1
|
Chen Y, Dou Z, Chen X, Zhao D, Che T, Su W, Qu T, Zhang T, Xu C, Lei H, Li Q, Zhang H, Di C. Overexpression of splicing factor poly(rC)-binding protein 1 elicits cycle arrest, apoptosis induction, and p73 splicing in human cervical carcinoma cells. J Cancer Res Clin Oncol 2022; 148:3475-3484. [PMID: 35896897 DOI: 10.1007/s00432-022-04170-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Splicing factor poly(rC)-binding protein 1 (PCBP1) is a novel tumor suppressor that is downregulated in several cancers thereby regulating tumor formation and metastasis. However, the involvement of PCBP1 in apoptosis of cancer cells and the molecular mechanism remains elusive. On this basis, we sought to investigate the role of splicing factor PCBP1 in the apoptosis in human cervical cancer cells. METHODS To investigate PCBP1 functions in vitro, we overexpressed PCBP1 in human cervical cancer cells. A series of cytological function assays were employed to study to the role of PCBP1 in cell proliferation, cell cycle arrest and apoptosis. RESULTS Overexpression of PCBP1 was found to greatly repress proliferation of HeLa cells in a time-dependent manner. It also induced a significant increase in G2/M phase arrest and apoptosis. Furthermore, overexpressed PCBP1 favored the production of long isoforms of p73, thereby inducing upregulated ratio of Bax/Bcl-2, the release of cytochrome c and the expression of caspase-3. CONCLUSION Our results revealed that PCBP1 played a vital role in p73 splicing, cycle arrest and apoptosis induction in human cervical carcinoma cells. Targeting PCBP1 may be a potential therapeutic strategy for cervical cancer therapy.
Collapse
Affiliation(s)
- Yuhong Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhihui Dou
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Dapeng Zhao
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tuanjie Che
- Laboratory of Precision Medicine and Translational Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, 215153, China.,Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, 730030, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Tao Qu
- Department of Biotherapy Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Caipeng Xu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Huiweng Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Qiang Li
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China. .,Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China. .,Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100039, China. .,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100039, China. .,Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Dual Role of p73 in Cancer Microenvironment and DNA Damage Response. Cells 2021; 10:cells10123516. [PMID: 34944027 PMCID: PMC8700694 DOI: 10.3390/cells10123516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms that regulate cancer progression is pivotal for the development of new therapies. Although p53 is mutated in half of human cancers, its family member p73 is not. At the same time, isoforms of p73 are often overexpressed in cancers and p73 can overtake many p53 functions to kill abnormal cells. According to the latest studies, while p73 represses epithelial–mesenchymal transition and metastasis, it can also promote tumour growth by modulating crosstalk between cancer and immune cells in the tumor microenvironment, M2 macrophage polarisation, Th2 T-cell differentiation, and angiogenesis. Thus, p73 likely plays a dual role as a tumor suppressor by regulating apoptosis in response to genotoxic stress or as an oncoprotein by promoting the immunosuppressive environment and immune cell differentiation.
Collapse
|
3
|
Rozenberg JM, Zvereva S, Dalina A, Blatov I, Zubarev I, Luppov D, Bessmertnyi A, Romanishin A, Alsoulaiman L, Kumeiko V, Kagansky A, Melino G, Ganini C, Barlev NA. The p53 family member p73 in the regulation of cell stress response. Biol Direct 2021; 16:23. [PMID: 34749806 PMCID: PMC8577020 DOI: 10.1186/s13062-021-00307-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
During oncogenesis, cells become unrestrictedly proliferative thereby altering the tissue homeostasis and resulting in subsequent hyperplasia. This process is paralleled by resumption of cell cycle, aberrant DNA repair and blunting the apoptotic program in response to DNA damage. In most human cancers these processes are associated with malfunctioning of tumor suppressor p53. Intriguingly, in some cases two other members of the p53 family of proteins, transcription factors p63 and p73, can compensate for loss of p53. Although both p63 and p73 can bind the same DNA sequences as p53 and their transcriptionally active isoforms are able to regulate the expression of p53-dependent genes, the strongest overlap with p53 functions was detected for p73. Surprisingly, unlike p53, the p73 is rarely lost or mutated in cancers. On the contrary, its inactive isoforms are often overexpressed in cancer. In this review, we discuss several lines of evidence that cancer cells develop various mechanisms to repress p73-mediated cell death. Moreover, p73 isoforms may promote cancer growth by enhancing an anti-oxidative response, the Warburg effect and by repressing senescence. Thus, we speculate that the role of p73 in tumorigenesis can be ambivalent and hence, requires new therapeutic strategies that would specifically repress the oncogenic functions of p73, while keeping its tumor suppressive properties intact.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| | - Svetlana Zvereva
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra Dalina
- The Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - Igor Blatov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ilya Zubarev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Daniil Luppov
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | - Alexander Romanishin
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia.,School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Lamak Alsoulaiman
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Alexander Kagansky
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Gerry Melino
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Ganini
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nikolai A Barlev
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Russia. .,Institute of Cytology, Russian Academy of Science, Saint-Petersburg, Russia.
| |
Collapse
|
4
|
Ding YC, Hurley S, Park JS, Steele L, Rakoff M, Zhu Y, Zhao J, LaBarge M, Bernstein L, Chen S, Reynolds P, Neuhausen SL. Methylation biomarkers of polybrominated diphenyl ethers (PBDEs) and association with breast cancer risk at the time of menopause. ENVIRONMENT INTERNATIONAL 2021; 156:106772. [PMID: 34425644 PMCID: PMC8385228 DOI: 10.1016/j.envint.2021.106772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Exposure to polybrominated diphenyl ethers (PBDEs) may influence risk of developing post-menopausal breast cancer. Although mechanisms are poorly understood, epigenetic regulation of gene expression may play a role. OBJECTIVES To identify DNA methylation (DNAm) changes associated with PBDE serum levels and test the association of these biomarkers with breast cancer risk. METHODS We studied 397 healthy women (controls) and 133 women diagnosed with breast cancer (cases) between ages 40 and 58 years who participated in the California Teachers Study. PBDE levels were measured in blood. Infinium Human Methylation EPIC Bead Chips were used to measure DNAm. Using multivariable linear regression models, differentially methylated CpG sites (DMSs) and regions (DMRs) associated with serum PBDE levels were identified using controls. For top-ranked DMSs and DMRs, targeted next-generation bisulfite sequencing was used to measure DNAm for 133 invasive breast cancer cases and 301 age-matched controls. Conditional logistic regression was used to evaluate associations between DMSs and DMRs and breast cancer risk. RESULTS We identified 15 DMSs and 10 DMRs statistically significantly associated with PBDE levels (FDR < 0.05). Methylation changes in a DMS at BMP8B and DMRs at TP53 and A2M-AS1 were statistically significantly (FDR < 0.05) associated with breast cancer risk. CONCLUSION We show for the first time that serum PBDE levels are associated with differential methylation and that PBDE-associated DNAm changes in blood are associated with breast cancer risk.
Collapse
Affiliation(s)
- Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan Hurley
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA; Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA, USA
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, Berkeley, CA, USA
| | - Linda Steele
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Michele Rakoff
- Breast Cancer Care and Research Fund, Los Angeles, CA, USA
| | - Yun Zhu
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark LaBarge
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Leslie Bernstein
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
5
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
6
|
Breast-Specific Epigenetic Regulation of DeltaNp73 and Its Role in DNA-Damage-Response of BRCA1-Mutated Human Mammary Epithelial Cells. Cancers (Basel) 2020; 12:cancers12092367. [PMID: 32825620 PMCID: PMC7564633 DOI: 10.3390/cancers12092367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
The function of BRCA1/2 proteins is essential for maintaining genomic integrity in all cell types. However, why women who carry deleterious germline mutations in BRCA face an extremely high risk of developing breast and ovarian cancers specifically has remained an enigma. We propose that breast-specific epigenetic modifications, which regulate tissue differentiation, could team up with BRCA deficiency and affect tissue susceptibility to cancer. In earlier work, we compared genome-wide methylation profiles of various normal epithelial tissues and identified breast-specific methylated gene promoter regions. Here, we focused on deltaNp73, the truncated isoform of p73, which possesses antiapoptotic and pro-oncogenic functions. We showed that the promoter of deltaNp73 is unmethylated in normal human breast epithelium and methylated in various other normal epithelial tissues and cell types. Accordingly, deltaNp73 was markedly induced by DNA damage in human mammary epithelial cells (HMECs) but not in other epithelial cell types. Moreover, the induction of deltaNp73 protected HMECs from DNA damage-induced cell death, and this effect was more substantial in HMECs from BRCA1 mutation carriers. Notably, when BRCA1 was knocked down in MCF10A, a non-malignant breast epithelial cell line, both deltaNp73 induction and its protective effect from cell death were augmented upon DNA damage. Interestingly, deltaNp73 induction also resulted in inhibition of BRCA1 and BRCA2 expression following DNA damage. In conclusion, breast-specific induction of deltaNp73 promotes survival of BRCA1-deficient mammary epithelial cells upon DNA damage. This might result in the accumulation of genomic alterations and allow the outgrowth of breast cancers. These findings indicate deltaNp73 as a potential modifier of breast cancer susceptibility in BRCA1 mutation carriers and may stimulate novel strategies of prevention and treatment for these high-risk women.
Collapse
|
7
|
Yao Z, Di Poto C, Mavodza G, Oliver E, Ressom HW, Sherif ZA. DNA Methylation Activates TP73 Expression in Hepatocellular Carcinoma and Gastrointestinal Cancer. Sci Rep 2019; 9:19367. [PMID: 31852961 PMCID: PMC6920427 DOI: 10.1038/s41598-019-55945-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
The complexity of TP73 expression and its functionality, as well as the role of TP73 in tumorigenesis, unlike its cousin TP53, which is an established tumor suppressor, have remained elusive to date. In this study, we isolated two stem cell lines (HepCY & HepCO) from normal young and old human liver tissues. We determined TP73 expression in HepCY and HepCO, hepatocellular cancer (HCC) cell lines (HepG2, SNU398, SNU449 and SNU475), gastrointestinal cancer (GI) cell lines (Caco2 and HCT116) and normal skin fibroblasts cell line (HS27). Immunohistochemical analyses of TP73 expression was also performed in non-cancerous and adjacent cancerous liver tissues of HCC patients. The results show that TP73 expression is exclusive to the cancer cell lines and not the adjacent normal liver tissues. Moreover, methylation-specific PCR and bisulfite sequencing studies revealed that TP73 promoter is activated only in cancer cell lines by DNA methylation. Furthermore, ChIP assay results demonstrated that a chromosomal networking protein (CTCF) and tumor protein p53 (TP53) bind to TP73 promoter and regulate TP73 expression. Our observations demonstrate that a positive correlation in tumorigenesis exists between TP73 expression and DNA methylation in promoter regions of TP73. These findings may prove significant for the development of future diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Zhixing Yao
- Department of Biochemistry & Molecular Biology, College of Medicine, Howard University, Washington, DC, 20059, USA
| | - Cristina Di Poto
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Grace Mavodza
- Department of Biochemistry & Molecular Biology, College of Medicine, Howard University, Washington, DC, 20059, USA
- Department of Pharmacology, Hershey College of Medicine, Pennsylvania State University, Pennsylvania, PA, 17033, USA
| | - Everett Oliver
- Department of Biochemistry & Molecular Biology, College of Medicine, Howard University, Washington, DC, 20059, USA
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Habtom W Ressom
- Department of Oncology, Lombardi Cancer Center, Georgetown University, Washington, DC, 20007, USA
| | - Zaki A Sherif
- Department of Biochemistry & Molecular Biology, College of Medicine, Howard University, Washington, DC, 20059, USA.
| |
Collapse
|
8
|
Wu J, Zhang Y, Li M. Identification of Methylation Markers and Differentially Expressed Genes with Prognostic Value in Breast Cancer. J Comput Biol 2019; 26:1394-1408. [PMID: 31290690 DOI: 10.1089/cmb.2019.0179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Breast cancer is one of the most common cancers causing a high mortality worldwide. This study aimed to identify differential methylation and expression genes with prognostic value in breast cancer. DNA methylation and gene expression profiles (GSE60185, GSE42568, GSE21653, GSE58812, and GSE52865) were downloaded from TCGA (The Cancer Genome Atlas) and GEO (Gene Expression Omnibus) databases. The differentially expressed genes (DEGs) and differential methylation genes were identified between breast cancer samples and normal samples. Functional analysis was performed using DAVID (Database for Annotation, Visualization, and Integrated Discovery) tool. Furthermore, functional epigenetic modules (FEM) were analyzed to identify critical genes with prognostic values. A large amount of DEGs and aberrant methylation genes were identified between breast cancer samples and normal samples. These genes were mainly associated with several GO (Gene Ontology) terms and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, such as neuroactive ligand-receptor interaction, alcoholism, gamma-aminobutyric acid signaling pathway, and G-protein-coupled receptor signaling pathway. Additionally, 10 DEGs with differential methylation levels were significantly correlated with survival outcomes in breast cancer patients. FEM analysis revealed that several DEGs (e.g., GABRA4, GABRG1, and GABRA1) in module GABRA4 were identified as potential biomarkers in breast cancer patients. Several DEGs identified were associated with breast cancer prognosis. These DEGs might act as prognostic and diagnostic markers in breast cancer.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yijian Zhang
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China.,Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Maolan Li
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
9
|
Graff-Baker AN, Orozco JIJ, Marzese DM, Salomon MP, Hoon DSB, Goldfarb M. Epigenomic and Transcriptomic Characterization of Secondary Breast Cancers. Ann Surg Oncol 2018; 25:3082-3087. [PMID: 29956094 DOI: 10.1245/s10434-018-6582-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Molecular alterations impact tumor prognosis and response to treatment. This study was designed to identify transcriptomic and epigenomic signatures of breast cancer (BC) tumors from patients with any prior malignancy. METHODS RNA-sequencing and genome-wide DNA methylation profiles from BCs were generated in the Cancer Genome Atlas project. Patients with secondary breast cancer (SBC) were separated by histological subtype and matched to primary breast cancer controls to create two independent cohorts of invasive ductal (IDC, n = 36) and invasive lobular (ILC, n = 40) carcinoma. Differentially expressed genes, as well as differentially methylated genomic regions, were integrated to identify epigenetically regulated abnormal gene pathways in SBCs. RESULTS Differentially expressed genes were identified in IDC SBCs (n = 727) and in ILC SBCs (n = 261; Wilcoxon's test; P < 0.05). In IDC SBCs, 105 genes were upregulated and hypomethylated, including an estrogen receptor gene, and 73 genes were downregulated and hypermethylated, including genes involved in antigen presentation and interferon response pathways (HLA-E, IRF8, and RELA). In ILC SBCs, however, only 17 genes were synchronously hypomethylated and upregulated, whereas 46 genes hypermethylated and downregulated. Interestingly, the SBC gene expression signatures closely corresponded with each histological subtype with only 1.51% of genes overlapping between the two histological subtypes. CONCLUSIONS Differential gene expression and DNA methylation signatures are seen in both IDC and ILC SBCs, including genes that are relevant to tumor growth and proliferation. Differences in gene expression signatures corresponding with each histological subtype emphasize the importance of disease subtype-specific evaluations of molecular alterations.
Collapse
Affiliation(s)
- Amanda N Graff-Baker
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Javier I J Orozco
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Diego M Marzese
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matthew P Salomon
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Melanie Goldfarb
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| |
Collapse
|