1
|
Nie H, Fang S, Zhou R, Jia Y, Zhou J, Ning Y, Yu Y, Hong Y, Xu F, Zhao Q, Nie J, Wang F. Upregulation of RIG-I is Critical for Responsiveness to IFN-α Plus Anti-PD-1 in Colorectal Cancer. Cancer Med 2025; 14:e70802. [PMID: 40116486 PMCID: PMC11926914 DOI: 10.1002/cam4.70802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUNDS Immunotherapy is a promising and effective approach that has achieved significant curative effects in colorectal cancer (CRC). Recently, retinoic acid-inducible gene I (RIG-I) has been shown to play a critical role in tumor immunity. However, the correlation between RIG-I and immunotherapy in CRC remains unclear. METHODS RIG-I expression was measured in CRC and normal samples based on analysis of the public databases, a tissue microarray, and CRC cell lines. The correlation between RIG-I and immune microenvironment was explored using well-established biological algorithms and in vitro and in vivo experiments. RESULTS We discovered that RIG-I expression was downregulated in CRC compared with normal samples. The bioinformatic algorithms indicated that high RIG-I-expressing samples showed a positive correlation with IFN-α response and enrichment of antitumor immune cells, especially CD8+ T cells. Furthermore, knockdown of RIG-I expression efficiently reduced the cell death, STAT1 phosphorylation, and CXCL10/11 expression induced by IFN-α in CRC cells. Finally, an in vivo study showed that the infiltration of CD3+ CD8+ T cells was significantly decreased in the RIG-I knockout group. An animal model further confirmed that the inhibition of tumor growth induced by IFN-α plus anti-PD-1 therapy was dependent on RIG-I expression. CONCLUSION RIG-I is a promising biomarker for CRC immunotherapy, which provides a novel concept for combinatorial immunotherapy.
Collapse
Affiliation(s)
- Haihang Nie
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal DiseasesWuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Shilin Fang
- Department of Infectious DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Rui Zhou
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal DiseasesWuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yifan Jia
- Department of PainRenmin Hospital of Wuhan UniversityWuhanChina
| | - Jingkai Zhou
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal DiseasesWuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yumei Ning
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal DiseasesWuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yali Yu
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal DiseasesWuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yuntian Hong
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal DiseasesWuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Fei Xu
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal DiseasesWuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Qiu Zhao
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal DiseasesWuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jiayan Nie
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal DiseasesWuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Fan Wang
- Department of GastroenterologyZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal DiseasesWuhanChina
- Hubei Key Laboratory of Intestinal and Colorectal DiseasesZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
2
|
Du X, Qi Z, Chen S, Wu J, Xu Y, Hu S, Yu Z, Hou J, Fang Y, Xia J, Cao X. Synthetic Retinoid Sulfarotene Selectively Inhibits Tumor-Repopulating Cells of Intrahepatic Cholangiocarcinoma via Disrupting Cytoskeleton by P-Selectin/PSGL1 N-Glycosylation Blockage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407519. [PMID: 39605300 PMCID: PMC11744644 DOI: 10.1002/advs.202407519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a highly lethal malignancy that currently lacks effective clinical treatments. Eliminating stem cell-like cancer cells is an extremely promising but challenging strategy for treating ICC. A recently developed synthetic retinoid, sulfarotene, abrogates proliferation, and induces apoptosis of tumor-repopulating cells (TRCs) that exhibit stem cell-like properties, yet its effect and underlying mechanisms remain elusive in ICC. It is found that although 5-fluorouracil, cisplatin, pemigatinib, and gemcitabine all inhibit ICC-TRCs, sulfarotene demonstrates superior efficacy. Sulfarotene induces retinoic acid receptor alpha (RARɑ) translocation from the cytoplasm to the nucleus, suppressing P-selectin expression at the transcriptional level. Moreover, it directly interacts with fucosyltransferase 8 (FUT8), inhibiting the core fucosylation of P-selectin glycoprotein ligand 1 (PSGL1). These actions collectively inhibit ICC-TRCs via destroying PSGL1-regulated cytoskeleton. The findings provide a strategy of inhibiting P-selectin/PSGL1 interaction and altering PSGL1 glycosylation pattern to compromise the cytoskeletal integrity and eliminate ICC-TRCs.
Collapse
Affiliation(s)
- Xiaojing Du
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
- Endoscopy CenterShanghai East HospitalTongji University School of MedicineShanghai200120China
| | - Zhuoran Qi
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Sinuo Chen
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Jinlan Wu
- Department of PediatricsJiading District Central HospitalShanghai201800China
| | - Ye Xu
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
| | - Sunkuan Hu
- Department of GastroenterologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Zhijie Yu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato‐Pancreatic Diseases of Zhejiang ProvinceThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
- Wenzhou Key Laboratory of HematologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Jiayun Hou
- Biomedical Research CenterZhongshan Hospital Institute of Clinical ScienceFudan UniversityShanghai200032China
| | - Yuan Fang
- Department of Liver SurgeryKey Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education)Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghai200032China
| | - Jinglin Xia
- Liver Cancer InstituteZhongshan HospitalFudan University180 Fenglin RoadShanghai200032China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and TranslationFirst Affiliated Hospital of Wenzhou Medical UniversityWenzhou325035China
| | - Xin Cao
- Institute of Clinical ScienceZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
3
|
Yang Z, Tian C, He Z, Zhu X, He J, Pan H, Li Y, Ruan G, Wu X, Pan X. Mesenchymal stem cells reverse thymus aging by reprogramming the DNA methylation of thymic epithelial cells. Regen Ther 2024; 27:126-169. [PMID: 38571892 PMCID: PMC10988135 DOI: 10.1016/j.reth.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Background A decrease in the number and activity of thymic epithelial cells (TECs) is an important factor in thymic degeneration. Mesenchymal stem cells (MSCs) treating thymic ageing is a promising strategy, but the DNA methylation modification mechanism in TECs remains unclear. Methods Aged rhesus monkeys were treated with MSCs to establish a thymic senescence model, and hematoxylin-eosin (HE) staining, immunofluorescence staining, and ELISA were performed to observe the structure and function of the thymus. TEC aging model and MSCs co-culture system were established to detect DNA methylation modification and transcriptomic changes, correlation analysis between transcription factor methylation and mRNA expression, and q-PCR, immunofluorescence staining, and Western blot were used to identified key genes. Results MSCs improved the structure and function of thymus in elderly macaque monkeys; reduced the expression levels of β-Gal, P16, and P21; and increased the activity of aging TECs. There were 501 genes with increased methylation in the promoter region in the treated group compared with the untreated group, among which 23 genes were involved in the negative regulation of cell growth, proliferation and apoptosis, while 591 genes had decreased methylation, among which 37 genes were associated with promoting cell growth and proliferation and inhibiting apoptosis. Furthermore, 66 genes showed a negative correlation between promoter methylation levels and gene transcription; specifically, PDE5A, DUOX2, LAMP1 and SVIL were downregulated with increased methylation, inhibiting growth and development, while POLR3G, PGF, CHTF18, KRT17, FOXJ1, NGF, DYRK3, LRP8, CDT1, PRELID1, F2R, KNTC1 and TRIM3 were upregulated with decreased methylation, promoting cell growth. Conclusion MSCs improve the structure and function of aged thymus, which involves the regulation of DNA methylation profiles and a decrease in the methylation level of the transcription factor NGF to specifically upregulate KRT17 and FOXJ1 to promote the proliferation of TECs.
Collapse
Affiliation(s)
- Zailing Yang
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
- The Second Peoples Hospital of Guiyang, Medical Laboratory, Guiyang 550023, Guizhou Province, China
| | - Chuan Tian
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Zhixu He
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Xiangqing Zhu
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Jie He
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Hang Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Ye Li
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - Guangping Ruan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| | - XiJun Wu
- The Second Peoples Hospital of Guiyang, Medical Laboratory, Guiyang 550023, Guizhou Province, China
| | - Xinghua Pan
- The Basic Medical Laboratory of the 920th Hospital of Joint Logistics Support Force of PLA, The Transfer Medicine Key Laboratory of Cell Therapy Technology of Yunan Province, The Integrated Engineering Laboratory of Cell Biological Medicine of State and Regions, Kunming 650032, Yunnan Province, China
| |
Collapse
|
4
|
Du H, Wang F, Zhang R, Yan X, Zheng J, Zhou T, Wang X, Zhang G, Zhang Z. Rolling Circle Amplification-Based Self-Assembly to Form a "GPS-Nanoconveyor" for In Vitro Targeted Imaging and Enhanced Gene/Chemo (CRISPR/DOX) Synergistic Therapy. Biomacromolecules 2024; 25:4991-5007. [PMID: 39087761 DOI: 10.1021/acs.biomac.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The GPS-Nanoconveyor (MA-NV@DOX-Cas13a) is a targeted nanoplatform designed for the imaging and gene/chemotherapy synergistic treatment of melanoma. It utilizes rolling circle amplification (RCA) products as a scaffold to construct a DNA "Nanoconveyor" (NV), which incorporates a multivalent aptamer (MA) as a "GPS", encapsulates doxorubicin (DOX) in the transporter, and equips it with CRISPR/Cas13a ribonucleoproteins (Cas13a RNP). Carrying MA enhances the ability to recognize the overexpressed receptor nucleolin on B16 cells, enabling targeted imaging and precise delivery of MA-NV@DOX-Cas13a through receptor-mediated endocytosis. The activation of signal transducer and activator of transcription 3 (STAT3) in cancer cells triggers cis-cleavage of CRISPR/Cas13a, initiating its trans-cleavage function. Additionally, deoxyribonuclease I (DNase I) degrades MA-NV, releasing DOX for intracellular imaging and as a chemotherapeutic agent. Experiments demonstrate the superior capabilities of this versatile nanoplatform for cellular imaging and co-treatment while highlighting the advantages of these nanodrug delivery systems in mitigating DOX side effects.
Collapse
Affiliation(s)
- Huan Du
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ruyan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoyan Yan
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jinfeng Zheng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Ting Zhou
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiufeng Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Guodong Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhiqing Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
5
|
Wang KN, Zhou K, Zhong NN, Cao LM, Li ZZ, Xiao Y, Wang GR, Huo FY, Zhou JJ, Liu B, Bu LL. Enhancing cancer therapy: The role of drug delivery systems in STAT3 inhibitor efficacy and safety. Life Sci 2024; 346:122635. [PMID: 38615745 DOI: 10.1016/j.lfs.2024.122635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The signal transducer and activator of transcription 3 (STAT3), a member of the STAT family, resides in the nucleus to regulate genes essential for vital cellular functions, including survival, proliferation, self-renewal, angiogenesis, and immune response. However, continuous STAT3 activation in tumor cells promotes their initiation, progression, and metastasis, rendering STAT3 pathway inhibitors a promising avenue for cancer therapy. Nonetheless, these inhibitors frequently encounter challenges such as cytotoxicity and suboptimal biocompatibility in clinical trials. A viable strategy to mitigate these issues involves delivering STAT3 inhibitors via drug delivery systems (DDSs). This review delineates the regulatory mechanisms of the STAT3 signaling pathway and its association with cancer. It offers a comprehensive overview of the current application of DDSs for anti-STAT3 inhibitors and investigates the role of DDSs in cancer treatment. The conclusion posits that DDSs for anti-STAT3 inhibitors exhibit enhanced efficacy and reduced adverse effects in tumor therapy compared to anti-STAT3 inhibitors alone. This paper aims to provide an outline of the ongoing research and future prospects of DDSs for STAT3 inhibitors. Additionally, it presents our insights on the merits and future outlook of DDSs in cancer treatment.
Collapse
Affiliation(s)
- Kang-Ning Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Kan Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Nian-Nian Zhong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Lei-Ming Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zi-Zhan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Guang-Rui Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Fang-Yi Huo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun-Jie Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial, Anyang Sixth People's Hospital, Anyang 45500, China.
| | - Bing Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Lin-Lin Bu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Oral & Maxillofacial - Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
6
|
Xiong F, Wang D, Xiong W, Wang X, Huang WH, Wu GH, Liu WZ, Wang Q, Chen JS, Kuai YY, Wang B, Chen YJ. Unveiling the role of HP1α-HDAC1-STAT1 axis as a therapeutic target for HP1α-positive intrahepatic cholangiocarcinoma. J Exp Clin Cancer Res 2024; 43:152. [PMID: 38812060 PMCID: PMC11137995 DOI: 10.1186/s13046-024-03070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICCA) is a heterogeneous group of malignant tumors characterized by high recurrence rate and poor prognosis. Heterochromatin Protein 1α (HP1α) is one of the most important nonhistone chromosomal proteins involved in transcriptional silencing via heterochromatin formation and structural maintenance. The effect of HP1α on the progression of ICCA remained unclear. METHODS The effect on the proliferation of ICCA was detected by experiments in two cell lines and two ICCA mouse models. The interaction between HP1α and Histone Deacetylase 1 (HDAC1) was determined using Electrospray Ionization Mass Spectrometry (ESI-MS) and the binding mechanism was studied using immunoprecipitation assays (co-IP). The target gene was screened out by RNA sequencing (RNA-seq). The occupation of DNA binding proteins and histone modifications were predicted by bioinformatic methods and evaluated by Cleavage Under Targets and Tagmentation (CUT & Tag) and Chromatin immunoprecipitation (ChIP). RESULTS HP1α was upregulated in intrahepatic cholangiocarcinoma (ICCA) tissues and regulated the proliferation of ICCA cells by inhibiting the interferon pathway in a Signal Transducer and Activator of Transcription 1 (STAT1)-dependent manner. Mechanistically, STAT1 is transcriptionally regulated by the HP1α-HDAC1 complex directly and epigenetically via promoter binding and changes in different histone modifications, as validated by high-throughput sequencing. Broad-spectrum HDAC inhibitor (HDACi) activates the interferon pathway and inhibits the proliferation of ICCA cells by downregulating HP1α and targeting the heterodimer. Broad-spectrum HDACi plus interferon preparation regimen was found to improve the antiproliferative effects and delay ICCA development in vivo and in vitro, which took advantage of basal activation as well as direct activation of the interferon pathway. HP1α participates in mediating the cellular resistance to both agents. CONCLUSIONS HP1α-HDAC1 complex influences interferon pathway activation by directly and epigenetically regulating STAT1 in transcriptional level. The broad-spectrum HDACi plus interferon preparation regimen inhibits ICCA development, providing feasible strategies for ICCA treatment. Targeting the HP1α-HDAC1-STAT1 axis is a possible strategy for treating ICCA, especially HP1α-positive cases.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University Beijing, Beijing, 100050, China
| | - Da Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xin Wang
- Departement of Pediatric Surgery, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, 430016, China
| | - Wen-Hua Huang
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Guan-Hua Wu
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Wen-Zheng Liu
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Qi Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Jun-Sheng Chen
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Yi-Yang Kuai
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China
| | - Bing Wang
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China.
| | - Yong-Jun Chen
- Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Road, Wuhan, Hubei, 430074, China.
| |
Collapse
|
7
|
Zhan G, Wei T, Xie H, Xie X, Hu J, Tang H, Cheng Y, Liu H, Li S, Yang G. Autophagy inhibition mediated by trillin promotes apoptosis in hepatocellular carcinoma cells via activation of mTOR/STAT3 signaling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1575-1587. [PMID: 37676495 DOI: 10.1007/s00210-023-02700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
Apoptosis and autophagy have been shown to act cooperatively and antagonistically in self-elimination process. On the one side, apoptosis and autophagy can act as partners to induce cell death in a coordinated or cooperative manner; on the flip side, autophagy acts as an antagonist to block apoptotic cell death by promoting cell survival. Our previous research indicated that trillin could induce apoptosis of PLC/PRF/5 cells, but the effects of trillin on autophagy as well as its functional relationship to apoptosis have not been elucidated. Here, the running study aims to investigate the function and molecular mechanism of trillin on autophagy with hepatocellular carcinoma (HCC) cells. The objective of this study is to investigate the molecular mechanism of trillin on autophagy in HCC cells. Protein levels of autophagy markers beclin1, LC3B, and p62 were detected by western blotting. 6-Hydroxyflavone and stattic were used to test the role of trillin regulation of autophagy via serine threonine kinase (AKT)/extracellular-regulated protein kinases (ERK) 1/2/mammalian target of rapamycin (mTOR)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Flow cytometry was used to detect caspase 3 activity and apoptosis in PLC/PRF/5 cells treated with trillin for 24 h with or without rapamycin, stattic, and 6-hydroxyflavone. The protein level of autophagy marker beclin1 was decreased, whilst the protein level of p62 was significantly increased by trillin treatment, indicating trillin treatment led to inhibition of autophagy in HCC cells. Trillin treatment could reduce the protein levels of p-AKT and p-ERK1/2, but enhance the protein levels of mTOR and p-mTOR, suggesting that trillin could inhibit AKT/ERK rather than mTOR. The AKT/ERK activator 6-hydroxyflavone could reverse the loss of AKT and ERK1/2 phosphorylation induced by trillin, implying that trillin impairs autophagy through activated mTOR rather than AKT/ERK. STAT3 and p-STAT3 were significantly upregulated by the trillin treatment with an increase in dose from 0 to 50 μM, suggesting that autophagy inhibition is mediated by trillin via activation of STAT3 signaling. The STAT3 inhibitor stattic significantly reversed the increased STAT3 phosphorylation at tyrosine 705 induced by trillin. The mTOR signaling inhibitor rapamycin reversed the trillin-induced mTOR phosphorylation enhancement but exerted no effects on total mTOR levels, suggesting trillin treatment led to inhibition of autophagy in HCC cells through activating mTOR/STAT3 pathway. Furthermore, caspase 3 activities and the total rate of apoptosis were increased by trillin treatment, which was reversed by rapamycin, stattic, and 6-hydroxyflavone, proving that trillin promotes apoptosis via activation of mTOR/STAT3 signaling. Trillin induced autophagy inhibition and promoted apoptosis in PLC/PRF/5 cells via the activation of mTOR/STAT3 signaling. Trillin has the potential to be a viable therapeutic option for HCC treatment.
Collapse
Affiliation(s)
- Guangjie Zhan
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, (Hubei Minzu University), Medical School of Hubei MinZu University, Enshi, Hubei, 445000, People's Republic of China
| | - Tiantian Wei
- Suizhou Hospital, Hubei University of Medicine, 441300, Suizhou, Hubei, People's Republic of China
| | - Huichen Xie
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Diseases, (Hubei Minzu University), Medical School of Hubei MinZu University, Enshi, Hubei, 445000, People's Republic of China
| | - Xiaoming Xie
- Suizhou Hospital, Hubei University of Medicine, 441300, Suizhou, Hubei, People's Republic of China
| | - Jun Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Hao Tang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Yating Cheng
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China
| | - Huaifeng Liu
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China
| | - Shujing Li
- School of Life Science, Bengbu Medical College, Bengbu, Anhui, 233030, People's Republic of China.
| | - Guohua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, 430071, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Pan Q, Xie Y, Zhang Y, Guo X, Wang J, Liu M, Zhang XL. EGFR core fucosylation, induced by hepatitis C virus, promotes TRIM40-mediated-RIG-I ubiquitination and suppresses interferon-I antiviral defenses. Nat Commun 2024; 15:652. [PMID: 38253527 PMCID: PMC10803816 DOI: 10.1038/s41467-024-44960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Aberrant N-glycosylation has been implicated in viral diseases. Alpha-(1,6)-fucosyltransferase (FUT8) is the sole enzyme responsible for core fucosylation of N-glycans during glycoprotein biosynthesis. Here we find that multiple viral envelope proteins, including Hepatitis C Virus (HCV)-E2, Vesicular stomatitis virus (VSV)-G, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-Spike and human immunodeficiency virus (HIV)-gp120, enhance FUT8 expression and core fucosylation. HCV-E2 manipulates host transcription factor SNAIL to induce FUT8 expression through EGFR-AKT-SNAIL activation. The aberrant increased-FUT8 expression promotes TRIM40-mediated RIG-I K48-ubiquitination and suppresses the antiviral interferon (IFN)-I response through core fucosylated-EGFR-JAK1-STAT3-RIG-I signaling. FUT8 inhibitor 2FF, N-glycosylation site-specific mutation (Q352AT) of EGFR, and tissue-targeted Fut8 silencing significantly increase antiviral IFN-I responses and suppress RNA viral replication, suggesting that core fucosylation mediated by FUT8 is critical for antiviral innate immunity. These findings reveal an immune evasion mechanism in which virus-induced FUT8 suppresses endogenous RIG-I-mediated antiviral defenses by enhancing core fucosylated EGFR-mediated activation.
Collapse
Grants
- This work was supported by grants from the National Natural Science Foundation of China (82230078, 22077097, 91740120, 82272978, 21572173 and 21721005), National Outstanding Youth Foundation of China (81025008), National Key R&D Program of China (2022YFA1303500, 2018YFA0507603), Medical Science Advancement Program (Basical Medical Sciences) of Wuhan University (TFJC 2018002.), Key R&D Program of Hubei Province (2020BCB020), the Hubei Province’s Outstanding Medical Academic Leader Program (523-276003), the Innovative Group Project of Hubei Health Committee (WJ2021C002), the Foundational Research Funds for the Central University of China (2042022dx0003, 2042023kf1011) and Natural Science Foundation Project of Hubei Province (2021CFB484), Natural Science Foundation Project of Hubei Province (2021CFB484 to M.L).
- This work was supported by grants from the Natural Science Foundation of Hubei Province (2021CFB484), National Natural Science Foundation of China 82272978
Collapse
Affiliation(s)
- Qiu Pan
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Yan Xie
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Ying Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Xinqi Guo
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Jing Wang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Min Liu
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology and Hubei Province Key Laboratory of Allergy and Immunology, and Department of Immunology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
- Department of Allergy, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
9
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
10
|
Bian J, Liu Y, Zhao X, Meng C, Zhang Y, Duan Y, Wang G. Research progress in the mechanism and treatment of osteosarcoma. Chin Med J (Engl) 2023; 136:2412-2420. [PMID: 37649421 PMCID: PMC10586865 DOI: 10.1097/cm9.0000000000002800] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Indexed: 09/01/2023] Open
Abstract
ABSTRACT Osteosarcoma (OS) is the most common primary malignant bone tumor that more commonly occurs in children and adolescents. The most commonly used treatment for OS is surgery combined with chemotherapy, but the treatment outcomes are typically unsatisfactory. High rates of metastasis and post-treatment recurrence rates are major challenges in the treatment of OS. This underlines the need for studying the in-depth characterization of the pathogenetic mechanisms of OS and development of more effective therapeutic modalities. Previous studies have demonstrated the important role of the bone microenvironment and the regulation of signaling pathways in the occurrence and development of OS. In this review, we discussed the available evidence pertaining to the mechanisms of OS development and identified therapeutic targets for OS. We also summarized the available treatment modalities for OS and identified future priorities for therapeutics research.
Collapse
Affiliation(s)
- Jichao Bian
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yang Liu
- Department of Pathology, The Second People's Hospital Of Jining, Jining, Shandong 272049, China
| | - Xiaowei Zhao
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Chunyang Meng
- Department of Spine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yuanmin Zhang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| | - Yangmiao Duan
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Guodong Wang
- Department of Joint and Sports Medicine, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, China
| |
Collapse
|
11
|
Zhang Y, Zeng L, Wang M, Yang Z, Zhang H, Gao L, Zhang R, Liu J, Shan W, Chang Y, Liu L, Zhao Q, Li Y, Liu J. RIG-I promotes immune evasion of colon cancer by modulating PD-L1 ubiquitination. J Immunother Cancer 2023; 11:e007313. [PMID: 37758653 PMCID: PMC10537859 DOI: 10.1136/jitc-2023-007313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Colon cancer is one of the most prevalent cancers and exhibits high mortality worldwide. Despite the certain success in the immunotherapy of many tumor types, the limited response of colon cancer to immunotherapy remains a difficult problem. Retinoic acid-inducible gene-I (RIG-I) is a crucial component in innate antiviral immunity, but its role in antitumor immunity remains unclear. Here, in this report, we found that silencing RIG-I decreased resistance to tumor cells killed by T cells and attenuated colon tumor growth in immunocompetent mice. Meanwhile, overexpressing RIG-I promoted tumor progression, and high expression of RIG-I sensitized cells to anti-programmed cell death protein-1 (PD-1) therapy in vivo. Interestingly, we found that RIG-I influenced programmed cell death ligand 1 (PD-L1) expression to promote colon cancer immune evasion without relying on type I interferon stimulation. Mechanistically, RIG-I could compete with Speckle Type POZ protein (SPOP) to bind PD-L1, leading to attenuation of the polyubiquitination and proteasomal degradation of PD-L1. Collectively, our work reveals new insights into the contribution of RIG-I to driving immune evasion by maintaining the stability of PD-L1 through post-translational modification and provides a promising biomarker of the efficacy of immunotherapy in colon cancer.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lingxiu Zeng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Meng Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhenwei Yang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hailin Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Liping Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ranran Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jialong Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenqing Shan
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yong Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Wang M, Zhang Y, Gao L, Zhang H, Yang Z, Liu J, Shan W, Zeng L, Zhang R, Li Y, Liu J. RIG-I promotes cell proliferation in esophageal squamous cell carcinoma by facilitating p21 degradation. Med Oncol 2023; 40:288. [PMID: 37656315 DOI: 10.1007/s12032-023-02157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 09/02/2023]
Abstract
Retinoic acid-inducible gene-I (RIG-I) is considered a key sensor for host recognition of RNA virus infections. Recent studies have shown that RIG-I also regulates carcinogenesis. However, the role of RIG-I in esophageal squamous cell carcinoma (ESCC) remains unclear. We investigated the RIG-I expression in ESCC cells using a public database, immunohistochemistry, and Western blotting. We evaluated the proliferative activity of ESCC cells using CCK-8, colony formation, and EdU staining assays. Further, we determined the ESCC cell-cycle changes using flow cytometry and the ubiquitination of p21 in the cells using cycloheximide chase and ubiquitination assays. Finally, we verified the in vivo effects of RIG-I on ESCC cells by constructing xenograft models. RIG-I was highly expressed in ESCC cells and significantly promoted their proliferation and cell-cycle. Moreover, RIG-I knockdown inhibited xenograft growth in nude mice. Furthermore, RIG-I accelerated the cell-cycle by promoting the ubiquitination and degradation of p21. Overall, this study revealed that the increased expression of RIG-I due to ESCC accelerated the progression of esophageal cancer by promoting the ubiquitination and degradation of p21, which is related to the prognosis of ESCC. Thus, RIG-I may be a novel therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Meng Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yangyang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Liping Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Hailin Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Zhenwei Yang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Jialong Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Wenqing Shan
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Lingxiu Zeng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Ranran Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Yong Li
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136 Jingzhou Street, Xiangyang, Hubei, 441021, China.
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, Hubei, 430071, China.
| |
Collapse
|
13
|
Li L, Lv L, Xu JC, He Q, Chang N, Cui YY, Tao ZC, Zhu T, Qian LT. RIG-I Promotes Tumorigenesis and Confers Radioresistance of Esophageal Squamous Cell Carcinoma by Regulating DUSP6. Int J Mol Sci 2023; 24:ijms24065586. [PMID: 36982663 PMCID: PMC10052926 DOI: 10.3390/ijms24065586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
We investigated the expression and biological function of retinoic acid inducible gene I (RIG-I) in esophageal squamous cell carcinoma (ESCC). Materials and methods: An immunohistochemical analysis was performed on 86 pairs of tumor tissue and adjacent normal tissue samples of patients with ESCC. We generated RIG-I-overexpressing ESCC cell lines KYSE70 and KYSE450, and RIG-I- knockdown cell lines KYSE150 and KYSE510. Cell viability, migration and invasion, radioresistance, DNA damage, and cell cycle were evaluated using CCK-8, wound-healing and transwell assay, colony formation, immunofluorescence, and flow cytometry and Western blotting, respectively. RNA sequencing was performed to determine the differential gene expression between controls and RIG-I knockdown. Tumor growth and radioresistance were assessed in nude mice using xenograft models. RIG-I expression was higher in ESCC tissues compared with that in matched non-tumor tissues. RIG-I overexpressing cells had a higher proliferation rate than RIG-I knockdown cells. Moreover, the knockdown of RIG-I slowed migration and invasion rates, whereas the overexpression of RIG-I accelerated migration and invasion rates. RIG-I overexpression induced radioresistance and G2/M phase arrest and reduced DNA damage after exposure to ionizing radiations compared with controls; however, it silenced the RIG-I enhanced radiosensitivity and DNA damage, and reduced the G2/M phase arrest. RNA sequencing revealed that the downstream genes DUSP6 and RIG-I had the same biological function; silencing DUSP6 can reduce the radioresistance caused by the overexpression of RIG-I. RIG-I knockdown depleted tumor growth in vivo, and radiation exposure effectively delayed the growth of xenograft tumors compared with the control group. RIG-I enhances the progression and radioresistance of ESCC; therefore, it may be a new potential target for ESCC-targeted therapy.
Collapse
Affiliation(s)
- Lu Li
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lei Lv
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Jun-Chao Xu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qing He
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Na Chang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Ya-Yun Cui
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Zhen-Chao Tao
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
| | - Tao Zhu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (T.Z.); (L.-T.Q.)
| | - Li-Ting Qian
- Department of Oncology Radiotherapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China; (L.L.)
- Correspondence: (T.Z.); (L.-T.Q.)
| |
Collapse
|
14
|
Zhu M, Li S, Cao X, Rashid K, Liu T. The STAT family: Key transcription factors mediating crosstalk between cancer stem cells and tumor immune microenvironment. Semin Cancer Biol 2023; 88:18-31. [PMID: 36410636 DOI: 10.1016/j.semcancer.2022.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Signal transducer and activator of transcription (STAT) proteins compose a family of transcription factors critical for cancer stem cells (CSCs), and they are involved in maintaining stemness properties, enhancing cell proliferation, and promoting metastasis. Recent studies suggest that STAT proteins engage in reciprocal communication between CSCs and infiltrate immune cell populations in the tumor microenvironment (TME). Emerging evidence has substantiated the influence of immune cells, including macrophages, myeloid-derived suppressor cells, and T cells, on CSC survival through the regulation of STAT signaling. Conversely, dysregulation of STATs in CSCs or immune cells contributes to the establishment of an immunosuppressive TME. Thus, STAT proteins are promising therapeutic targets for cancer treatment, especially when used in combination with immunotherapy. From this perspective, we discuss the complex roles of STATs in CSCs and highlight their functions in the crosstalk between CSCs and the immune microenvironment. Finally, cutting-edge clinical trial progress with STAT signaling inhibitors is summarized.
Collapse
Affiliation(s)
- Mengxuan Zhu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Suyao Li
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China
| | - Xin Cao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Khalid Rashid
- Department of Cancer Biology, Faculty of Medicine, University of Cincinnati, OH, USA.
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China; Center of Evidence-based Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Grusanovic S, Danek P, Kuzmina M, Adamcova MK, Burocziova M, Mikyskova R, Vanickova K, Kosanovic S, Pokorna J, Reinis M, Brdicka T, Alberich‐Jorda M. Chronic inflammation decreases HSC fitness by activating the druggable Jak/Stat3 signaling pathway. EMBO Rep 2022; 24:e54729. [PMID: 36341527 PMCID: PMC9827550 DOI: 10.15252/embr.202254729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic inflammation represents a major threat to human health since long-term systemic inflammation is known to affect distinct tissues and organs. Recently, solid evidence demonstrated that chronic inflammation affects hematopoiesis; however, how chronic inflammation affects hematopoietic stem cells (HSCs) on the mechanistic level is poorly understood. Here, we employ a mouse model of chronic multifocal osteomyelitis (CMO) to assess the effects of a spontaneously developed inflammatory condition on HSCs. We demonstrate that hematopoietic and nonhematopoietic compartments in CMO BM contribute to HSC expansion and impair their function. Remarkably, our results suggest that the typical features of murine multifocal osteomyelitis and the HSC phenotype are mechanistically decoupled. We show that the CMO environment imprints a myeloid gene signature and imposes a pro-inflammatory profile on HSCs. We identify IL-6 and the Jak/Stat3 signaling pathway as critical mediators. However, while IL-6 and Stat3 blockage reduce HSC numbers in CMO mice, only inhibition of Stat3 activity significantly rescues their fitness. Our data emphasize the detrimental effects of chronic inflammation on stem cell function, opening new venues for treatment.
Collapse
Affiliation(s)
- Srdjan Grusanovic
- Department of Hemato‐OncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic,Faculty of ScienceCharles UniversityPragueCzech Republic,Childhood Leukaemia Investigation PragueDepartment of Pediatric Haematology and Oncology2nd Faculty of MedicineCharles University in PragueUniversity Hospital MotolPragueCzech Republic
| | - Petr Danek
- Department of Hemato‐OncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Maria Kuzmina
- Department of Hemato‐OncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic,Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Miroslava K Adamcova
- Department of Hemato‐OncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic,Childhood Leukaemia Investigation PragueDepartment of Pediatric Haematology and Oncology2nd Faculty of MedicineCharles University in PragueUniversity Hospital MotolPragueCzech Republic
| | - Monika Burocziova
- Department of Hemato‐OncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Romana Mikyskova
- Department of Immunological and Tumor modelsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Karolina Vanickova
- Department of Hemato‐OncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic,Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Sladjana Kosanovic
- Department of Hemato‐OncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic,Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Jana Pokorna
- Department of Leukocyte signalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Milan Reinis
- Department of Immunological and Tumor modelsInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Tomas Brdicka
- Department of Leukocyte signalingInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Meritxell Alberich‐Jorda
- Department of Hemato‐OncologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic,Childhood Leukaemia Investigation PragueDepartment of Pediatric Haematology and Oncology2nd Faculty of MedicineCharles University in PragueUniversity Hospital MotolPragueCzech Republic
| |
Collapse
|
16
|
Xiong F, Wang Q, Wu GH, Liu WZ, Wang B, Chen YJ. Direct and indirect effects of IFN-α2b in malignancy treatment: not only an archer but also an arrow. Biomark Res 2022; 10:69. [PMID: 36104718 PMCID: PMC9472737 DOI: 10.1186/s40364-022-00415-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Interferon-α2b (IFN-α2b) is a highly active cytokine that belongs to the interferon-α (IFN-α) family. IFN-α2b has beneficial antiviral, antitumour, antiparasitic and immunomodulatory activities. Direct and indirect antiproliferative effects of IFN-α2b have been found to occur via multiple pathways, mainly the JAK-STAT pathway, in certain cancers. This article reviews mechanistic studies and clinical trials on IFN-α2b. Potential regulators of the function of IFN-α2b were also reviewed, which could be utilized to relieve the poor response to IFN-α2b. IFN-α2b can function not only by enhancing the systematic immune response but also by directly killing tumour cells. Different parts of JAK-STAT pathway activated by IFN-α2b, such as interferon alpha and beta receptors (IFNARs), Janus kinases (JAKs) and IFN‐stimulated gene factor 3 (ISGF3), might serve as potential target for enhancing the pharmacological action of IFN-α2b. Despite some issues that remain to be solved, based on current evidence, IFN-α2b can inhibit disease progression and improve the survival of patients with certain types of malignant tumours. More efforts should be made to address potential adverse effects and complications.
Collapse
|
17
|
Cheng C, Liu D, Liu Z, Li M, Wang Y, Sun B, Kong R, Chen H, Wang G, Li L, Hu J, Li Y, Chen H, Zhao Z, Zhang T, Zhu S, Pan S. Positive feedback regulation of lncRNA TPT1-AS1 and ITGB3 promotes cell growth and metastasis in pancreatic cancer. Cancer Sci 2022; 113:2986-3001. [PMID: 35534983 PMCID: PMC9459417 DOI: 10.1111/cas.15388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/08/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Emerging evidence has indicated that long noncoding RNAs (lncRNAs) are potential biomarkers and play crucial roles in cancer development. However, the functions and underlying mechanisms of lncRNA TPT1-AS1 in pancreatic ductal adenocarcinoma (PDAC) remain elusive. RNAseq data of PDAC tissues and normal tissues were analyzed, and lncRNAs which were associated with PDAC prognosis were identified. The clinical relevance of TPT1-AS1 for PDAC patients was explored, and the effects of TPT1-AS1 in PDAC progression were investigated in vitro and in vivo. LncRNA TPT1-AS1 was highly expressed in PDAC, and high TPT1-AS1 levels predicted a poor prognosis. Moreover, functional experiments revealed that TPT1-AS1 promoted pancreatic cancer cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) process in vitro and in vivo. Mechanistically, TPT1-AS1 functioned as an endogenous sponge for miR-30a-5p, which increased integrin β3 (ITGB3) level in pancreatic cancer cells. Conversely, our data revealed that ITGB3 could activate the transcription factor signal transducer and activator of transcription 3 (STAT3), which in turn bound directly to the TPT1-AS1 promoter and affected the expression of TPT1-AS1, thus forming a positive feedback loop with TPT1-AS1. Taken together, our results uncovered a reciprocal loop of TPT1-AS1 and ITGB3 which contributed to pancreatic cancer growth and development, and indicated that TPT1-AS1 might serve as a novel potential diagnostic biomarker and therapeutic target for PDAC patients.
Collapse
Affiliation(s)
- Chundong Cheng
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Danxi Liu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Zonglin Liu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Mengyang Li
- Department of Medical OncologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yongwei Wang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Bei Sun
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Rui Kong
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Hua Chen
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Gang Wang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Le Li
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Jisheng Hu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Yilong Li
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Hongze Chen
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Tao Zhang
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Siqiang Zhu
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| | - Shangha Pan
- Department of Pancreatic and Biliary SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Key Laboratory of Hepatosplenic SurgeryMinistry of EducationHarbinChina
| |
Collapse
|
18
|
Guo R, Lu SY, Ma JX, Wang QL, Zhang L, Tang LY, Shen Y, Shen CL, Wang JJ, Lu LM, Wang ZG, Zhang HX. RIG-I acts as a tumor suppressor in melanoma via regulating the activation of the MKK/p38MAPK signaling pathway. Hum Cell 2022; 35:1071-1083. [PMID: 35416622 PMCID: PMC9226095 DOI: 10.1007/s13577-022-00698-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
Studies have indicated that RIG-I may act as a tumor suppressor and participate in the tumorigenesis of some malignant diseases. However, RIG-I induces distinct cellular responses via different downstream signaling pathways depending on the cell type. To investigate the biological function and underlying molecular mechanism of RIG-I in the tumorigenesis of melanoma, we constructed RIG-I knockout, RIG-I-overexpressing B16-F10 and RIG-I knockdown A375 melanoma cell lines, and analyzed the RIG-I-mediated change in the biological behavior of tumor cells in spontaneous and poly (I:C)-induced RIG-I activation. Cell proliferation, cell cycling, apoptosis and migration were detected by CCK-8 assay, BrdU incorporation assay, Annexin V-PI staining assay and Transwell assay, respectively. In vivo tumorigenicity was evaluated by tumor xenograft growth in nude mice and subsequently by Ki67 staining and TUNEL assays. Furthermore, Western blotting was utilized to explore the underlying mechanism of RIG-I in melanoma cells. Our data showed that RIG-I promotes apoptosis and inhibits proliferation by G1 phase cell cycle arrest in the melanoma cell lines. Mechanistically, RIG-I induced the phosphorylation of p38 MAPK and MAPK kinases MKK3 and MKK4. In conclusion, the current study demonstrated that RIG-I suppressed the development of melanoma by regulating the activity of the MKK/p38 MAPK signaling pathway, which is relevant to research on novel therapeutic targets for this malignant disease.
Collapse
Affiliation(s)
- Rui Guo
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shun-Yuan Lu
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin-Xia Ma
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian-Lan Wang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Zhang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ling-Yun Tang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Shen
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chun-Ling Shen
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jin-Jin Wang
- Shanghai Model Organisms Center, Shanghai, 201321, China
| | - Li-Ming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu-Gang Wang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hong-Xin Zhang
- Research Center for Experimental Medicine, State Key Laboratory of Medical Genomics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
19
|
Samir P, Kanneganti TD. DEAD/H-Box Helicases in Immunity, Inflammation, Cell Differentiation, and Cell Death and Disease. Cells 2022; 11:1608. [PMID: 35626643 PMCID: PMC9139286 DOI: 10.3390/cells11101608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 12/21/2022] Open
Abstract
DEAD/H-box proteins are the largest family of RNA helicases in mammalian genomes, and they are present in all kingdoms of life. Since their discovery in the late 1980s, DEAD/H-box family proteins have been a major focus of study. They have been found to play central roles in RNA metabolism, gene expression, signal transduction, programmed cell death, and the immune response to bacterial and viral infections. Aberrant functions of DEAD/H-box proteins have been implicated in a wide range of human diseases that include cancer, neurodegeneration, and inherited genetic disorders. In this review, we provide a historical context and discuss the molecular functions of DEAD/H-box proteins, highlighting the recent discoveries linking their dysregulation to human diseases. We will also discuss the state of knowledge regarding two specific DEAD/H-box proteins that have critical roles in immune responses and programmed cell death, DDX3X and DDX58, also known as RIG-I. Given their importance in homeostasis and disease, an improved understanding of DEAD/H-box protein biology and protein-protein interactions will be critical for informing strategies to counteract the pathogenesis associated with several human diseases.
Collapse
|
20
|
Wang H, Zhou Y, Zhang Y, Fang S, Zhang M, Li H, Xu F, Liu L, Liu J, Zhao Q, Wang F. Subtyping of microsatellite stability colorectal cancer reveals guanylate binding protein 2 (GBP2) as a potential immunotherapeutic target. J Immunother Cancer 2022; 10:jitc-2021-004302. [PMID: 35383115 PMCID: PMC8984016 DOI: 10.1136/jitc-2021-004302] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Backgrounds Proficient-mismatch-repair or microsatellite stability (pMMR/MSS) colorectal cancer (CRC) has limited efficacy for immune checkpoint blockade (ICB) therapy and its underlying mechanism remains unclear. Guanylate binding protein 2 (GBP2) is a member of the GTPase family and is crucial to host immunity against pathogens. However, the correlations between GBP2 and immunosurveillance and immunotherapy for pMMR/MSS CRC have not been reported. Methods Unsupervised clustering was employed to classify immune class and non-immune class in 1424 pMMR/MSS patients from six independent public datasets. This binary classification was validated using immune cells or response related signatures. The correlation between GBP2 and immune microenvironment was explored using well-established biological algorithms, multiplex immunohistochemistry (mIHC), in vitro and in vivo experiments. Results We classified 1424 pMMR/MSS CRC patients into two classes, ‘immune’ and ‘non-immune’, and GBP2 was identified as a gene of interest. We found that lower GBP2 expression was correlated with poor prognosis and metastasis. GBP2 expression was also upregulated in the immune class and highly associated with interferon-γ (IFN-γ) signaling pathway and CD8 +T cell infiltration using gene set enrichment analysis, gene ontology analysis, single-cell sequencing and mIHC. Moreover, reduced GBP2 expression inhibited the antigen processing and presentation machinery and CXCL10/11 expression in MSS CRC cells on IFN-γ stimulation. A Transwell assay revealed that deletion of GBP2 in murine MSS CRC cells reduced CD8 +T cell migration. Mechanistically, GBP2 promoted signal transducer and transcription activator 1 (STAT1) phosphorylation by competing with SHP1 for binding to STAT1 in MSS CRC cells. Finally, an unsupervised subclass mapping (SubMap) algorithm showed that pMMR/MSS patients with high GBP2 expression may correlate with a favorable response to anti-PD-1 therapy. We further confirmed that GBP2 knockout reduced CD8 +T cell infiltration and blunted the efficacy of PD-1 blockade in tumor-bearing mice. Conclusions Our study reveals that pMMR/MSS CRC is immunogenically heterogeneous and that GBP2 is a promising target for combinatorial therapy with ICB.
Collapse
Affiliation(s)
- Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Yangyang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Shilin Fang
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Haiou Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China .,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China .,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China .,Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
21
|
RIG-I Promotes Cell Viability, Colony Formation, and Glucose Metabolism and Inhibits Cell Apoptosis in Colorectal Cancer by NF- κB Signaling Pathway. DISEASE MARKERS 2022; 2022:1247007. [PMID: 35242239 PMCID: PMC8888050 DOI: 10.1155/2022/1247007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 12/03/2022]
Abstract
Background Retinoic acid-inducible gene-I (RIG-I) has crucial effects on various cancers, while RIG-I's detailed roles and mechanism in colorectal cancer (CRC) are uncovered. Methods qRT-PCR was used to detect the expression of RIG-I in CRC, adjacent nontumor specimens, and five cell lines. CCK-8, colony formation, and flow cytometry assays were conducted to study CRC cell viabilities. Extracellular acidification rates, lactate analysis, and ATP analysis were conducted to study the cell viabilities and glucose metabolism of CRC cells. Western blot is used to determine the proteins of NF-κBp65 in the nucleus and cytoplasm. Results This study revealed the upregulation of RIG-I in CRC tissues and cells and that high RIG-I expression was correlated with poor prognosis of CRC patients. In addition, silencing RIG-I inhibited cell viability as well as colony formation and promoted cell apoptosis in CRC cells, while RIG-I knockdown suppressed transplanted tumor growth and facilitated apoptosis in nude mice. Moreover, silencing RIG-I inhibited glucose metabolism by decreasing extracellular acidification rate, lactate production, adenosine triphosphate, and content of hypoxia-inducible factor 1α and pyruvate kinase isoform. 2.2-Deoxy-d-glucose, a glycolysis inhibitor, reduced the growth of CRC cells and promoted apoptosis in vitro and in vivo. In addition, RIG-I knockdown decreased NF-κB nuclear translocation. Besides, inhibiting NF-κB effectively eliminated RIG-I overexpression roles in cell viability and glucose metabolism in CRC cells. Conclusion In summary, this study revealed that RIG-I mediated CRC cell proliferation, apoptosis, and glucose metabolism at least partly by NF-κB signaling pathway.
Collapse
|
22
|
Ren S, Jin Y, Chen Y, Shen B. CRPMKB: a knowledge base of cancer risk prediction models for systematic comparison and personalized applications. Bioinformatics 2022; 38:1669-1676. [PMID: 34927675 DOI: 10.1093/bioinformatics/btab850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 02/05/2023] Open
Abstract
MOTIVATION In the era of big data and precision medicine, accurate risk assessment is a prerequisite for the implementation of risk screening and preventive treatment. A large number of studies have focused on the risk of cancer, and related risk prediction models have been constructed, but there is a lack of effective resource integration for systematic comparison and personalized applications. Therefore, the establishment and analysis of the cancer risk prediction model knowledge base (CRPMKB) is of great significance. RESULTS The current knowledge base contains 802 model data. The model comparison indicates that the accuracy of cancer risk prediction was greatly affected by regional differences, cancer types and model types. We divided the model variables into four categories: environment, behavioral lifestyle, biological genetics and clinical examination, and found that there are differences in the distribution of various variables among different cancer types. Taking 50 genes involved in the lung cancer risk prediction models as an example to perform pathway enrichment analyses and the results showed that these genes were significantly enriched in p53 Signaling and Aryl Hydrocarbon Receptor Signaling pathways which are associated with cancer and specific diseases. In addition, we verified the biological significance of overlapping lung cancer genes via STRING database. CRPMKB was established to provide researchers an online tool for the future personalized model application and developing. This study of CRPMKB suggests that developing more targeted models based on specific demographic characteristics and cancer types will further improve the accuracy of cancer risk model predictions. AVAILABILITY AND IMPLEMENTATION CRPMKB is freely available at http://www.sysbio.org.cn/CRPMKB/. The data underlying this article are available in the article and in its online supplementary material. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shumin Ren
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610212, China
| | - Yanwen Jin
- Center for Systems Biology, Soochow University, Suzhou 215006, China
| | - Yalan Chen
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong 226001, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610212, China
| |
Collapse
|
23
|
Lai Y, Wang B, Zheng X. Limiting dilution assay to quantify the self-renewal potential of cancer stem cells in hepatocellular carcinoma. Methods Cell Biol 2022; 171:197-213. [DOI: 10.1016/bs.mcb.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
24
|
Nurzat Y, Su W, Min P, Li K, Xu H, Zhang Y. Identification of Therapeutic Targets and Prognostic Biomarkers Among Integrin Subunits in the Skin Cutaneous Melanoma Microenvironment. Front Oncol 2021; 11:751875. [PMID: 34660316 PMCID: PMC8514842 DOI: 10.3389/fonc.2021.751875] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
The roles of different integrin alpha/beta (ITGA/ITGB) subunits in skin cutaneous melanoma (SKCM) and their underlying mechanisms of action remain unclear. Oncomine, UALCAN, GEPIA, STRING, GeneMANIA, cBioPortal, TIMER, TRRUST, and Webgestalt analysis tools were used. The expression levels of ITGA3, ITGA4, ITGA6, ITGA10, ITGB1, ITGB2, ITGB3, ITGB4, and ITGB7 were significantly increased in SKCM tissues. The expression levels of ITGA1, ITGA4, ITGA5, ITGA8, ITGA9, ITGA10, ITGB1, ITGB2, ITGB3, ITGB5, ITGB6 and ITGB7 were closely associated with SKCM metastasis. The expression levels of ITGA1, ITGA4, ITGB1, ITGB2, ITGB6, and ITGB7 were closely associated with the pathological stage of SKCM. The expression levels of ITGA6 and ITGB7 were closely associated with disease-free survival time in SKCM, and the expression levels of ITGA6, ITGA10, ITGB2, ITGB3, ITGB6, ITGB7, and ITGB8 were markedly associated with overall survival in SKCM. We also found significant correlations between the expression of integrin subunits and the infiltration of six types of immune cells (B cells, CD8+ T cells, CD4+T cells, macrophages, neutrophils, and dendritic cells). Finally, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed, and protein-protein interaction (PPI) networks were constructed. We have identified abnormally-expressed genes and gene regulatory networks associated with SKCM, improving understanding of the underlying pathogenesis of SKCM.
Collapse
Affiliation(s)
- Yeltai Nurzat
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Weijie Su
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Peiru Min
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ke Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Heng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Li H, Zhou Y, Wang M, Wang H, Zhang Y, Peng R, Zhang R, Zhang M, Zhang M, Qiu P, Liu L, Zhao Q, Liu J. DOC-2/DAB2 interactive protein destabilizes c-Myc to impair the growth and self-renewal of colon tumor-repopulating cells. Cancer Sci 2021; 112:4593-4603. [PMID: 34449943 PMCID: PMC8586666 DOI: 10.1111/cas.15120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinoma (CRC) remains a huge challenge in clinical treatment due to tumor metastasis and recurrence. Stem cell-like colon tumor-repopulating cells (TRCs) are a subpopulation of cancer cells with highly tumorigenic and chemotherapy resistant properties. The core transcription factor c-Myc is essential for maintaining cancer stem-like cell phenotypes, yet its roles and regulatory mechanisms remain unclear in colon TRCs. We report that elevated c-Myc protein supported formation and growth of TRC spheroids. The tumor suppressor DOC-2/DAB2 interactive protein (DAB2IP) suppressed c-Myc expression to inhibit TRC expansion and self-renewal. Particularly, DAB2IP disrupted c-Myc stability through glycogen synthase kinase 3β/protein phosphatase 2A-B56α-mediated phosphorylation and dephosphorylation cascade on c-Myc protein, leading to its eventual degradation through the ubiquitin-proteasome pathway. The expression of DAB2IP was negatively correlated with c-Myc in CRC specimens. Overall, our results improved mechanistic insight into how DAB2IP suppressed TRC growth and self-renewal.
Collapse
Affiliation(s)
- Haiou Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yunjiao Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yangyang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ruyi Peng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ruike Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Mengna Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Peishan Qiu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|