1
|
Samueli B, Aizenberg N, Shaco-Levy R, Katzav A, Kezerle Y, Krausz J, Mazareb S, Niv-Drori H, Peled HB, Sabo E, Tobar A, Asa SL. Complete digital pathology transition: A large multi-center experience. Pathol Res Pract 2024; 253:155028. [PMID: 38142526 DOI: 10.1016/j.prp.2023.155028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/08/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Transitioning from glass slide pathology to digital pathology for primary diagnostics requires an appropriate laboratory information system, an image management system, and slide scanners; it also reinforces the need for sophisticated pathology informatics including synoptic reporting. Previous reports have discussed the transition itself and relevant considerations for it, but not the selection criteria and considerations for the infrastructure. OBJECTIVE To describe the process used to evaluate slide scanners, image management systems, and synoptic reporting systems for a large multisite institution. METHODS Six network hospitals evaluated six slide scanners, three image management systems, and three synoptic reporting systems. Scanners were evaluated based on the quality of image, speed, ease of operation, and special capabilities (including z-stacking, fluorescence and others). Image management and synoptic reporting systems were evaluated for their ease of use and capacity. RESULTS Among the scanners evaluated, the Leica GT450 produced the highest quality images, while the 3DHistech Pannoramic provided fluorescence and superior z-stacking. The newest generation of scanners, released relatively recently, performed better than slightly older scanners from major manufacturers Although the Olympus VS200 was not fully vetted due to not meeting all inclusion criteria, it is discussed herein due to its exceptional versatility. For Image Management Software, the authors believe that Sectra is, at the time of writing the best developed option, but this could change in the very near future as other systems improve their capabilities. All synoptic reporting systems performed impressively. CONCLUSIONS Specifics regarding quality and abilities of different components will change rapidly with time, but large pathology practices considering such a transition should be aware of the issues discussed and evaluate the most current generation to arrive at appropriate conclusions.
Collapse
Affiliation(s)
- Benzion Samueli
- Department of Pathology, Soroka University Medical Center, P.O. Box 151, Be'er Sheva 8410101, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Be'er Sheva 8410501, Israel.
| | - Natalie Aizenberg
- Department of Pathology, Soroka University Medical Center, P.O. Box 151, Be'er Sheva 8410101, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Be'er Sheva 8410501, Israel
| | - Ruthy Shaco-Levy
- Department of Pathology, Soroka University Medical Center, P.O. Box 151, Be'er Sheva 8410101, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Be'er Sheva 8410501, Israel; Department of Pathology, Barzilai Medical Center, 2 Ha-Histadrut St, Ashkelon 7830604, Israel
| | - Aviva Katzav
- Pathology Institute, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Yarden Kezerle
- Department of Pathology, Soroka University Medical Center, P.O. Box 151, Be'er Sheva 8410101, Israel; Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Be'er Sheva 8410501, Israel
| | - Judit Krausz
- Department of Pathology, HaEmek Medical Center, 21 Yitzhak Rabin Ave, Afula 183411, Israel
| | - Salam Mazareb
- Department of Pathology, Carmel Medical Center, 7 Michal Street, Haifa 3436212, Israel
| | - Hagit Niv-Drori
- Department of Pathology, Rabin Medical Center, 39 Jabotinsky St, Petah Tikva 4941492, Israel; Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6139001, Israel
| | - Hila Belhanes Peled
- Department of Pathology, HaEmek Medical Center, 21 Yitzhak Rabin Ave, Afula 183411, Israel
| | - Edmond Sabo
- Department of Pathology, Carmel Medical Center, 7 Michal Street, Haifa 3436212, Israel; Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa 3525433, Israel
| | - Ana Tobar
- Department of Pathology, Rabin Medical Center, 39 Jabotinsky St, Petah Tikva 4941492, Israel; Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6139001, Israel
| | - Sylvia L Asa
- Institute of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Room 204, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Cazzaniga G, Eccher A, Munari E, Marletta S, Bonoldi E, Della Mea V, Cadei M, Sbaraglia M, Guerriero A, Dei Tos AP, Pagni F, L’Imperio V. Natural Language Processing to extract SNOMED-CT codes from pathological reports. Pathologica 2023; 115:318-324. [PMID: 38180139 PMCID: PMC10767798 DOI: 10.32074/1591-951x-952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
OBJECTIVE The use of standardized structured reports (SSR) and suitable terminologies like SNOMED-CT can enhance data retrieval and analysis, fostering large-scale studies and collaboration. However, the still large prevalence of narrative reports in our laboratories warrants alternative and automated labeling approaches. In this project, natural language processing (NLP) methods were used to associate SNOMED-CT codes to structured and unstructured reports from an Italian Digital Pathology Department. METHODS Two NLP-based automatic coding systems (support vector machine, SVM, and long-short term memory, LSTM) were trained and applied to a series of narrative reports. RESULTS The 1163 cases were tested with both algorithms, showing good performances in terms of accuracy, precision, recall, and F1 score, with SVM showing slightly better performances as compared to LSTM (0.84, 0.87, 0.83, 0.82 vs 0.83, 0.85, 0.83, 0.82, respectively). The integration of an explainability allowed identification of terms and groups of words of importance, enabling fine-tuning, balancing semantic meaning and model performance. CONCLUSIONS AI tools allow the automatic SNOMED-CT labeling of the pathology archives, providing a retrospective fix to the large lack of organization of narrative reports.
Collapse
Affiliation(s)
- Giorgio Cazzaniga
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Italy
| | - Albino Eccher
- Section of Pathology, Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Enrico Munari
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Stefano Marletta
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Emanuela Bonoldi
- Unit of Surgical Pathology and Cytogenetics, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Vincenzo Della Mea
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Moris Cadei
- Pathology Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Marta Sbaraglia
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Angela Guerriero
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Italy
| | - Vincenzo L’Imperio
- Department of Medicine and Surgery, Pathology, IRCCS Fondazione San Gerardo dei Tintori, University of Milano-Bicocca, Italy
| |
Collapse
|
3
|
Loomba R, Newsome PN. Semaglutide in NASH-related cirrhosis: still a long way to go? - Authors' reply. Lancet Gastroenterol Hepatol 2023; 8:694-695. [PMID: 37453429 DOI: 10.1016/s2468-1253(23)00160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology and Epidemiology, University of California at San Diego, La Jolla, CA 92037, USA.
| | - Philip N Newsome
- National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Centre for Liver & Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Gallage S, Avila JEB, Ramadori P, Focaccia E, Rahbari M, Ali A, Malek NP, Anstee QM, Heikenwalder M. A researcher's guide to preclinical mouse NASH models. Nat Metab 2022; 4:1632-1649. [PMID: 36539621 DOI: 10.1038/s42255-022-00700-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its inflammatory form, non-alcoholic steatohepatitis (NASH), have quickly risen to become the most prevalent chronic liver disease in the Western world and are risk factors for the development of hepatocellular carcinoma (HCC). HCC is not only one of the most common cancers but is also highly lethal. Nevertheless, there are currently no clinically approved drugs for NAFLD, and NASH-induced HCC poses a unique metabolic microenvironment that may influence responsiveness to certain treatments. Therefore, there is an urgent need to better understand the pathogenesis of this rampant disease to devise new therapies. In this line, preclinical mouse models are crucial tools to investigate mechanisms as well as novel treatment modalities during the pathogenesis of NASH and subsequent HCC in preparation for human clinical trials. Although, there are numerous genetically induced, diet-induced and toxin-induced models of NASH, not all of these models faithfully phenocopy and mirror the human pathology very well. In this Perspective, we shed some light onto the most widely used mouse models of NASH and highlight some of the key advantages and disadvantages of the various models with an emphasis on 'Western diets', which are increasingly recognized as some of the best models in recapitulating the human NASH pathology and comorbidities.
Collapse
Affiliation(s)
- Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
| | - Jose Efren Barragan Avila
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Adnan Ali
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nisar P Malek
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany
- Department Internal Medicine I, Eberhard-Karls University, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
| | - Quentin M Anstee
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- The M3 Research Institute, Eberhard Karls University Tübingen, Tuebingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|