1
|
Yang W, Peng C, Li Z, Yang W. Identification of PATL1 as a prognostic and immunotherapeutic predictive factor for nasal-type natural killer/T-cell lymphoma and head and neck squamous cell carcinoma. Heliyon 2024; 10:e32158. [PMID: 38912458 PMCID: PMC11190607 DOI: 10.1016/j.heliyon.2024.e32158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
This research examines the function of protein associated with topoisomerase II homolog 1 (PATL1) in nasal-type natural killer/T-cell lymphoma (NKTCL) and head and neck squamous cell carcinoma (HNSCC). We analyzed bulk RNA-seq data from NKTCL, nasal polyps, and normal nasal mucosa, identifying 439 differentially expressed genes. Machine learning algorithms highlighted PATL1 as a hub gene. PATL1 exhibited significant upregulation in NKTCL and HNSCC tumor samples in comparison to normal tissues, showing high diagnostic accuracy (AUC = 1.000) for NKTCL. Further analysis of local hospital data identified PATL1 as an independent prognostic risk factor for NKTCL. Data analysis of TCGA and GEO datasets revealed that high PATL1 expression correlated with poorer prognosis in HNSCC patients (p < 0.05). We also constructed a PATL1-based nomogram, which emerged as an independent prognostic predictor for HNSCC after addressing missing values. Additionally, we found a strong correlation between PATL1 and various immune cell infiltrates (e.g., activated.CD4 T cell), and a significant association with the expression of 37 immune checkpoints genes (e.g., CTLA4, PDCD1) and 20 N6-methyladenosine-related genes (e.g., ZC3H13, METTL3) (all p < 0.05). Both TCIA and TIDE algorithms suggested that PATL1 could potentially predict immunotherapy efficacy (p < 0.05). Cellular experiments demonstrated that transfection with a silencing plasmid of PATL1 significantly inhibited the malignant behaviors of SNK6 and FaDu cell lines(p < 0.05). In conclusion, our findings suggest that PATL1 may serve as a valuable prognostic and predictive biomarker in NKTCL and HNSCC, highlighting its significant role in these cancers.
Collapse
Affiliation(s)
- Wen Yang
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, China
- Department of Pathology, Guizhou Medical University, China
| | - Cong Peng
- Department of Otolaryngology, Guizhou Provincial People's Hospital, China
| | - Zhengyang Li
- Department of Otolaryngology, Guizhou Provincial People's Hospital, China
| | - Wenxiu Yang
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, China
- Department of Pathology, Guizhou Medical University, China
| |
Collapse
|
2
|
Kavus H, Ding Y, Dhesi M. Updates in Immunohistochemistry for Hematopoietic and Lymphoid Neoplasms. Arch Pathol Lab Med 2024; 148:292-298. [PMID: 37270801 DOI: 10.5858/arpa.2022-0465-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 06/06/2023]
Abstract
CONTEXT.— In their 2014 article "New Immunohistochemistry for B-cell Lymphoma and Hodgkin Lymphoma," Zhang and Aguilera reviewed new immunohistochemical markers for B-cell lymphoma and Hodgkin lymphoma and described how to use these markers for correct lymphoma diagnoses, using the 2008 World Health Organization classifications. Recently, the World Health Organization's WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues published 2022 updates, and, in quick sequence, a second group published an alternative International Consensus Classification of myeloid neoplasms, acute leukemias, and mature lymphoid neoplasms. Regardless of the system a hematopathologist chooses to follow, updates in the immunohistochemical diagnosis of disease are described in both publications as well as in the primary literature. In addition to updated classifications, the increasing use of small biopsy samples for the evaluation of lymphadenopathy continues to challenge hematopathology diagnosis and increase the utilization of immunohistochemistry. OBJECTIVE.— To review new immunohistochemical markers or new uses of previously known immunohistochemical markers in the evaluation of hematolymphoid neoplasia for the practicing hematopathologist. DATA SOURCES.— Data were obtained from a literature review and personal practice experience. CONCLUSIONS.— The practicing hematopathologist requires knowledge of the ever-expanding repertoire of immunohistochemistry for the diagnosis and treatment of hematolymphoid neoplasia. New markers presented in this article help to complete our understanding of disease, diagnosis, and management.
Collapse
Affiliation(s)
- Haluk Kavus
- From the Department of Laboratory Medicine and Pathology, Geisinger Medical Center, Danville, Pennsylvania
| | - Yi Ding
- From the Department of Laboratory Medicine and Pathology, Geisinger Medical Center, Danville, Pennsylvania
| | - Mary Dhesi
- From the Department of Laboratory Medicine and Pathology, Geisinger Medical Center, Danville, Pennsylvania
| |
Collapse
|
3
|
Arai H, Matsui H, Chi S, Utsu Y, Masuda S, Aotsuka N, Minami Y. Germline Variants and Characteristic Features of Hereditary Hematological Malignancy Syndrome. Int J Mol Sci 2024; 25:652. [PMID: 38203823 PMCID: PMC10779750 DOI: 10.3390/ijms25010652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Due to the proliferation of genetic testing, pathogenic germline variants predisposing to hereditary hematological malignancy syndrome (HHMS) have been identified in an increasing number of genes. Consequently, the field of HHMS is gaining recognition among clinicians and scientists worldwide. Patients with germline genetic abnormalities often have poor outcomes and are candidates for allogeneic hematopoietic stem cell transplantation (HSCT). However, HSCT using blood from a related donor should be carefully considered because of the risk that the patient may inherit a pathogenic variant. At present, we now face the challenge of incorporating these advances into clinical practice for patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) and optimizing the management and surveillance of patients and asymptomatic carriers, with the limitation that evidence-based guidelines are often inadequate. The 2016 revision of the WHO classification added a new section on myeloid malignant neoplasms, including MDS and AML with germline predisposition. The main syndromes can be classified into three groups. Those without pre-existing disease or organ dysfunction; DDX41, TP53, CEBPA, those with pre-existing platelet disorders; ANKRD26, ETV6, RUNX1, and those with other organ dysfunctions; SAMD9/SAMD9L, GATA2, and inherited bone marrow failure syndromes. In this review, we will outline the role of the genes involved in HHMS in order to clarify our understanding of HHMS.
Collapse
Affiliation(s)
- Hironori Arai
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Hirotaka Matsui
- Department of Laboratory Medicine, National Cancer Center Hospital, Tsukiji, Chuoku 104-0045, Japan;
- Department of Medical Oncology and Translational Research, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8665, Japan
| | - SungGi Chi
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| | - Yoshikazu Utsu
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Shinichi Masuda
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Nobuyuki Aotsuka
- Department of Hematology and Oncology, Japanese Red Cross Narita Hospital, Iidacho, Narita 286-0041, Japan; (Y.U.); (S.M.); (N.A.)
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan; (H.A.); (S.C.)
| |
Collapse
|
4
|
Li S, Liu T, Liu H, Zhai X, Cao T, Yu H, Hong W, Lin X, Li M, Huang Y, Xiao J. Integrated driver mutations profile of chinese gastrointestinal-natural killer/T-cell lymphoma. Front Oncol 2022; 12:976762. [PMID: 36059700 PMCID: PMC9434212 DOI: 10.3389/fonc.2022.976762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
Background One of the most common nasal external sites in extranodal Natural Killer/T-cell lymphoma (NKTCL) is in the gastrointestinal (GI) system. Despite this, reports on gastrointestinal-Natural Killer/T-cell lymphoma (GI-NKTCL) are very few. To obtain a better understanding of this manifestation of NKTCL, we conducted a retrospective study on GI-NKTCL to analyze its clinical features, genomic changes and immune infiltration. Methods We retrospectively collected patients diagnosed with GI-NKTCL in the Sixth Affiliated Hospital of Sun Yat-sen University from 2010 to 2020. From this cohort we obtained mutation data via whole exome sequencing. Results Genomic analysis from 15 patients with GI-NKTCL showed that the most common driving mutations were ARID1B(14%, 2/15), ERBB3(14%, 2/15), POT1(14%, 2/15), and TP53(14%, 2/15). In addition, we found the most common gene mutation in patients with GI-NKTCL to be RETSAT(29%, 4/15) and SNRNP70(21%, 3/15), and the most common hallmark pathway mutations to be G2M checkpoint pathway (10/15, 66.7%), E2F targets (8/15, 53.3%), estrogen response late (7/15, 46.7%), estrogen response early (7/15, 46.7%), apoptosis (7/15, 46.7%) and TNFA signaling via NFKB (7/15, 46.7%). In the ICIs-Miao cohort, SNRNP7-wild-type (WT) melanoma patients had significantly prolonged overall survival (OS) time compared with SNRNP7 mutant type (MT) melanoma patients. In the TCGA-UCEC cohort, the patients with RETSAT-MT or SNRNP7-MT had significantly increased expression of immune checkpoint molecules and upregulation of inflammatory immune cells. Conclusions In this study, we explored GI-NKTCL by means of genomic analysis, and identified the most common mutant genes (RETSAT and SNRNP70), pathway mutations (G2M checkpoint and E2F targets) in GI-NKTCL patients. Also, we explored the association between the common mutant genes and immune infiltration. Our aim is that our exploration of these genomic changes will aid in the discovery of new biomarkers and therapeutic targets for those with GI-NKTCL, and finally provide a theoretical basis for improving the treatment and prognosis of patients with GI-NKTCL.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingzhi Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Medical Hematology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hailing Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
| | - Xiaohui Zhai
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Taiyuan Cao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongen Yu
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanjia Hong
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoru Lin
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Huang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- *Correspondence: Yan Huang, ; Jian Xiao,
| | - Jian Xiao
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun-Yat Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Yan Huang, ; Jian Xiao,
| |
Collapse
|
5
|
Stubbins RJ, Korotev S, Godley LA. Germline CHEK2 and ATM Variants in Myeloid and Other Hematopoietic Malignancies. Curr Hematol Malig Rep 2022; 17:94-104. [PMID: 35674998 DOI: 10.1007/s11899-022-00663-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW An intact DNA damage response is crucial to preventing cancer development, including in myeloid and lymphoid malignancies. Deficiencies in the homologous recombination (HR) pathway can lead to defective DNA damage responses, and this can occur through inherited germline mutations in HR pathway genes, such as CHEK2 and ATM. We now understand that germline mutations can be identified frequently (~ 5-10%) in patients with myeloid and lymphoid malignancies, and among the most common of these are CHEK2 and ATM. We review the role that deleterious germline CHEK2 and ATM variants play in the development of hematopoietic malignancies, and how this influences clinical practice, including cancer screening, hematopoietic stem cell transplantation, and therapy choice. RECENT FINDINGS In recent large cohorts of patients diagnosed with myeloid or lymphoid malignancies, deleterious germline loss of function variants in CHEK2 and ATM are among the most common identified. Germline CHEK2 variants predispose to a range of myeloid malignancies, most prominently myeloproliferative neoplasms and myelodysplastic syndromes (odds ratio range: 2.1-12.3), and chronic lymphocytic leukemia (odds ratio 14.83). Deleterious germline ATM variants have been shown to predispose to chronic lymphocytic leukemia (odds ratio range: 1.7-10.1), although additional studies are needed to demonstrate the risk they confer for myeloid malignancies. Early studies suggest there may also be associations between deleterious germline CHEK2 and ATM variants and development of clonal hematopoiesis. Identifying CHEK2 and ATM variants is crucial for the optimal management of patients and families affected by hematopoietic malignancies. OPENING CLINICAL CASE: "A 45 year-old woman presents to your clinic with a history of triple-negative breast cancer diagnosed five years ago, treated with surgery, radiation, and chemotherapy. About six months ago, she developed cervical lymphadenopathy, and a biopsy demonstrated small lymphocytic leukemia. Peripheral blood shows a small population of lymphocytes with a chronic lymphocytic leukemia immunophenotype, and FISH demonstrates a complex karyotype: gain of one to two copies of IGH and FGFR3; gain of two copies of CDKN2C at 1p32.3; gain of two copies of CKS1B at 1q21; tetrasomy for chromosome 3; trisomy and tetrasomy for chromosome 7; tetrasomy for chromosome 9; tetrasomy for chromosome 12; gain of one to two copies of ATM at 11q22.3; deletion of chromosome 13 deletion positive; gain of one to two copies of TP53 at 17p13.1). Given her history of two cancers, you arrange for germline genetic testing using DNA from cultured skin fibroblasts, which demonstrates pathogenic variants in ATM [c.1898 + 2 T > G] and CHEK2 [p.T367Metfs]. Her family history is significant for multiple cancers. (Fig. 1)." Fig. 1 Representative pedigree from a patient with germline pathogenic ATM and CHEK2 variants who was affected by early onset breast cancer and chronic lymphocytic leukemia. Arrow indicates proband. Colors indicate cancer type/disease: purple, breast cancer; blue, lymphoma; brown, melanoma; yellow, colon cancer; and green, autoimmune disease.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA.,Leukemia/BMT Program of BC, BC Cancer, Vancouver, BC, Canada
| | - Sophia Korotev
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA
| | - Lucy A Godley
- Section of Hematology Oncology, Department of Medicine, The University of Chicago, 5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637, USA.
| |
Collapse
|
6
|
Niwa Y, Kamimura K, Ogawa K, Oda C, Tanaka Y, Horigome R, Ohtsuka M, Miura H, Fujisawa K, Yamamoto N, Takami T, Okuda S, Ko M, Owaki T, Kimura A, Shibata O, Morita S, Sakai N, Abe H, Yokoo T, Sakamaki A, Kamimura H, Terai S. Cyclin D1 Binding Protein 1 Responds to DNA Damage through the ATM-CHK2 Pathway. J Clin Med 2022; 11:851. [PMID: 35160302 PMCID: PMC8836734 DOI: 10.3390/jcm11030851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin D1 binding protein 1 (CCNDBP1) is considered a tumor suppressor, and when expressed in tumor cells, CCNDBP1 can contribute to the viability of cancer cells by rescuing these cells from chemotherapy-induced DNA damage. Therefore, this study focused on investigating the function of CCNDBP1, which is directly related to the survival of cancer cells by escaping DNA damage and chemoresistance. Hepatocellular carcinoma (HCC) cells and tissues obtained from Ccndbp1 knockout mice were used for the in vitro and in vivo examination of the molecular mechanisms of CCNDBP1 associated with the recovery of cells from DNA damage. Subsequently, gene and protein expression changes associated with the upregulation, downregulation, and irradiation of CCNDBP1 were assessed. The overexpression of CCNDBP1 in HCC cells stimulated cell growth and showed resistance to X-ray-induced DNA damage. Gene expression analysis of CCNDBP1-overexpressed cells and Ccndbp1 knockout mice revealed that Ccndbp1 activated the Atm-Chk2 pathway through the inhibition of Ezh2 expression, accounting for resistance to DNA damage. Our study demonstrated that by inhibiting EZH2, CCNDBP1 contributed to the activation of the ATM-CHK2 pathway to alleviate DNA damage, leading to chemoresistance.
Collapse
Affiliation(s)
- Yusuke Niwa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
- Department of General Medicine, Niigata University School of Medicine, Niigata 951-8510, Niigata, Japan
| | - Kohei Ogawa
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Chiyumi Oda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Yuto Tanaka
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Ryoko Horigome
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara 259-1193, Kanagawa, Japan; (M.O.); (H.M.)
| | - Hiromi Miura
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara 259-1193, Kanagawa, Japan; (M.O.); (H.M.)
| | - Koichi Fujisawa
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan; (K.F.); (N.Y.); (T.T.)
| | - Naoki Yamamoto
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan; (K.F.); (N.Y.); (T.T.)
| | - Taro Takami
- Department of Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Yamaguchi, Japan; (K.F.); (N.Y.); (T.T.)
| | - Shujiro Okuda
- Division of Bioinformatics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan;
| | - Masayoshi Ko
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Takashi Owaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Atsushi Kimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Osamu Shibata
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Shinichi Morita
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Norihiro Sakai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Hiroyuki Abe
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Akira Sakamaki
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Hiroteru Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Niigata, Japan; (Y.N.); (K.O.); (C.O.); (Y.T.); (R.H.); (M.K.); (T.O.); (A.K.); (O.S.); (S.M.); (N.S.); (H.A.); (T.Y.); (A.S.); (H.K.); (S.T.)
| |
Collapse
|
7
|
Xie J, Kong X, Wang W, Li Y, Lin M, Li H, Chen J, Zhou W, He J, Wu H. Vasculogenic Mimicry Formation Predicts Tumor Progression in Oligodendroglioma. Pathol Oncol Res 2021; 27:1609844. [PMID: 34483751 PMCID: PMC8408314 DOI: 10.3389/pore.2021.1609844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022]
Abstract
Vasculogenic mimicry (VM) has been identified as an important vasculogenic mechanism in malignant tumors, but little is known about its clinical meanings and mechanisms in oligodendroglioma. In this study, VM-positive cases were detected in 28 (20.6%) out of 136 oligodendroglioma samples, significantly associated with higher WHO grade, lower Karnofsky performance status (KPS) scores, and recurrent tumor (p < 0.001, p = 0.040, and p = 0.020 respectively). Patients with VM-positive oligodendroglioma had a shorter progress-free survival (PFS) compared with those with VM-negative tumor (p < 0.001), whereas no significant difference was detected in overall survival (OS) between these patients. High levels of phosphorylate serine/threonine kinases Ataxia-telangiectasia mutated (pATM) and phosphorylate Ataxia-telangiectasia and Rad3-Related (pATR) were detected in 31 (22.8%) and 34 (25.0%), respectively out of 136 oligodendroglioma samples. Higher expressions of pATM and pATR were both associated with a shorter PFS (p < 0.001 and p < 0.001). VM-positive oligodendroglioma specimens tended to exhibit higher pATM and pATR staining than VM-negative specimens (rs = 0.435, p < 0.001 and rs = 0.317, p < 0.001). Besides, Hypoxia-inducible factor-1α (HIF1α) expression was detected in 14(10.3%) samples, correlated with higher WHO grade and non-frontal lobe (p = 0.010 and p = 0.029). However, no obvious connection was detected between HIF1α expression and VM formation (p = 0.537). Finally, either univariate or multivariate analysis suggested that VM was an independent unfavorable predictor for oligodendroglioma patients (p < 0.001, HR = 7.928, 95%CI: 3.382-18.584, and p = 0.007, HR = 4.534, 95%CI: 1.504-13.675, respectively). VM is a potential prognosticator for tumor progression in oligodendroglioma patients. Phosphorylation of ATM and ATR linked to treatment-resistance may be associated with VM formation. The role of VM in tumor progression and the implication of pATM/pATR in VM formation may provide potential therapeutic targets for oligodendroglioma treatment.
Collapse
Affiliation(s)
- Jing Xie
- School of Medicine, Shandong University, Jinan, China.,Department of Pathology, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xue Kong
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuan Li
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengyu Lin
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Heng Li
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jingjing Chen
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenchao Zhou
- Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jie He
- School of Medicine, Shandong University, Jinan, China.,Department of Pathology, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haibo Wu
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Intelligent Pathology Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Chan JY, Lim JQ, Ong CK. Towards Next Generation Biomarkers in Natural Killer/T-Cell Lymphoma. Life (Basel) 2021; 11:838. [PMID: 34440582 PMCID: PMC8398475 DOI: 10.3390/life11080838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 12/22/2022] Open
Abstract
Natural killer/T-cell lymphoma (NKTCL) is an Epstein-Barr virus-associated non-Hodgkin lymphoma linked to an aggressive clinical course and poor prognosis. Despite an improvement in survival outcomes with the incorporation of novel agents including immune checkpoint inhibitors in the treatment of NKTCL, a significant proportion of patients still relapse or remain refractory to treatment. Several clinical prognostic models have been developed for NKTCL patients treated in the modern era, though the optimal approach to risk stratification remains to be determined. Novel molecular biomarkers derived from multi-omic profiling have recently been developed, with the potential to improve diagnosis, prognostication and treatment of this disease. Notably, a number of potential biomarkers have emerged from a better understanding of the tumor immune microenvironment and inflammatory responses. This includes a recently described 3'UTR structural variant in the PD-L1 gene, which confers susceptibility to checkpoint immunotherapy. In this review, we summarize the biomarker landscape of NKTCL and highlight emerging biomarkers with the potential for clinical implementation.
Collapse
Affiliation(s)
- Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- SingHealth Duke-NUS Blood Cancer Centre, Singapore 169857, Singapore
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore;
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Singapore 138672, Singapore
| |
Collapse
|