1
|
Wang G, Zhang S, Lu H, Mu Y. Therapeutic Angiogenesis for Ovarian Transplantation through Ultrasound-Targeted Microbubble Destruction. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1868-1880. [PMID: 33832825 DOI: 10.1016/j.ultrasmedbio.2021.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/25/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Timely angiogenesis and effective microcirculation perfusion are essential for the survival and functional recovery of transplanted ovaries. Ultrasound-targeted microbubble destruction (UTMD) can lead to angiogenesis and increase flow perfusion by causing transient inflammation. The purpose of this study was to evaluate the effects of UTMD on transplanted ovarian revascularization and survival. In vitro, for the criteria of cell viability and tube formation capability, the optimal exposure parameters were determined to be a microbubble concentration of 1 × 108/mL, mechanical index of 1 and exposure time of 30 s. After ovarian transplantation, 40 female Sprague Dawley rats were divided into four groups: transplantation alone, ultrasound alone, microbubbles alone and ultrasound and microbubbles (UTMD). At 7 d after transplantation, ovarian perfusion was assessed using qualitative and quantitative methods. The effect of angiogenesis was assessed by contrast-enhanced ultrasound, laser Doppler perfusion imaging and histologic analysis. The results, in which ovarian perfusion was highest in the UTMD group, suggest that UTMD can effectively improve ovarian perfusion. Compared with the other three groups, the number of follicles, microvascular density and rate of Ki-67-positive cells increased significantly in the UTMD group, while apoptosis decreased significantly (p < 0.05). The study indicates that UTMD promoted ovarian re-vascularization after ovarian transplantation and maintained follicular reserve.
Collapse
Affiliation(s)
- Guodong Wang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shan Zhang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hanbing Lu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
2
|
Wei X, Zheng Y, Zhang W, Tan J, Zheng H. Ultrasound‑targeted microbubble destruction‑mediated Galectin‑7‑siRNA promotes the homing of bone marrow mesenchymal stem cells to alleviate acute myocardial infarction in rats. Int J Mol Med 2020; 47:677-687. [PMID: 33416139 PMCID: PMC7797467 DOI: 10.3892/ijmm.2020.4830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are accepted as a form of cellular therapy to improve cardiac function following acute myocardial infarction (AMI). The present study was performed to investigate the synergistic effect of ultrasound-targeted microbubble destruction (UTMD)-mediated Galectin-7-small interfering (si)RNA with the homing of BMSCs for AMI. The rat model of AMI was established, followed by identification of BMSCs. Rats with AMI received BMSC transplantation, BMSC transplantation + UTMD + siRNA negative control, or BMSC transplantation + UTMD + Galectin-7-siRNA. The cardiac function, hemodynamics indexes, degree of myocardial fiber injury and expression of apoptosis-related proteins in myocardial tissues of rats were detected. The homing of BMSCs was observed, and the indexes of myocardial microenvironment and the TGF-β/Smads pathway-related proteins in myocardial tissues were determined. AMI rats treated with UTMD-mediated Galectin-7-siRNA exhibited improved cardiac function and hemodynamics-related indices, decreased myocardial fiber injury and apoptotic cells, as well as enhanced homing ability of BMSCs, improved myocardial microenvironment, and suppressed TGF-β1/Smads pathway activation. In conclusion, the present study demonstrated that UTMD-mediated Galectin-7-siRNA treatment could enhance the homing ability of BMSCs, thus alleviating AMI in rats.
Collapse
Affiliation(s)
- Xin Wei
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Yan Zheng
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Weilin Zhang
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Jing Tan
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Hong Zheng
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|
3
|
Sun T, Gao F, Li X, Cai Y, Bai M, Li F, Du L. A combination of ultrasound-targeted microbubble destruction with transplantation of bone marrow mesenchymal stem cells promotes recovery of acute liver injury. Stem Cell Res Ther 2018; 9:356. [PMID: 30594241 PMCID: PMC6311028 DOI: 10.1186/s13287-018-1098-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/29/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) can provide an additional source of therapeutic stem cells for regeneration of liver cells during acute liver injury (ALI). However, the insufficient hepatic homing by the transplanted BMSCs limits their applications. Ultrasound-targeted microbubble destruction (UTMD) has been reported to promote the homing of transplanted stem cells into the ischemic myocardium. In this study, we investigated whether UTMD promotes the hepatic homing of BMSCs in ALI rats and evaluated the therapeutic effect. Methods BMSCs were isolated from the femurs and tibias of Sprague-Dawley (SD) rats. The isolated BMSCs were stably transfected with a lentivirus expressing enhanced green fluorescent protein (EGFP) that can be visualized and quantified in vivo after transplantation. Both tumor necrosis factor α (TNF-α) and stromal cell-derived factor 1 (SDF-1) were used to verify the appropriate ultrasound parameters. The ALI rats were divided into four groups: control, BMSCs, UTMD, and UTMD + BMSCs. The protein and mRNA expression levels of SDF-1, intercellular cell adhesion molecule (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), hepatocyte growth factor (HGF), and monocyte chemotactic protein 1 (MCP-1) in the exposed livers were analyzed at 48 h after treatment. ALI recovery was determined by serum biochemical parameters and histology. Results The isolated rat BMSCs demonstrated a good proliferation potential that was both osteogenic and adipogenic in differentiation and expressed cluster of differentiation (CD) 29 and CD90, but not CD45 or CD11b/c. After BMSC and/or UTMD treatment, the number of GFP-labeled BMSCs in the UTMD + BMSCs group was significantly higher than that of the BMSCs group (9.8 ± 2.3 vs. 5.2 ± 1.1/per high-power field). Furthermore, the expression of GFP mRNA was performed for evaluation of the homing rate of BMSCs in injury sites as well. In addition, the expression levels of SDF-1, ICAM-1, VCAM-1, HGF, and MCP-1 were higher (p < 0.01) in UTMD+BMSCs group. The serum levels of biomarkers were significantly lower in the UTMD + BMSCs group, and the apoptotic rate of hepatocytes in the UTMD + BMSCs group was markedly lower than that of the BMSCs group (all p < 0.05). The hepatic pathology was significantly alleviated in the UTMD + BMSCs group. Conclusions UTMD treatment efficiently induced a favorable microenvironment for cell engraftment, resulting in improvement of hepatic homing of BMSCs, which was probably mediated through upregulation of the expression of adhesion molecules and cytokines. UTMD treatment appeared to be an effective and noninvasive approach to achieve better efficacy of BMSC-based therapy for repairing a severely injured liver. Electronic supplementary material The online version of this article (10.1186/s13287-018-1098-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ting Sun
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Feng Gao
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Xin Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Yingyu Cai
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Min Bai
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Fan Li
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Lianfang Du
- Department of Medical Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
4
|
Song Y, Xie X, Gao Y, Gu G, Wang P. Ultrasound-induced microbubble destruction promotes targeted delivery of adipose-derived stem cells to improve hind-limb ischemia of diabetic mice. Am J Transl Res 2016; 8:2585-2596. [PMID: 27398142 PMCID: PMC4931153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/18/2016] [Indexed: 06/06/2023]
Abstract
This study aimed to investigate whether ultrasound-induced microbubble destruction was able to promote targeted delivery of adipose-derived stem cells (ASCs) to improve hind-limb ischemia of diabetic mice. Ischemia was induced in the lower limb of db/db mice which were then randomly divided into 5 groups: PBS group, Sham group, ultrasound + microbubble group (US+MB), US+MB+ASCs group and ASCs group. Contrast-enhanced ultrasound perfusion imaging showed the ratio of blood flow in ischemic hind-limb to that in contralateral limb increased over time in five groups. A significant enhancement in US+MB+ASCs group was observed compared with US+MB group (P<0.01). Immunofluorescence microscopy of hind-limb muscle showed the microvessel density (microvessels/skeletal muscle fibers) and arteriolar density in US+MB+ASCs group were higher than in US+MB group, and significantly higher than in other control groups (P<0.01). Masson staining indicated the degree of muscle fibrosis in US+MB+ASCs group was lower than in US+MB. 3 and 7 days after therapy, ELISA and RT-PCR showed the expression of VEGF, P-selectin, ICAM-1 and SDF-1 in US+MB+ASCs group was higher than in US+MB group, and dramatically increased as compared to other groups (P<0.01). 3 and 7 days after therapy, Western blot assay showed the protein expression of P-P13K, P-AKT, VEGF, P-selectin, ICAM-1 and SDF-1 in US+MB+ASCs group was higher than US+MB group (P<0.01). The bioeffects of ultrasound-induced microbubble cavitation is able to up-regulate the expression of pro-inflammatory cytokines, which may improve the targeted delivery, adhesion and paracrine of ASCs, attenuating the hind-limb ischemia in diabetic mice.
Collapse
Affiliation(s)
- Ye Song
- Department of Ultrasound, Shanghai Tongji Hospital of Tongji UniversityShanghai 200065, China
| | - Xiaoyun Xie
- Department of Geriatrics, Shanghai Tongji Hospital of Tongji UniversityShanghai 200065, China
| | - Yuan Gao
- Department of General Surgery, Shanghai Tongji Hospital of Tongji UniversityShanghai 200065, China
| | - Guojun Gu
- Department of Radiology, Shanghai Tongji Hospital of Tongji UniversityShanghai 200065, China
| | - Peijun Wang
- Department of Radiology, Shanghai Tongji Hospital of Tongji UniversityShanghai 200065, China
| |
Collapse
|
5
|
Raheja A, Suri V, Suri A, Sarkar C, Srivastava A, Mohanty S, Jain KG, Sharma MC, Mallick HN, Yadav PK, Kalaivani M, Pandey RM. Dose-dependent facilitation of peripheral nerve regeneration by bone marrow-derived mononuclear cells: a randomized controlled study: laboratory investigation. J Neurosurg 2012; 117:1170-81. [PMID: 23039144 DOI: 10.3171/2012.8.jns111446] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECT Bone marrow-derived stem cells enhance the rate of regeneration of neuronal cells leading to clinical improvement in nerve injury, spinal cord injury, and brain infarction. Recent experiments in the local application of bone marrow-derived mononuclear cells (BM-MNCs) in models of sciatic nerve transection in rats have suggested their beneficial role in nerve regeneration, although the effects of variable doses of stem cells on peripheral nerve regeneration have never been specifically evaluated in the literature. In this paper, the authors evaluated the dose-dependent role of BM-MNCs in peripheral nerve regeneration in a model of sciatic nerve transection in rats. METHODS The right sciatic nerve of 60 adult female Wistar rats (randomized into 2 test groups and 1 control group, 20 rats in each group) underwent transection under an operating microscope. The cut ends of the nerve were approximated using 2 epineural microsutures. The gap was filled with low-dose (5 million BM-MNCs/100 μl phosphate-buffered saline [PBS]) rat BM-MNCs in one group, high-dose (10 million BM-MNCs/100 μl PBS) rat BM-MNCs in another group, and only PBS in the control group, and the approximated nerve ends were sealed using fibrin glue. Histological assessment was performed after 30 days by using semiquantitative and morphometric analyses and was done to assess axonal regeneration, percentage of myelinated fibers, axonal diameter, fiber diameter, and myelin thickness at distal-most sites (10 mm from site of repair), intermediate distal sites (5 mm distal to the repair site), and site of repair. RESULTS The recovery of nerve cell architecture after nerve anastomosis was far better in the high-dose BM-MNC group than in the low-dose BM-MNC and control groups, and it was most evident (p < 0.02 in the majority of the parameters [3 of 4]) at the distal-most site. Overall, the improvement in myelin thickness was most significant with incremental dosage of BM-MNCs, and was evident at the repair, intermediate distal, and distal-most sites (p = 0.001). CONCLUSIONS This study emphasizes the role of BM-MNCs, which can be isolated easily from bone marrow aspirates, in peripheral nerve injury and highlights their dose-dependent facilitation of nerve regeneration.
Collapse
Affiliation(s)
- Amol Raheja
- Department of Neurosurgery and Gamma Knife, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhong S, Shu S, Wang Z, Luo J, Zhong W, Ran H, Zheng Y, Yin Y, Ling Z. Enhanced homing of mesenchymal stem cells to the ischemic myocardium by ultrasound-targeted microbubble destruction. ULTRASONICS 2012; 52:281-286. [PMID: 21937069 DOI: 10.1016/j.ultras.2011.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/10/2011] [Accepted: 08/19/2011] [Indexed: 05/31/2023]
Abstract
In recent years, ultrasound-targeted microbubble destruction (UTMD) has been utilised for the targeted delivery of stem cells. We tested the effects of the myocardial micro-environment changes induced by UTMD on promoting the homing of mesenchymal stem cells (MSCs) to the ischemic myocardium. Dogs were randomly divided into two groups and treated with or without UTMD after the establishment of myocardial infarction models. 4,6-diamino-2-phenyl indole (DAPI) labelled MSCs were transplanted via coronary injections 2 weeks after myocardial infarction in both groups. The results from real-time PCR and western blot analyses indicated that the expression of various cytokines in UTMD-treated dogs was much higher than that observed in non-treated dogs. Histopathological findings demonstrate that ultrasound at a frequency of 1MHz and an intensity of 1.0W/cm(2) provoked inflammatory reactions with mild myocardial damage. Myocardial microenvironment changes caused by UTMD may promote the homing of MSCs to the ischemic myocardium. This non-invasive technique may be a promising method for cardiac cell transplantation therapy.
Collapse
Affiliation(s)
- Shigen Zhong
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Explorations of high-intensity therapeutic ultrasound and microbubble-mediated gene delivery in mouse liver. Gene Ther 2011; 18:1006-14. [PMID: 21451579 DOI: 10.1038/gt.2011.34] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ultrasound (US) combined with microbubbles (MBs) is a promising technology for non-viral gene delivery. Significant enhancements of gene expression have been obtained in our previous studies. To optimize and prepare for application to larger animal models, the luciferase reporter gene transfer efficacy of lipid-based Definity MBs of various concentrations, pressure amplitudes and a novel unfocused high-intensity therapeutic US (HITU) system were explored. Luciferase expression exhibited a dependence on MB dose over the range of 0-25 vol%, and a strong dependence on acoustic peak negative pressure at over the range of 0-3.2 MPa. Gene expression reached an apparent plateau at MB concentration ≥2.5 vol% or at negative pressures >1.8 MPa. Maximum gene expression in treated animals was 700-fold greater than in negative controls. Pulse train US exposure protocols produced an upward trend of gene expression with increasing quiescent time. The hyperbolic correlation of gene expression and transaminase levels suggested that an optimum gene delivery effect can be achieved by maximizing acoustic cavitation-induced enhancement of DNA uptake and minimizing unproductive tissue damage. This study validated the new HITU system equipped with an unfocused transducer with a larger footprint capable of scanning large tissue areas to effectively enhance gene transfer efficiencies.
Collapse
|
8
|
Dang SP, Wang RX, Qin MD, Zhang Y, Gu YZ, Wang MY, Yang QL, Li XR, Zhang XG. A novel transfection method for eukaryotic cells using polyethylenimine coated albumin microbubbles. Plasmid 2011; 66:19-25. [PMID: 21426917 DOI: 10.1016/j.plasmid.2011.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 11/30/2022]
Abstract
Albumin microbubbles have been intensively studied for their application in gene delivery. However, with negative surface potential, albumin microbubbles hardly bind plasmid DNA, which might contribute to their low transgene efficiency. In this study, we developed polyethylenimine (PEI) coated albumin microbubbles (PAMB) which were prepared by sonicating the mixture of human albumin, PEI, polyethylene glycol and glucose. CHO cells, COS cells and 293T cells were transfected with PEI, PEI+albumin, PAMB and Lipofectamine 2000, respectively. Our results showed that the surface potential was elevated and PAMB could bind plasmid DNA. The transgene efficiency of PAMB was higher than PEI and PEI+albumin (P<0.05), and PAMB performed the same transgene effect as Lipofectamine 2000 did but with lower cytotoxicity than Lipofectamine 2000. Albumin microbubbles modified by PEI has high transgene efficiency and low cytotoxicity even without ultrasound medication, making it a useful non-virus gene delivery method in vitro.
Collapse
Affiliation(s)
- Shi-peng Dang
- Institute of Medical Biotechnology, School of Medicine, Soochow University, Suzhou 215007, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Call for a reference model of chronic hind limb ischemia to investigate therapeutic angiogenesis. Vascul Pharmacol 2009; 51:268-74. [PMID: 19619670 DOI: 10.1016/j.vph.2009.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Revised: 06/29/2009] [Accepted: 07/11/2009] [Indexed: 01/29/2023]
Abstract
A large number of studies utilize animal models to investigate therapeutic angiogenesis. However, the lack of a standardized experimental model leaves the comparison of different studies problematic. To establish a reference model of prolonged moderate tissue ischemia, we created unilateral hind limb ischemia in athymic rnu-rats by surgical excision of the femoral vessels. Blood flow of the limb was monitored for 60 days by laser Doppler imaging. Following a short postoperative period of substantially depressed perfusion, the animals showed a status of moderate hind limb ischemia from day 14 onwards. Thereafter, the perfusion remained at a constant level (55.5% of normal value) until the end of the observation period. Histopathological assessment of the ischemic musculature on postoperative days 28 and 60 showed essentially no inflammatory cell infiltrate or fibrosis. However, the mitochondrial activity and capillary-to-fiber ratio of the muscular tissue was reduced to 52.7% of normal, presenting with a significant weakness of the ischemic limb evidenced by a progressive decline in performance. Intramuscular injection of culture-expanded human endothelial progenitor cells (EPC) resulted in a significant increase in blood flow (82.0+/-3.5% of normal), capillary density (1.60+/-0.08/muscle fiber) and smooth muscle covered arterioles (8.0+/-0.6/high power field) in the ischemic hind limb as compared to controls (55.0+/-3.1%; 0.99+/-0.03; 5.0+/-0.2). In conclusion, chronic, moderate hind limb ischemia with consistently reduced perfusion levels persisting over a prolonged period can be established reliably in rnu athymic nude rats and is responsive to pro-angiogenic treatments such as EPC transplantation. This study provides a detailed protocol of a highly reproducible reference model to test novel therapeutic options for limb ischemia.
Collapse
|
10
|
Chappell JC, Song J, Burke CW, Klibanov AL, Price RJ. Targeted delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction for therapeutic arteriogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:1769-1777. [PMID: 18720443 PMCID: PMC2716217 DOI: 10.1002/smll.200800806] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Therapeutic strategies in which recombinant growth factors are injected to stimulate arteriogenesis in patients suffering from occlusive vascular disease stand to benefit from improved targeting, less invasiveness, better growth-factor stability, and more sustained growth-factor release. A microbubble contrast-agent-based system facilitates nanoparticle deposition in tissues that are targeted by 1-MHz ultrasound. This system can then be used to deliver poly(D,L-lactic-co-glycolic acid) nanoparticles containing fibroblast growth factor-2 to mouse adductor muscles in a model of hind-limb arterial insufficiency. Two weeks after treatment, significant increases in both the caliber and total number of collateral arterioles are observed, indicating that the delivery of nanoparticles bearing fibroblast growth factor-2 by ultrasonic microbubble destruction may represent an effective and minimally invasive strategy for the targeted stimulation of therapeutic arteriogenesis.
Collapse
Affiliation(s)
- John C. Chappell
- Department of Biomedical Engineering and Robert M. Berne, Cardiovascular Research Center, Box 800759, Health System, Charlottesville VA, 22908 (USA) Fax: (+1) 434-982-3870
| | - Ji Song
- Department of Biomedical Engineering and Robert M. Berne, Cardiovascular Research Center, Box 800759, Health System, Charlottesville VA, 22908 (USA) Fax: (+1) 434-982-3870
| | - Caitlin W. Burke
- Department of Biomedical Engineering and Robert M. Berne, Cardiovascular Research Center, Box 800759, Health System, Charlottesville VA, 22908 (USA) Fax: (+1) 434-982-3870
| | - Alexander L. Klibanov
- University of Virginia, Cardiovascular Medicine and Robert M. Berne, Cardiovascular Research Center, Box 800500, Health System, Charlottesville VA, 22908 (USA) Fax: (+1) 434-982-3183
| | - Richard J. Price
- Department of Biomedical Engineering and Robert M. Berne, Cardiovascular Research Center, Box 800759, Health System, Charlottesville VA, 22908 (USA) Fax: (+1) 434-982-3870
| |
Collapse
|
11
|
Song X, Zhu H, Jin L, Wang J, Yang Q, Jin P, Li X. Ultrasound-mediated microbubble destruction enhances the efficacy of bone marrow mesenchymal stem cell transplantation and cardiac function. Clin Exp Pharmacol Physiol 2008; 36:267-71. [PMID: 18785979 DOI: 10.1111/j.1440-1681.2008.05049.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Application of ultrasound (US) to intravascular microbubble (MB) contrast agents causes small capillary ruptures. The purpose of the present study was to examine the effects of US-mediated MB destruction on bone marrow mesenchymal stem cell (BMSC) transplantation into the infarcted myocardium and to evaluate whether this approach could improve cardiac function. 2. Ultrasound was applied to the anterior chest of rabbits after intravenous injection of MB followed by infusion of BMSC. There were four groups investigated: (i) a control group, in which neither US nor MB were used prior to infusion of BMSC; (ii) one group subjected to US alone prior to infusion of BMSC; (iii) another group injected with MB prior to infusion of BMSC; and (iv) a group in which US was applied to MB prior to the infusion of BMSC. Cardiac function was evaluated by echocardiography 24 h and 4 weeks after cell transplantation. All rabbits were killed to enable histological and immunochemical examination. 3. Echocardiography 24 h after infusion of BMSC indicated no difference in cardiac function between any of the groups, as assessed by left ventricular ejection fraction (LVEF), left ventricular end-diastolic dimensions (LVDD), left ventricular systolic diameter (LVSD) and fractional shortening (FS%; all P > 0.05). However, 4 weeks after BMSC transplantation, there was a significant improvement in LVEF in the group subjected to US plus MB compared with the control, US alone and MB alone groups (59.5 +/- 3.5, 52.5 +/- 5.5, 52.8 +/- 5.2 and 51.1 +/- 3.5%, respectively; all P < 0.05). In addition, treatment with US plus MB significantly reduced LVDD and LVSD and increased capillary density in the infarcted area. 4. In conslusion, the results of the present study indicate that using US-mediated MB destruction prior to BMSC transplantation into the infarcted myocardium improves the effectiveness of cardiac cell therapy and cardiac function in rabbits.
Collapse
Affiliation(s)
- Xiang Song
- Cardiovascular Center, The Fourth Affiliated Hospital, Harbin Medical University, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Paliwal S, Mitragotri S. Therapeutic opportunities in biological responses of ultrasound. ULTRASONICS 2008; 48:271-278. [PMID: 18406440 DOI: 10.1016/j.ultras.2008.02.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2007] [Revised: 02/05/2008] [Accepted: 02/28/2008] [Indexed: 05/26/2023]
Abstract
The therapeutic benefits of several existing ultrasound-based therapies such as facilitated drug delivery, tumor ablation and thrombolysis derive largely from physical or mechanical effects. In contrast, ultrasound can also trigger various time-dependent biochemical responses in the exposed biological milieu. Several biological responses to ultrasound exposure have been previously described in the literature but only a handful of these provide therapeutic opportunities. These include the use of ultrasound for healing of soft tissues and bones, the use of ultrasound for inducing non-necrotic tumor atrophy as well as for potentiation of chemotherapeutic drugs, activation of the immune system, angiogenesis and suppression of phagocytosis. A review of these therapeutic opportunities is presented with particular emphasis on their mechanisms. Overall, this review presents the increasing importance of ultrasound's role as a biological sensitizer enabling novel therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Paliwal
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
13
|
Chappell JC, Song J, Klibanov AL, Price RJ. Ultrasonic microbubble destruction stimulates therapeutic arteriogenesis via the CD18-dependent recruitment of bone marrow-derived cells. Arterioscler Thromb Vasc Biol 2008; 28:1117-22. [PMID: 18403725 DOI: 10.1161/atvbaha.108.165589] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We have previously shown that, under certain conditions, ultrasonic microbubble destruction creates arteriogenesis and angiogenesis in skeletal muscle. Here, we tested whether this neovascularization response enhances hyperemia in a rat model of arterial insufficiency and is dependent on the recruitment of bone marrow-derived cells (BMDCs) to treated tissues via a beta2 integrin (CD18)-dependent mechanism. METHODS AND RESULTS Sprague-Dawley rats, C57BL/6 wild-type mice, and C57BL/6 chimeric mice engrafted with BMDCs from either GFP+ or CD18-/- mice received bilateral femoral artery ligations. Microbubbles (MBs) were intravenously injected, and one gracilis muscle was exposed to pulsed 1 MHz ultrasound (US). Rat hindlimbs exhibited significant increases in adenosine-induced hyperemia and arteriogenesis compared to contralateral controls at 14 and 28 days posttreatment. US-MB-treated wild-type C57BL/6 mice exhibited significant arteriogenesis, angiogenesis, and CD11b+ monocyte recruitment; however, these responses were all completely blocked in CD18-/- chimeric mice. The number of BMDCs increased in US-MB-treated muscles of GFP+ chimeric mice; however, GFP+ BMDCs did not incorporate into microvessels as vascular cells. CONCLUSIONS In skeletal muscle affected by arterial occlusion, arteriogenesis and hyperemia can be significantly enhanced by ultrasonic MB destruction. This response depends on the recruitment, but not vascular incorporation, of BMDCs via a CD18-dependent mechanism.
Collapse
Affiliation(s)
- John C Chappell
- Department of Biomedical Engineering, University of Virginia, UVA Health System, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
14
|
Paliwal S, Mitragotri S. Ultrasound-induced cavitation: applications in drug and gene delivery. Expert Opin Drug Deliv 2006; 3:713-26. [PMID: 17076594 DOI: 10.1517/17425247.3.6.713] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ultrasound, which has been conventionally used for diagnostics until recently, is now being extensively used for drug and gene delivery. This transformation has come about primarily due to ultrasound-mediated acoustic cavitation - particularly transient cavitation. Acoustic cavitation has been used to facilitate the delivery of small molecules, as well as macromolecules, including proteins and DNA. Controlled generation of cavitation has also been used for targeting drugs to diseased tissues, including skin, brain, eyes and endothelium. Ultrasound has also been employed for the treatment of several diseases, including thromboembolism, arteriosclerosis and cancer. This review provides a detailed account of mechanisms, current status and future prospects of ultrasonic cavitation in drug and gene delivery applications.
Collapse
Affiliation(s)
- Sumit Paliwal
- University of California, Department of Chemical Engineering, Santa Barbara, CA 93106, USA.
| | | |
Collapse
|