliation(s)
- M Freire
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - J Barrio
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - N Cucarella
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - C Valladares
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - A Gonzalez-Montoro
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - C de Alfonso
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - J M Benlloch
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| | - A J Gonzalez
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| |
Collapse
|
8
|
Schick F, Ripa RS, Hansen TW, von Scholten BJ. Editorial: Advanced Cardiovascular Imaging in Diabetes. Front Endocrinol (Lausanne) 2022; 13:848975. [PMID: 35370983 PMCID: PMC8972965 DOI: 10.3389/fendo.2022.848975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fritz Schick
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, Tübingen University Hospital, Tübingen, Germany
| | - Rasmus Sejersten Ripa
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| | - Tine Willum Hansen
- Complications Research, Steno Diabetes Center Copenhagen (SDCC), Gentofte, Denmark
| | | |
Collapse
|
9
|
Rossi A, Mikail N, Bengs S, Haider A, Treyer V, Buechel RR, Wegener S, Rauen K, Tawakol A, Bairey Merz CN, Regitz-Zagrosek V, Gebhard C. Heart-brain interactions in cardiac and brain diseases: why sex matters. Eur Heart J 2022; 43:3971-3980. [PMID: 35194633 PMCID: PMC9794190 DOI: 10.1093/eurheartj/ehac061] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/24/2022] [Accepted: 01/30/2022] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease and brain disorders, such as depression and cognitive dysfunction, are highly prevalent conditions and are among the leading causes limiting patient's quality of life. A growing body of evidence has shown an intimate crosstalk between the heart and the brain, resulting from a complex network of several physiological and neurohumoral circuits. From a pathophysiological perspective, both organs share common risk factors, such as hypertension, diabetes, smoking or dyslipidaemia, and are similarly affected by systemic inflammation, atherosclerosis, and dysfunction of the neuroendocrine system. In addition, there is an increasing awareness that physiological interactions between the two organs play important roles in potentiating disease and that sex- and gender-related differences modify those interactions between the heart and the brain over the entire lifespan. The present review summarizes contemporary evidence of the effect of sex on heart-brain interactions and how these influence pathogenesis, clinical manifestation, and treatment responses of specific heart and brain diseases.
Collapse
Affiliation(s)
- Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland,Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Ronny Ralf Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Susanne Wegener
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Katrin Rauen
- Department of Geriatric Psychiatry, Psychiatric Hospital, Zurich, Switzerland,Institute for Stroke and Dementia Research, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ahmed Tawakol
- Cardiovascular Imaging Research Center, Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - C Noel Bairey Merz
- Barbra Streisand Women's Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin Berlin, Berlin, Germany,University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
10
|
van Lith SAM, Raavé R. Targets in nuclear medicine imaging: Past, present and future. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Mohammadi I, Castro IF, Rahmim A, Veloso JFCA. Motion in nuclear cardiology imaging: types, artifacts, detection and correction techniques. Phys Med Biol 2021; 67. [PMID: 34826826 DOI: 10.1088/1361-6560/ac3dc7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
In this paper, the authors review the field of motion detection and correction in nuclear cardiology with single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging systems. We start with a brief overview of nuclear cardiology applications and description of SPECT and PET imaging systems, then explaining the different types of motion and their related artefacts. Moreover, we classify and describe various techniques for motion detection and correction, discussing their potential advantages including reference to metrics and tasks, particularly towards improvements in image quality and diagnostic performance. In addition, we emphasize limitations encountered in different motion detection and correction methods that may challenge routine clinical applications and diagnostic performance.
Collapse
Affiliation(s)
- Iraj Mohammadi
- Department of Physics, University of Aveiro, Aveiro, PORTUGAL
| | - I Filipe Castro
- i3n Physics Department, Universidade de Aveiro, Aveiro, PORTUGAL
| | - Arman Rahmim
- Radiology and Physics, The University of British Columbia, Vancouver, British Columbia, CANADA
| | | |
Collapse
|
12
|
Bays HE, Khera A, Blaha MJ, Budoff MJ, Toth PP. Ten things to know about ten imaging studies: A preventive cardiology perspective ("ASPC top ten imaging"). Am J Prev Cardiol 2021; 6:100176. [PMID: 34327499 PMCID: PMC8315431 DOI: 10.1016/j.ajpc.2021.100176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Knowing the patient's current cardiovascular disease (CVD) status, as well as the patient's current and future CVD risk, helps the clinician make more informed patient-centered management recommendations towards the goal of preventing future CVD events. Imaging tests that can assist the clinician with the diagnosis and prognosis of CVD include imaging studies of the heart and vascular system, as well as imaging studies of other body organs applicable to CVD risk. The American Society for Preventive Cardiology (ASPC) has published "Ten Things to Know About Ten Cardiovascular Disease Risk Factors." Similarly, this "ASPC Top Ten Imaging" summarizes ten things to know about ten imaging studies related to assessing CVD and CVD risk, listed in tabular form. The ten imaging studies herein include: (1) coronary artery calcium imaging (CAC), (2) coronary computed tomography angiography (CCTA), (3) cardiac ultrasound (echocardiography), (4) nuclear myocardial perfusion imaging (MPI), (5) cardiac magnetic resonance (CMR), (6) cardiac catheterization [with or without intravascular ultrasound (IVUS) or coronary optical coherence tomography (OCT)], (7) dual x-ray absorptiometry (DXA) body composition, (8) hepatic imaging [ultrasound of liver, vibration-controlled transient elastography (VCTE), CT, MRI proton density fat fraction (PDFF), magnetic resonance spectroscopy (MRS)], (9) peripheral artery / endothelial function imaging (e.g., carotid ultrasound, peripheral doppler imaging, ultrasound flow-mediated dilation, other tests of endothelial function and peripheral vascular imaging) and (10) images of other body organs applicable to preventive cardiology (brain, kidney, ovary). Many cardiologists perform cardiovascular-related imaging. Many non-cardiologists perform applicable non-cardiovascular imaging. Cardiologists and non-cardiologists alike may benefit from a working knowledge of imaging studies applicable to the diagnosis and prognosis of CVD and CVD risk - both important in preventive cardiology.
Collapse
Affiliation(s)
- Harold E. Bays
- Louisville Metabolic and Atherosclerosis Research Center, 3288 Illinois Avenue, Louisville KY 40213 USA
| | - Amit Khera
- UT Southwestern Medical Center, Dallas, TX USA
| | - Michael J. Blaha
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore MD USA
| | - Matthew J Budoff
- Department of Medicine, Lundquist Institute at Harbor-UCLA, Torrance CA USA
| | - Peter P. Toth
- CGH Medical Cener, Sterling, IL 61081 USA
- Cicarrone center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|