1
|
Wittczak A, Mazurek-Kula A, Banach M, Piotrowski G, Bielecka-Dabrowa A. Blood Biomarkers as a Non-Invasive Method for the Assessment of the State of the Fontan Circulation. J Clin Med 2025; 14:496. [PMID: 39860501 PMCID: PMC11765985 DOI: 10.3390/jcm14020496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/08/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
The Fontan operation has become the primary palliative treatment for patients with a functionally univentricular heart. The population of patients with Fontan circulation is constantly growing and aging. As the number of Fontan patients surviving into adulthood increases, there is a clear need for research on how best to follow these patients and manage their complications. Monitoring blood biomarkers is a promising method for the non-invasive assessment of the Fontan circulation. In this article, we provide a comprehensive review of the available evidence on this topic. The following biomarkers were included: natriuretic peptides, red blood cell distribution width (RDW), cystatin C, high-sensitivity C-reactive protein, vitamin D, parathyroid hormone, von Willebrand factor, carbohydrate antigen 125, lipoproteins, hepatocyte growth factor, troponins, ST2 protein, galectin-3, adrenomedullin, endothelin-1, components of the renin-angiotensin-aldosterone system, norepinephrine, interleukin 6, tumor necrosis factor α, and uric acid. We did not find strong enough data to propose evidence-based recommendations. Nevertheless, significantly elevated levels of brain natriuretic peptide (BNP)/N-terminal prohormone of BNP (NT-proBNP) are most likely associated with the failure of the Fontan circulation. The use of the RDW is also promising. Several biomarkers appear to be useful in certain clinical presentations. Certainly, robust longitudinal, preferably multicenter, prospective studies are needed to determine the sensitivity, specificity, evidence-based cut-off values and overall predictive value of different biomarkers in monitoring Fontan physiology.
Collapse
Affiliation(s)
- Andrzej Wittczak
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Anna Mazurek-Kula
- Department of Cardiology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| | - Grzegorz Piotrowski
- Cardiooncology Department, Medical University of Lodz, 90-419 Lodz, Poland
- Cardiology Department, Nicolaus Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Agata Bielecka-Dabrowa
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 90-419 Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| |
Collapse
|
2
|
Xu Z, Song T, Yang X, Cong L, Yin L, Xu Y, Han X, Gao M, Xu L. TMT-based proteomics reveals methylprotodioscin alleviates oxidative stress and inflammation via COX6C in myocardial infraction. Biomed Pharmacother 2024; 180:117489. [PMID: 39321507 DOI: 10.1016/j.biopha.2024.117489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024] Open
Abstract
The effect of methylprotodioscin (MPD), a steroidal saponin obtained from medicinal plants, on myocardial infarction (MI) remains elusive. In this study, HL-1 and AC16 cells were subjected to injury induced by hypoxic environment, and a mouse model of MI was established by ligating the left anterior descending. MPD significantly increased viabilities and proliferations, improved the stability of MMP, reduced ROS and inflammatory factor levels in hypoxia cardiomyocytes. Moreover, MPD significantly improved cardiac functions, increased the ventricular ejection fraction and short axis shortening rate of mice with MI, reduced the infarction area, alleviated oxidative stress and increased ATPase activities. Then, differentially expressed proteins (DEPs) were discovered and evaluated using tandem mass tag (TMT)-based proteomics and bioinformatics approaches. Compared with sham group, there were 420 DEPs in the cardiac tissue of MI group, likewise, 163 DEPs in MPD group were identified compared to MI group. By validating, the expression of COX6C was elevated in MI group and declined in MPD groups, consistent with the TMT-based proteomics results. Correspondingly, p-NF-κB expression was downregulated, while Nrf2 and SOD expressions were upregulated by MPD. Moreover, si-COX6C transfection blocked the regulatory effects of MPD on COX6C-mediated inflammation and oxidative stress in MI. Our findings indicate that MPD, a naturally occurring active ingredient, could effectively improve cardiac function. Its ability may result from regulating COX6C to reduce oxidative stress and suppress inflammation, suggesting that MPD is very attractive for the treatment of MI.
Collapse
Affiliation(s)
- Zhihui Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Tingyu Song
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xiufang Yang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Linhao Cong
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| |
Collapse
|
3
|
Lelas A, Greinix HT, Wolff D, Eissner G, Pavletic SZ, Pulanic D. Von Willebrand Factor, Factor VIII, and Other Acute Phase Reactants as Biomarkers of Inflammation and Endothelial Dysfunction in Chronic Graft-Versus-Host Disease. Front Immunol 2021; 12:676756. [PMID: 33995421 PMCID: PMC8119744 DOI: 10.3389/fimmu.2021.676756] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is an immune mediated late complication of allogeneic hematopoietic stem cell transplantation (alloHSCT). Discovery of adequate biomarkers could identify high-risk patients and provide an effective pre-emptive intervention or early modification of therapeutic strategy, thus reducing prevalence and severity of the disease among long-term survivors of alloHSCT. Inflammation, endothelial injury, and endothelial dysfunction are involved in cGvHD development. Altered levels of acute phase reactants have shown a strong correlation with the activity of several immune mediated disorders and are routinely used in clinical practice. Since elevated von Willebrand factor (VWF) and factor VIII (FVIII) levels have been described as acute phase reactants that may indicate endothelial dysfunction and inflammation in different settings, including chronic autoimmune diseases, they could serve as potential candidate biomarkers of cGvHD. In this review we focused on reported data regarding VWF and FVIII as well as other markers of inflammation and endothelial dysfunction, evaluating their potential role in cGvHD.
Collapse
Affiliation(s)
- Antonela Lelas
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Daniel Wolff
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Steven Zivko Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Drazen Pulanic
- Division of Hematology, Department of Internal Medicine, University Hospital Centre Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
4
|
van den Bosch E, Bossers SSM, Kamphuis VP, Boersma E, Roos-Hesselink JW, Breur JMPJ, Ten Harkel ADJ, Kapusta L, Bartelds B, Roest AAW, Kuipers IM, Blom NA, Koopman LP, Helbing WA. Associations Between Blood Biomarkers, Cardiac Function, and Adverse Outcome in a Young Fontan Cohort. J Am Heart Assoc 2021; 10:e015022. [PMID: 33624507 PMCID: PMC8174257 DOI: 10.1161/jaha.119.015022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Patients who have undergone the Fontan procedure are at high risk of circulatory failure. In an exploratory analysis we aimed to determine the prognostic value of blood biomarkers in a young cohort who have undergone the Fontan procedure. Methods and Results In multicenter prospective studies patients who have undergone the Fontan procedure underwent blood sampling, cardiopulmonary exercise testing, and stress cardiac magnetic resonance imaging. Several biomarkers including NT-proBNP (N-terminal pro-B-type natriuretic peptide), GDF-15 (growth differentiation factor 15), Gal-3 (galectin-3), ST2 (suppression of tumorigenicity 2), DLK-1 (protein delta homolog 1), FABP-4 (fatty acid-binding protein 4), IGFBP-1 (insulin-like growth factor-binding protein 1), IGFBP-7, MMP-2 (matrix metalloproteinase 2), and vWF (von Willebrand factor) were assessed in blood at 9.6 (7.1-12.1) years after Fontan completion. After this baseline study measurement, follow-up information was collected on the incidence of adverse cardiac events, including cardiac death, out of hospital cardiac arrest, heart transplantation (listing), cardiac reintervention (severe events), hospitalization, and cardioversion/ablation for arrhythmias was collected and the relation with blood biomarkers was assessed by Cox proportional hazard analyses. The correlation between biomarkers and other clinical parameters was evaluated. We included 133 patients who have undergone the Fontan procedure, median age 13.2 (25th, 75th percentile 10.4-15.9) years, median age at Fontan 3.2 (2.5-3.9) years. After a median follow-up of 6.2 (4.9-6.9) years, 36 (27.1%) patients experienced an event of whom 13 (9.8%) had a severe event. NT-proBNP was associated with (all) events during follow-up and remained predictive after correction for age, sex, and dominant ventricle (hazard ratio, 1.89; CI, 1.32-2.68). The severe event-free survival was better in patients with low levels of GDF-15 (P=0.005) and vWF (P=0.008) and high levels of DLK-1 (P=0.041). There was a positive correlation (β=0.33, P=0.003) between DLK-1 and stress cardiac magnetic resonance imaging functional reserve. Conclusions NT-proBNP, GDF-15, vWF, DLK-1, ST-2 FABP-4, and IGFBP-7 levels relate to long-term outcome in young patients who have undergone the Fontan procedure.
Collapse
Affiliation(s)
- Eva van den Bosch
- Division of Pediatric Cardiology Department of Pediatrics Erasmus University Medical Center Rotterdam The Netherlands.,Department of Radiology Erasmus University Medical Center Rotterdam The Netherlands.,Netherlands Heart Institute Utrecht The Netherlands
| | - Sjoerd S M Bossers
- Division of Pediatric Cardiology Department of Pediatrics Erasmus University Medical Center Rotterdam The Netherlands.,Department of Radiology Erasmus University Medical Center Rotterdam The Netherlands
| | - Vivian P Kamphuis
- Netherlands Heart Institute Utrecht The Netherlands.,Division of Pediatric Cardiology Department of Pediatrics Leiden University Medical Center The Netherlands
| | - Eric Boersma
- Department of Cardiology Erasmus University Medical Center Rotterdam The Netherlands
| | | | - Johannes M P J Breur
- Department of Pediatric Cardiology University Medical Center Utrecht Utrecht The Netherlands
| | - Arend D J Ten Harkel
- Division of Pediatric Cardiology Department of Pediatrics Leiden University Medical Center The Netherlands
| | - Livia Kapusta
- Department of Pediatric Cardiology Sourasky Medical Center Tel Aviv University Tel Aviv Israel.,Division of Pediatric Cardiology Department of Pediatrics Radboud University Medical Center Nijmegen The Netherlands
| | - Beatrijs Bartelds
- Division of Pediatric Cardiology Department of Pediatrics Erasmus University Medical Center Rotterdam The Netherlands
| | - Arno A W Roest
- Division of Pediatric Cardiology Department of Pediatrics Leiden University Medical Center The Netherlands
| | - Irene M Kuipers
- Division of Pediatric Cardiology Department of Pediatrics Academic Medical Center Amsterdam The Netherlands
| | - Nico A Blom
- Division of Pediatric Cardiology Department of Pediatrics Leiden University Medical Center The Netherlands.,Division of Pediatric Cardiology Department of Pediatrics Academic Medical Center Amsterdam The Netherlands
| | - Laurens P Koopman
- Division of Pediatric Cardiology Department of Pediatrics Erasmus University Medical Center Rotterdam The Netherlands
| | - Willem A Helbing
- Division of Pediatric Cardiology Department of Pediatrics Erasmus University Medical Center Rotterdam The Netherlands.,Department of Radiology Erasmus University Medical Center Rotterdam The Netherlands.,Division of Pediatric Cardiology Department of Pediatrics Radboud University Medical Center Nijmegen The Netherlands
| |
Collapse
|
5
|
Barkhuizen M, Abella R, Vles JSH, Zimmermann LJI, Gazzolo D, Gavilanes AWD. Antenatal and Perioperative Mechanisms of Global Neurological Injury in Congenital Heart Disease. Pediatr Cardiol 2021; 42:1-18. [PMID: 33373013 PMCID: PMC7864813 DOI: 10.1007/s00246-020-02440-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022]
Abstract
Congenital heart defects (CHD) is one of the most common types of birth defects. Thanks to advances in surgical techniques and intensive care, the majority of children with severe forms of CHD survive into adulthood. However, this increase in survival comes with a cost. CHD survivors have neurological functioning at the bottom of the normal range. A large spectrum of central nervous system dysmaturation leads to the deficits seen in critical CHD. The heart develops early during gestation, and CHD has a profound effect on fetal brain development for the remainder of gestation. Term infants with critical CHD are born with an immature brain, which is highly susceptible to hypoxic-ischemic injuries. Perioperative blood flow disturbances due to the CHD and the use of cardiopulmonary bypass or circulatory arrest during surgery cause additional neurological injuries. Innate patient factors, such as genetic syndromes and preterm birth, and postoperative complications play a larger role in neurological injury than perioperative factors. Strategies to reduce the disability burden in critical CHD survivors are urgently needed.
Collapse
Affiliation(s)
- Melinda Barkhuizen
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Raul Abella
- Department of Pediatric Cardiac Surgery, University of Barcelona, Vall d'Hebron, Spain
| | - J S Hans Vles
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Luc J I Zimmermann
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Diego Gazzolo
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Fetal, Maternal and Neonatal Health, C. Arrigo Children's Hospital, Alessandria, Italy
| | - Antonio W D Gavilanes
- Department of Pediatrics and Neonatology, Maastricht University Medical Center, Maastricht, The Netherlands.
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
- Instituto de Investigación e Innovación de Salud Integral, Facultad de Ciencias Médicas, Universidad Católica de Guayaquil, Guayaquil, Ecuador.
- Department of Pediatrics, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Abstract
PURPOSE Adults with congenital heart disease (ACHD) are a rapidly growing population with ever-increasing complexity, and intensive care unit (ICU) management is often necessary. This review summarizes common cardiovascular and non-cardiovascular complications in ACHD and provides a framework for ICU care. RECENT FINDINGS Heart failure is the leading cause of hospitalization and mortality in ACHD. Varied anatomy and repairs, as well as differing physiological complications, limit generalized application of management algorithms. Recent studies suggest that earlier mechanical support in advanced cases is feasible and potentially helpful. Cardiac arrhythmias are poorly tolerated and often require immediate attention. Other complications requiring intensive care include infections such as endocarditis and COVID-19, pulmonary hypertension, renal failure, hepatic dysfunction, coagulopathy, and stroke. Successful ICU care in ACHD requires a multi-disciplinary approach with careful consideration of anatomy, physiology, and associated comorbidities. Few studies have formally examined ICU management in ACHD and further research is necessary.
Collapse
Affiliation(s)
- Payton Kendsersky
- Department of Medicine, Duke University Medical Center, Durham, NC USA
| | - Richard A. Krasuski
- Division of Cardiology, Duke University Medical Center, DUMC 3010, Durham, NC 27710 USA
| |
Collapse
|