1
|
Sareen H, Ma Y, Becker TM, Roberts TL, de Souza P, Powter B. Molecular Biomarkers in Glioblastoma: A Systematic Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23168835. [PMID: 36012105 PMCID: PMC9408540 DOI: 10.3390/ijms23168835] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Glioblastoma (GBM) is a highly aggressive cancer with poor prognosis that needs better treatment modalities. Moreover, there is a lack of reliable biomarkers to predict the response and outcome of current or newly designed therapies. While several molecular markers have been proposed as potential biomarkers for GBM, their uptake into clinical settings is slow and impeded by marker heterogeneity. Detailed assessment of prognostic and predictive value for biomarkers in well-defined clinical trial settings, if available, is scattered throughout the literature. Here we conducted a systematic review and meta-analysis to evaluate the prognostic and predictive significance of clinically relevant molecular biomarkers in GBM patients. Material and methods: A comprehensive literature search was conducted to retrieve publications from 3 databases (Pubmed, Cochrane and Embase) from January 2010 to December 2021, using specific terms. The combined hazard ratios (HR) and confidence intervals (95% CI) were used to evaluate the association of biomarkers with overall survival (OS) in GBM patients. Results: Twenty-six out of 1831 screened articles were included in this review. Nineteen articles were included in the meta-analyses, and 7 articles were quantitatively summarised. Fourteen studies with 1231 GBM patients showed a significant association of MGMT methylation with better OS with the pooled HR of 1.66 (95% CI 1.32−2.09, p < 0.0001, random effect). Five studies including 541 GBM patients analysed for the prognostic significance of IDH1 mutation showed significantly better OS in patients with IDH1 mutation with a pooled HR of 2.37 (95% CI 1.81−3.12; p < 0.00001]. Meta-analysis performed on 5 studies including 575 GBM patients presenting with either amplification or high expression of EGFR gene did not reveal any prognostic significance with a pooled HR of 1.31 (95% CI 0.96−1.79; p = 0.08). Conclusions: MGMT promoter methylation and IDH1 mutation are significantly associated with better OS in GBM patients. No significant associations were found between EGFR amplification or overexpression with OS.
Collapse
Affiliation(s)
- Heena Sareen
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- South-Western Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Correspondence: ; Tel.: +61-0406937108
| | - Yafeng Ma
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- South-Western Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Therese M. Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- South-Western Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Tara L. Roberts
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
- South-Western Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Paul de Souza
- South-Western Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Branka Powter
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| |
Collapse
|
2
|
Farrell C, Shi W, Bodman A, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of emerging developments in the management of newly diagnosed glioblastoma. J Neurooncol 2020; 150:269-359. [PMID: 33215345 DOI: 10.1007/s11060-020-03607-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients with newly diagnosed or suspected glioblastoma. IMAGING Question What imaging modalities are in development that may be able to provide improvements in diagnosis, and therapeutic guidance for individuals with newly diagnosed glioblastoma? RECOMMENDATION Level III: It is suggested that techniques utilizing magnetic resonance imaging for diffusion weighted imaging, and to measure cerebral blood and magnetic spectroscopic resonance imaging of N-acetyl aspartate, choline and the choline to N-acetyl aspartate index to assist in diagnosis and treatment planning in patients with newly diagnosed or suspected glioblastoma. SURGERY Question What new surgical techniques can be used to provide improved tumor definition and resectability to yield better tumor control and prognosis for individuals with newly diagnosed glioblastoma? RECOMMENDATIONS Level II: The use of 5-aminolevulinic acid is recommended to improve extent of tumor resection in patients with newly diagnosed glioblastoma. Level II: The use of 5-aminolevulinic acid is recommended to improve median survival and 2 year survival in newly diagnosed glioblastoma patients with clinical characteristics suggesting poor prognosis. Level III: It is suggested that, when available, patients be enrolled in properly designed clinical trials assessing the value of diffusion tensor imaging in improving the safety of patients with newly diagnosed glioblastoma undergoing surgery. NEUROPATHOLOGY Question What new pathology techniques and measurement of biomarkers in tumor tissue can be used to provide improved diagnostic ability, and determination of therapeutic responsiveness and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: Assessment of tumor MGMT promoter methylation status is recommended as a significant predictor of a longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level II: Measurement of tumor expression of neuron-glia-2, neurofilament protein, glutamine synthetase and phosphorylated STAT3 is recommended as a predictor of overall survival in patients with newly diagnosed with glioblastoma. Level III: Assessment of tumor IDH1 mutation status is suggested as a predictor of longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level III: Evaluation of tumor expression of Phosphorylated Mitogen-Activated Protein Kinase protein, EGFR protein, and Insulin-like Growth Factor-Binding Protein-3 is suggested as a predictor of overall survival in patients with newly diagnosed with glioblastoma. RADIATION Question What radiation therapy techniques are in development that may be used to provide improved tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level III: It is suggested that patients with newly diagnosed glioblastoma undergo pretreatment radio-labeled amino acid tracer positron emission tomography to assess areas at risk for tumor recurrence to assist in radiation treatment planning. Level III: It is suggested that, when available, patients be with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of radiation dose escalation, altered fractionation, or new radiation delivery techniques. CHEMOTHERAPY Question What emerging chemotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no emerging chemotherapeutic agents or techniques were identified in this review that improved tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of chemotherapy. MOLECULAR AND TARGETED THERAPY Question What new targeted therapy agents are available to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no new molecular and targeted therapies have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of molecular and targeted therapies IMMUNOTHERAPY: Question What emerging immunotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no immunotherapeutic agents have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of immunologically-based therapies. NOVEL THERAPIES Question What novel therapies or techniques are in development to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: The use of tumor-treating fields is recommended for patients with newly diagnosed glioblastoma who have undergone surgical debulking and completed concurrent chemoradiation without progression of disease at the time of tumor-treating field therapy initiation. Level II: It is suggested that, when available, enrollment in properly designed studies of vector containing herpes simplex thymidine kinase gene and prodrug therapies be considered in patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Christopher Farrell
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
3
|
Zhang P, Xia Q, Liu L, Li S, Dong L. Current Opinion on Molecular Characterization for GBM Classification in Guiding Clinical Diagnosis, Prognosis, and Therapy. Front Mol Biosci 2020; 7:562798. [PMID: 33102518 PMCID: PMC7506064 DOI: 10.3389/fmolb.2020.562798] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is highly invasive and the deadliest brain tumor in adults. It is characterized by inter-tumor and intra-tumor heterogeneity, short patient survival, and lack of effective treatment. Prognosis and therapy selection is driven by molecular data from gene transcription, genetic alterations and DNA methylation. The four GBM molecular subtypes are proneural, neural, classical, and mesenchymal. More effective personalized therapy heavily depends on higher resolution molecular subtype signatures, combined with gene therapy, immunotherapy and organoid technology. In this review, we summarize the principal GBM molecular classifications that guide diagnosis, prognosis, and therapeutic recommendations.
Collapse
Affiliation(s)
- Pei Zhang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Shouwei Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
4
|
Rao S, Kanuri NN, Nimbalkar V, Arivazhagan A, Santosh V. High frequency of H3K27M immunopositivity in adult thalamic glioblastoma. Neuropathology 2019; 39:78-84. [PMID: 30937985 DOI: 10.1111/neup.12537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/27/2022]
Abstract
Adult thalamic glioblastomas (GBM) are uncommon tumors with limited available molecular data. One of the reported molecular alterations in these tumors is the H3K27M mutation. It has been documented that H3K27M mutation is found in a high proportion of pediatric thalamic gliomas. In this study, we have analyzed the molecular alterations exclusive to adult thalamic GBM. This is a 6 years retrospective study of adult thalamic GBM patients who underwent surgical decompression of the tumor. Clinical data were obtained from the case records. Immunohistochemistry (IHC) was performed on the tumors using antibodies directed against the gene products of R132H mutant isocitrate dehydrogenase 1 (IDH1), alpha-thalassemia/mental retardation X-linked (ATRX), p53, H3K27M, H3K27me3, and V600E mutant BRAF. Molecular analyses were carried out to detect other IDH1 and IDH2 mutations, O6 -methylguanine-DNA-methyltransferase gene (MGMT) promoter methylation, and epidermal growth factor gene (EGFR) and telomerase reverse transcriptase gene (TERT) promoter mutations. A total of 42 cases of adult thalamic GBM were studied. The mean age of presentation was 42 years with age range of 19-58 years. Male predominance was noted. All the tumors were IDH wild-type, BRAF (V600E)-immunonegative and unmethylated for MGMT promoter. H3K27M immunopositivity was noted in 60% of tumors. Of these 33.3% were from older adults above the age of 50 years. Of the H3K27M-immunopositive cases, ATRX loss of expression was seen in 32%, p53 immunopositivity in 24% and EGFR amplification in 12%. Higher frequency of TERT promoter mutations was noted in H3K27M-immunonegative cases (58.8%) compared to immunopositive cases (20%). Ours is one of the few studies elucidating the molecular alterations exclusive to adult thalamic GBM. We show a high frequency of H3K27M immunopositivity, suggestive of its mutational status in these tumors, including in older adults.
Collapse
Affiliation(s)
- Shilpa Rao
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Nandaki N Kanuri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vidya Nimbalkar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
5
|
Abstract
Clinical research in neuro-oncology frequently classifies patients over 60-70 years of age as 'elderly', a designation intended to identify patients with the disease characteristics, psychosocial changes, and susceptibility to treatment toxicities associated with advancing age. The elderly account for a large proportion of patients diagnosed with glioblastoma (GBM), and this population is projected to increase. Their prognosis is inferior to that of GBM patients as a whole, and concerns over treatment toxicity may limit the aggressiveness with which they are treated. Recent clinical studies have assisted with therapeutic decision making in this cohort. Hypofractionated radiation with concurrent and adjuvant temozolomide has been shown to increase survival without worsened quality of life in elderly patients with good functional status. Single modality radiation therapy or temozolomide therapy are frequently used in this population, and while neither has demonstrated superiority, O6-methylguanine-DNA methyltransferase (MGMT) methylation status is predictive of improved survival with temozolomide over radiation therapy. Despite these advances, ambiguity as to how to best define, assess, and treat this population remains. The specific response of elderly patients to emerging therapies, such as immunotherapies, is unclear. Advancing outcomes for elderly patients with GBM requires persistent efforts to include them in translational and clinical research endeavors, and concurrent dedication to the preservation of function and quality of life in this population.
Collapse
Affiliation(s)
- Rebecca A Harrison
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0431, Houston, TX, 77030, USA.
| | - John F de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 0431, Houston, TX, 77030, USA
| |
Collapse
|
6
|
González-Tablas M, Crespo I, Vital AL, Otero Á, Nieto AB, Sousa P, Patino-Alonso MC, Corchete LA, Tão H, Rebelo O, Barbosa M, Almeida MR, Guedes AF, Lopes MC, French PJ, Orfao A, Tabernero MD. Prognostic stratification of adult primary glioblastoma multiforme patients based on their tumor gene amplification profiles. Oncotarget 2018; 9:28083-28102. [PMID: 29963263 PMCID: PMC6021328 DOI: 10.18632/oncotarget.25562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
Several classification systems have been proposed to address genomic heterogeneity of glioblastoma multiforme, but they either showed limited prognostic value and/or are difficult to implement in routine diagnostics. Here we propose a prognostic stratification model for these primary tumors based on tumor gene amplification profiles, that might be easily implemented in routine diagnostics, and potentially improve the patients management. Gene amplification profiles were prospectively evaluated in 80 primary glioblastoma multiforme tumors using single-nucleotide polymorphism arrays and the results obtained validated in publicly available data from 267/347 cases. Gene amplification was detected in 45% of patients, and chromosome 7p11.2 including the EGFR gene, was the most frequently amplified chromosomal region – either alone (18%) or in combination with amplification of DNA sequences in other chromosomal regions (10% of cases). Other frequently amplified DNA sequences included regions in chromosomes 12q(10%), 4q12(7%) and 1q32.1(4%). Based on their gene amplification profiles, glioblastomas were subdivided into: i) tumors with no gene amplification (55%); ii) tumors with chromosome 7p/EGFR gene amplification (with or without amplification of other chromosomal regions) (38%); and iii) glioblastoma multiforme with a single (11%) or multiple (6%) amplified DNA sequences in chromosomal regions other than chromosome 7p. From the prognostic point of view, these amplification profiles showed a significant impact on overall survival of glioblastoma multiforme patients (p>0.001). Based on these gene amplification profiles, a risk-stratification scoring system was built for prognostic stratification of glioblastoma which might be easily implemented in routine diagnostics, and potentially contribute to improved patient management.
Collapse
Affiliation(s)
- María González-Tablas
- Centre for Cancer Research (CIC IBMCC-CSIC/USAL), Department of Medicine, CIBERONC, University of Salamanca, Salamanca, Spain
| | - Inês Crespo
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Vital
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Álvaro Otero
- Servicio de Neurocirugía, Hospital Universitario e Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| | - Ana Belén Nieto
- Department of Statistics, University of Salamanca, Salamanca, Spain
| | - Pablo Sousa
- Servicio de Neurocirugía, Hospital Universitario e Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| | | | - Luis Antonio Corchete
- Departamento de Hematología, Hospital Universitario, IBSAL, IBMCC (USAL-CSIC), Salamanca, Spain
| | - Hermínio Tão
- Neurosurgery Service, University Hospital of Coimbra, Coimbra, Portugal
| | - Olinda Rebelo
- Neuropathology Laboratory, Neurology Service, University Hospital of Coimbra, Coimbra, Portugal
| | - Marcos Barbosa
- Neurosurgery Service, University Hospital of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Ana Filipa Guedes
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - María Celeste Lopes
- Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Pim J French
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Alberto Orfao
- Centre for Cancer Research (CIC IBMCC-CSIC/USAL), Department of Medicine, CIBERONC, University of Salamanca, Salamanca, Spain.,Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| | - María Dolores Tabernero
- Centre for Cancer Research (CIC IBMCC-CSIC/USAL), Department of Medicine, CIBERONC, University of Salamanca, Salamanca, Spain.,Instituto Biosanitario de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
7
|
Li J, Liang R, Song C, Xiang Y, Liu Y. Prognostic significance of epidermal growth factor receptor expression in glioma patients. Onco Targets Ther 2018; 11:731-742. [PMID: 29445288 PMCID: PMC5808691 DOI: 10.2147/ott.s155160] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose There is a great controversy regarding the prognostic significance of epidermal growth factor receptor (EGFR) in glioma patients. The current meta-analysis was conducted to evaluate the effect of abnormal EGFR expression on overall survival in glioma patients. Materials and methods A comprehensive literature search of PubMed, EMBASE, Google Scholar, Web of Science, and Cochrane Library was conducted. The combined hazard ratio (HR) and its 95% confidence intervals (CIs) were used to evaluate the association between EGFR expression and survival in glioma. Results A total of 476 articles were screened, and 17 articles containing 1,458 patients were selected. The quality assessment of the included studies was performed by the Newcastle-Ottawa Scale. Overexpression of EGFR was found to be an indicator of poor prognosis in overall survival in glioma patients (HR =1.72, 95% CI 1.32-2.25, P=0.000, random effect) and glioblastoma multiforme patients (HR =1.57, 95% CI 1.15-2.14, P=0.004, random effect). Subgroup analysis was conducted to explore the source of high heterogeneity. Conclusion This meta-analysis indicated that high expression of EGFR may serve as a biomarker for poor prognosis in glioma patients.
Collapse
Affiliation(s)
- Junhong Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Ruofei Liang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Chen Song
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
8
|
Hamam SM, El Sabaa BM, Talaat IM, Nassra RA, Abdelmonsif DA. Methyl Guanine Methyl Transferase Methylation Status and Epidermal Growth Factor Receptor expression in a cohort of Egyptian glioblastoma patients. EGYPTIAN JOURNAL OF PATHOLOGY 2016; 36:282-288. [DOI: 10.1097/01.xej.0000511094.91402.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Chen JR, Xu HZ, Yao Y, Qin ZY. Prognostic value of epidermal growth factor receptor amplification and EGFRvIII in glioblastoma: meta-analysis. Acta Neurol Scand 2015; 132:310-22. [PMID: 25846813 DOI: 10.1111/ane.12401] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Epidermal growth factor receptor (EGFR) gene amplification and the EGFRvIII mutation may have prognostic value in patients with glioblastoma. This meta-analysis was to determine whether EGFR gene amplification or the EGFRvIII mutation are predictors of survival in patients with glioblastoma and anaplastic astrocytoma. MATERIALS AND METHODS Medline, the Cochrane Central Register of Controlled Trials, EMBASE, and Google Scholar databases were searched until July 31, 2014. Studies were selected for inclusion in the analysis if they included patients with anaplastic astrocytoma and/or glioblastoma, EGFR and/or EGFRvIII mutation status was reported, and overall survival (OS) data were reported. RESULTS Of 113 articles initially identified, only eight contained data with respect to the outcome of interest and were included in the meta-analysis. The number of cases ranged from 14 to 268, and the majority of patients were 60 or more years of age. There was no significant difference in OS between EGFR amplification-positive and EGFR amplification-negative glioblastoma patients (pooled hazard ratio [HR] = 1.101, 95% confidence interval [CI] 0.845, 1.434, P = 0.475) or anaplastic astrocytoma patients (pooled HR = 1.455, 95% CI 0.852, 2.482, P = 0.169). There was no significant difference in OS between EGFRvIII-positive and EGFRvIII-negative glioblastoma patients (pooled HR = 1.321, 95% CI: 0.881-1.981, P = 0.178). Significant heterogeneity existed between the studies, and the significance changed when the analysis was performed with studies removed in turn. CONCLUSIONS There is insufficient evidence that either EGFR amplification or the EGFRvIII mutation has prognostic value in patients with glioblastoma.
Collapse
Affiliation(s)
- J.-R. Chen
- Department of Neurosurgery; Huashan Hospital Shanghai Medical College; Fudan University; Shanghai China
| | - H.-Z. Xu
- Department of Neurosurgery; Huashan Hospital Shanghai Medical College; Fudan University; Shanghai China
| | - Y. Yao
- Department of Neurosurgery; Huashan Hospital Shanghai Medical College; Fudan University; Shanghai China
| | - Z.-Y. Qin
- Department of Neurosurgery; Huashan Hospital Shanghai Medical College; Fudan University; Shanghai China
| |
Collapse
|
10
|
Nuclear Protein Phosphatase 1 α (PP1A) Expression is Associated with Poor Prognosis in p53 Expressing Glioblastomas. Pathol Oncol Res 2015; 22:287-92. [PMID: 26253838 DOI: 10.1007/s12253-015-9928-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/05/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Protein phosphatase 1 α (PP1A) is an enzyme intimately associated with cell cycle, the over expression of which has been demonstrated in glioblastoma (GBM). Further, the nuclear expression of PP1A has been shown to be highly specific to GBM. In addition, PP1A has been shown to be a connecting molecule in the p53 containing GBM sub network. In view of these, we evaluated the prognostic relevance of PP1A. METHODS GBM tissues were examined for protein expression of PP1A by immunohistochemistry (IHC). Nuclear expression of PP1A was scored in all tumor tissue samples. Survival analyses were performed by Cox-Regression and Kaplan-Meier survival analysis with Log Rank tests. IDH1, ATRX and p53 IHC and stratification of all GBM cases were performed and subgroup specific evaluation of nuclear PP1A correlation with overall and progression free survival was performed. RESULTS PP1A protein expression showed no correlation with prognosis in all cases of GBM or on stratification based on IDH1 or ATRX expression. However on p53 stratification nuclear PP1A expression emerged as strong independent predictor of poor overall survival only in p53 positive GBMs both in univariate and multivariate analysis. CONCLUSIONS While PP1A expression uniquely associates with poor prognosis only in p53 expressing GBMs, there is a notable absence of such correlation in p53 negative GBMs; thus skewing the overall relation of this molecule with prognosis in GBM. PP1A emerging as a strong prognostic marker in p53 expressing GBMs, enables us to foresee this molecule as a potential therapeutic target.
Collapse
|
11
|
Goossens-Beumer IJ, Benard A, van Hoesel AQ, Zeestraten ECM, Putter H, Böhringer S, Liefers GJ, Morreau H, van de Velde CJH, Kuppen PJK. Age-dependent clinical prognostic value of histone modifications in colorectal cancer. Transl Res 2015; 165:578-88. [PMID: 25488396 DOI: 10.1016/j.trsl.2014.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 02/08/2023]
Abstract
Aging is one of the prime risk factors for the development of cancer. Expression patterns of epigenetic regulators, including histone modification levels, are altered during aging of normal cells, a phenomenon referred to as epigenetic drift. Furthermore, it is known that epigenetic mechanisms are involved in the development of cancer. We hypothesized that expression of histone modifications, acetylation of histone 3 lysine 9 (H3K9Ac) and trimethylation of histone 3 lysine 27 (H3K27me3), with reported normal age-related expression patterns might show an age-dependent prognostic value in colorectal cancer (CRC). To quantify expression, we performed immunohistochemical staining of these histone modifications on a tissue microarray containing colorectal tissues of the 254 patients with TNM stage I-III CRC. Stratification of patients according to survival status revealed age-related tumor expression patterns of both H3K9Ac and H3K27me3. Decreased expression with advancing age was observed in patients who were alive after follow-up (no-event group), whereas increased expression with advancing age was observed in patients who presented with a recurrence or death in follow-up (event group). These opposite expression patterns translated into an age-dependent prognostic value in CRC for the individual histone modifications and their combination. The prognostic value reverses with advancing age, high nuclear expression associated with good clinical outcome in young adults, and, in contrast, with worse clinical outcome in elderly patients. In conclusion, for the first time, we demonstrated prognostic impact of epigenetic biomarkers that reverses with advancing age. This new insight supports the hypothesis that CRC biology is different in young vs elderly patients and emphasizes the importance of focusing on age-related effects in CRC.
Collapse
Affiliation(s)
| | - Anne Benard
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneke Q van Hoesel
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hein Putter
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Böhringer
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerrit-Jan Liefers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
12
|
Furgason JM, Li W, Milholland B, Cross E, Li Y, McPherson CM, Warnick RE, Rixe O, Stambrook PJ, Vijg J, Bahassi EM. Whole genome sequencing of glioblastoma multiforme identifies multiple structural variations involved in EGFR activation. Mutagenesis 2014; 29:341-50. [PMID: 25103728 DOI: 10.1093/mutage/geu026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Next generation sequencing has become a powerful tool in dissecting and identifying mutations and genomic structural variants that accompany tumourigenesis. Sequence analysis of glioblastoma multiforme (GBM) illustrates the ability to rapidly identify mutations that may affect phenotype. Approximately 50% of human GBMs overexpress epidermal growth factor receptor (EGFR) which renders the EGFR protein a compelling therapeutic target. In brain tumours, attempts to target EGFR as a cancer therapeutic, however, have achieved little or no benefit. The mechanisms that drive therapeutic resistance to EGFR inhibitors in brain tumours are not well defined, and drug resistance contributes to the deadly and aggressive nature of the disease. Whole genome sequencing of four primary GBMs revealed multiple pathways by which EGFR protein abundance becomes deregulated in these tumours and will guide the development of new strategies for treating EGFR overexpressing tumours. Each of the four tumours displayed a different mechanism leading to increased EGFR protein levels. One mechanism is mediated by gene amplification and tandem duplication of the kinase domain. A second involves an intragenic deletion that generates a constitutively active form of the protein. A third combines the loss of a gene which encodes a protein that regulates EGFR abundance as well as an miRNA that modulates EGFR expression. A fourth mechanism entails loss of an ubiquitin ligase docking site in the C-terminal part of the protein whose absence inhibits turnover of the receptor.
Collapse
Affiliation(s)
- John M Furgason
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati College of Medicine, 231, Albert Sabin Way, Cincinnati, OH, USA
| | - Wenge Li
- Albert Einstein Medical Center, 1301 Morris Park Avenue, New York, NY, USA
| | - Brandon Milholland
- Albert Einstein Medical Center, 1301 Morris Park Avenue, New York, NY, USA
| | - Emily Cross
- Department of Molecular Genetics, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Yaqin Li
- Department of Molecular Genetics, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Christopher M McPherson
- Department of Neurosurgery and UC Brain Tumor Center, University of Cincinnati, 234 Goodman Street, Cincinnati, OH, USA
| | - Ronald E Warnick
- Department of Neurosurgery and UC Brain Tumor Center, University of Cincinnati, 234 Goodman Street, Cincinnati, OH, USA
| | - Olivier Rixe
- GRU Cancer Center, 1411 Laney Walker Boulevard Augusta, GA, USA
| | - Peter J Stambrook
- Department of Molecular Genetics, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Jan Vijg
- Albert Einstein Medical Center, 1301 Morris Park Avenue, New York, NY, USA
| | - El Mustapha Bahassi
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati College of Medicine, 231, Albert Sabin Way, Cincinnati, OH, USA, UC Brain Tumor Center, University of Cincinnati, 234 Goodman Street, Cincinnati, OH, USA,
| |
Collapse
|
13
|
Shah AH, Graham R, Bregy A, Thambuswamy M, Komotar RJ. Recognizing and correcting failures in glioblastoma treatment. Cancer Invest 2014; 32:299-302. [PMID: 24766304 DOI: 10.3109/07357907.2014.909827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
While current treatment remains universal for glioblastoma, recent evidence has demonstrated marked heterogeneity in their molecular profiles. Due to the near universal rate of recurrence, attention has focused on individualized treatment and subgroup population differences that may influence the efficacy of adjuvant therapy. Recent studies have implicated chemo-radioresistant GBM stem cells (GSCs) in the propagation of heterogeneous tumor profiles. As a result, there has been a shift to classify and target GSCs in order to increase survival and delay relapse. The overall objective of our editorial is to highlight current failures in GBM treatment and to propose novel personalized methods to correct our shortcomings in GBM treatment.
Collapse
Affiliation(s)
- Ashish H Shah
- Department of Neurological Surgery, University of Miami School of Medicine , Miami, Florida , USA
| | | | | | | | | |
Collapse
|
14
|
Lee KS, Choe G, Nam KH, Seo AN, Yun S, Kim KJ, Cho HJ, Park SH. Immunohistochemical classification of primary and secondary glioblastomas. KOREAN JOURNAL OF PATHOLOGY 2013; 47:541-8. [PMID: 24421847 PMCID: PMC3887156 DOI: 10.4132/koreanjpathol.2013.47.6.541] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/13/2022]
Abstract
Background Glioblastomas may develop de novo (primary glioblastomas, P-GBLs) or through progression from lower-grade astrocytomas (secondary glioblastomas, S-GBLs). The aim of this study was to compare the immunohistochemical classification of glioblastomas with clinically determined P-GBLs and S-GBLs to identify the best combination of antibodies for immunohistochemical classification. Methods We evaluated the immunohistochemical expression of epidermal growth factor receptor (EGFR), p53, and isocitrate dehydrogenase 1 (IDH-1) in 150 glioblastoma cases. Results According to clinical history, the glioblastomas analyzed in this study consisted of 146 P-GBLs and 4 S-GBLs. Immunohistochemical expression of EGFR, p53, and IDH-1 was observed in 62.6%, 49.3%, and 11.1%, respectively. Immunohistochemical profiles of EGFR(+)/p53(-), IDH-1(-)/EGFR(+)/p53(-), and EGFR(-)/p53(+) were noted in 41.3%, 40.2%, and 28.7%, respectively. Expression of IDH-1 and EGFR(-)/p53(+) was positively correlated with young age. The typical immunohistochemical features of S-GBLs comprised IDH-1(+)/EGFR(-)/p53(+), and were noted in 3.6% of clinically P-GBLs. The combination of IDH-1(-) or EGFR(+) was the best set of immunohistochemical stains for identifying P-GBLs, whereas the combination of IDH-1(+) and EGFR(-) was best for identifying S-GBLs. Conclusions We recommend a combination of IDH-1 and EGFR for immunohistochemical classification of glioblastomas. We expect our results to be useful for determining treatment strategies for glioblastoma patients.
Collapse
Affiliation(s)
- Kyu Sang Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Gheeyoung Choe
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyung Han Nam
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - An Na Seo
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sumi Yun
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung Ju Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hwa Jin Cho
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
15
|
Smardova J, Liskova K, Ravcukova B, Kubiczkova L, Sevcikova S, Michalek J, Svitakova M, Vybihal V, Kren L, Smarda J. High frequency of temperature-sensitive mutants of p53 in glioblastoma. Pathol Oncol Res 2013; 19:421-8. [PMID: 23536279 DOI: 10.1007/s12253-012-9596-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 12/21/2012] [Indexed: 12/13/2022]
Abstract
Glioblastoma is the most common and the most aggressive type of brain cancer. Aberrations of the RTK/RAS/PI3K-, p53-, and RB cell signaling pathways were recognized as a core requirement for pathogenesis of glioblastoma. The p53 tumor suppressor functions as a transcription factor transactivating expression of its target genes in response to various stress stimuli. We determined the p53 status in 36 samples of glioblastoma by functional analyses FASAY and split assay. Seventeen p53 mutations were detected and further analyzed by cDNA and gDNA sequencing in 17 patients (47.2 %). Fifteen (88.2 %) of the mutations were missense mutations causing amino acid substitutions, seven of them exhibited temperature-sensitivity. Two mutations were determined as short deletions, one of them causing formation of premature termination codon in position 247. Fluorescent in situ hybridization revealed the loss of the p53-specific 17p13.3 locus in four of 33 analyzed samples (12 %). In 12 out of 30 samples (40 %), the p53 protein accumulation was shown by immunoblotting. There was high (80 %) concordance between the presence of the clonal p53 mutation and the p53 protein accumulation.
Collapse
Affiliation(s)
- Jana Smardova
- Department of Pathology, University Hospital Brno, Jihlavska 20, 62500 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wind JJ, Young R, Saini A, Sherman JH. The role of adjuvant radiation therapy in the management of high-grade gliomas. Neurosurg Clin N Am 2012; 23:247-58, viii. [PMID: 22440868 DOI: 10.1016/j.nec.2012.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The purpose of this article is to update the neurosurgical community on the role of adjuvant radiation therapy in the management of patients with high-grade glioma. This information guides clinicians in the multidisciplinary management of these patients via a review of the literature describing current treatment paradigms as well as new avenues of investigation.
Collapse
Affiliation(s)
- Joshua J Wind
- Department of Neurological Surgery, George Washington University Medical Center, 2150 Pennsylvania Avenue Northwest, Suite 7420, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
17
|
Lee SH, Nam SW, Hong YG, Kang CS, Lee YS. O6-methylguanine DNA methyltransferase gene promoter methylation status in glioblastoma and its correlation with other prognostic markers. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-011-0053-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Crespo I, Vital AL, Nieto AB, Rebelo O, Tão H, Lopes MC, Oliveira CR, French PJ, Orfao A, Tabernero MD. Detailed characterization of alterations of chromosomes 7, 9, and 10 in glioblastomas as assessed by single-nucleotide polymorphism arrays. J Mol Diagn 2011; 13:634-47. [PMID: 21884817 DOI: 10.1016/j.jmoldx.2011.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 06/03/2011] [Accepted: 06/10/2011] [Indexed: 01/06/2023] Open
Abstract
Glioblastomas are cytogenetically heterogeneous tumors that frequently display alterations of chromosomes 7, 9p, and 10q. We used high-density (500K) single-nucleotide polymorphism arrays to investigate genome-wide copy number alterations and loss of heterozygosity in 35 primary glioblastomas. We focused on the identification and detailed characterization of alterations involving the most frequently altered chromosomes (chromosomes 7, 9, and 10), the identification of distinct prognostic subgroups of glioblastomas based on the cytogenetic patterns of alteration for these chromosomes, and validation of their prognostic impact in a larger series of tumors from public databases. Gains of chromosome 7 (97%), with or without epidermal growth factor receptor (EGFR) amplification, and losses of chromosomes 9p (83%) and 10 (91%) were the most frequent alterations. Such alterations defined five different cytogenetic groups with a significant effect on patient survival; notably, EGFR amplification (29%) was associated with a better survival among older patients, as confirmed by multivariate analysis of a larger series of glioblastomas from the literature. In addition, our results provide further evidence about the relevance of other genes (eg, EGFR, CDKN2A/B, MTAP) in the pathogenesis of glioblastomas. Altogether, our results confirm the cytogenetic heterogeneity of glioblastomas and suggest that their stratification based on combined assessment of cytogenetic alterations involving chromosomes 7, 9, and 10 may contribute to the prognostic evaluation of glioblastomas.
Collapse
Affiliation(s)
- Inês Crespo
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Srividya MR, Thota B, Shailaja BC, Arivazhagan A, Thennarasu K, Chandramouli BA, Hegde AS, Santosh V. Homozygous 10q23/PTEN deletion and its impact on outcome in glioblastoma: a prospective translational study on a uniformly treated cohort of adult patients. Neuropathology 2010; 31:376-83. [PMID: 21134002 DOI: 10.1111/j.1440-1789.2010.01178.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tumors from a prospective cohort of adult patients with newly diagnosed glioblastoma (n=73), treated uniformly with radiochemotherapy, were examined for 10q23/PTEN deletion by fluorescence in situ hybridization (FISH). Statistical methods were employed to evaluate the degree of association between 10q23/PTEN deletion status and patient age. Survival analysis was performed using Kaplan-Meier log-rank test and multivariable Cox models to assess the prognostic value of 10q23/PTEN deletion. Interestingly, 10q23/PTEN homozygous deletion was frequent in patients >45 years of age (P=0.034) and the median age of patients harboring PTEN homozygous deletions was significantly higher than those with the retained status (P=0.019). 10q23/PTEN homozygous deletion was associated with shorter survival in the entire cohort as well in patients >45 years (P<0.05), indicating that loss of 10q23/PTEN showed clinical importance in elderly patients. Our study highlights the independent prognostic/predictive value of 10q23/PTEN deletion status as identified by FISH, particularly in glioblastoma patients aged >45 years.
Collapse
Affiliation(s)
- Mallavarapu R Srividya
- Departments of Neuropathology, Neurosurgery and Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | | | | | | | | | | | | |
Collapse
|