1
|
Zang PD, Da Silva DM, Liu ZX, Kandukuri S, Tsao-Wei D, D’Souza A, Kast WM, Pal SK, Kefauver C, Juanqueira M, Yang L, Quinn DI, Dorff TB. Immune Modulation During Treatment with Enzalutamide Alone or with Radium-223 in Patients with Castration Resistant Prostate Cancer. Cancers (Basel) 2025; 17:1730. [PMID: 40427227 PMCID: PMC12110403 DOI: 10.3390/cancers17101730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/15/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
INTRODUCTION Prostate cancer has been generally resistant to immunotherapy approaches. Radiation can be immunostimulatory, but the extent to which standard prostate cancer treatments induce immune activation has not been well described. The bone-targeted radiopharmaceutical Radium223 (Ra223) has been proposed to enrich immune function, but clinical studies have not fully delineated whether this is true, or by what mechanisms. Enzalutamide has been shown to increase PD-L1 expression on dendritic cells, which could impact immune activation, though the extent to which this is associated with other evidence of immune activation remains uncertain, and combination strategies remain of interest. We performed a randomized phase II trial to evaluate whether Radium223 (Ra223) added to enzalutamide would induce greater immune activation and clinical responses compared to enzalutamide alone in men with metastatic castration-resistant prostate cancer (mCRPC). METHODS Eligible patients were randomized 2:1 to Arm A (enzalutamide 160 mg PO daily + Ra223 55 kBq/kg IV q4 weeks × 6 doses) or Arm B (enzalutamide 160 mg PO daily). Blood was collected at treatment start and during treatment to measure soluble immune checkpoint biomarkers (BTLA, TIM3, HVEM, GITR, LAG3, PD-1, CTLA-4, PD-L1, PD-L2, ICOS). Immunophenotyping by mass cytometry time of flight (CyTOF) was performed to measure peripheral blood mononuclear cell populations before and after treatment. CyTOF was used to determine changes in circulating immune cell population subsets before and after treatment. Biopsies were performed of an active bone metastatic lesion prior to study treatment and after at least 3 months. IHC was subsequently performed to examine changes in immune cell population subsets before and after treatment, and changes in pSTAT3 levels. RESULTS In total, 30 patients were enrolled, with median age 68. The median duration of follow up was 36 months. PSA responses, PFS, and OS were not significantly different between the two arms; however, the study was not powered for clinical endpoints. Peripheral blood and bone biopsy specimens were analyzed for immune correlatives. Soluble receptor concentrations showed significantly increased expression of PDL-2 in the combination arm, but this was not seen on CyTOF. Otherwise, there were no significant differences in markers of immune activation/exhaustion or immune cell population subsets in the combination arm and enzalutamide monotherapy arm. IHC also did not show a significant difference in immune cell population subsets in bone biopsy specimens before and after treatment in both arms. However, treatment with the combination arm did show significantly increased levels of pSTAT3 (p = 0.04), which was not seen in the enzalutamide monotherapy arm. CONCLUSIONS Our study showed an overall lack of evidence for immune activation or cytokine induction with the combination, which does not make a strong case for combinatorial immunotherapy approaches. However, the combination did induce higher levels of pSTAT3, which has been implicated in radio-resistance. Therefore, the addition of a STAT3 inhibitor to the combination may be of interest to improve efficacy.
Collapse
Affiliation(s)
- Peter D. Zang
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Diane M. Da Silva
- Department of Obstetrics & Gynecology, USC/Norris Comprehensive Cancer Center, 1450 Biggy Street, Los Angeles, CA 90033, USA
- Beckman Center for Immune Monitoring, USC/Norris Comprehensive Cancer Center, 1450 Biggy Street, Los Angeles, CA 90033, USA
| | - Zhang-Xu Liu
- Beckman Center for Immune Monitoring, USC/Norris Comprehensive Cancer Center, 1450 Biggy Street, Los Angeles, CA 90033, USA
| | - Shivani Kandukuri
- Clinical Pathology, USC/Norris Comprehensive Cancer Center, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Denice Tsao-Wei
- Department of Preventative Medicine, USC/Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089, USA
| | - Anishka D’Souza
- Clinical Medicine, Department of Medical Oncology, USC/Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089, USA
| | - W. Martin Kast
- Beckman Center for Immune Monitoring, USC/Norris Comprehensive Cancer Center, 1450 Biggy Street, Los Angeles, CA 90033, USA
- Department of Molecular Microbiology & Immunology and Urology, USC/Norris Comprehensive Cancer Center, 1450 Biggy Street, Los Angeles, CA 90033, USA
| | - Sumanta K. Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Cheryl Kefauver
- USC/Norris Comprehensive Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90089, USA
| | - Maribel Juanqueira
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Lixin Yang
- Department of Pathology, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - David I. Quinn
- USC/Norris Comprehensive Cancer Center, 1450 Biggy Street, Los Angeles, CA 90033, USA
- Abbvie, 1000 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Tanya B. Dorff
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
2
|
Li X, Han Z, Ai J. Synergistic targeting strategies for prostate cancer. Nat Rev Urol 2025:10.1038/s41585-025-01042-6. [PMID: 40394240 DOI: 10.1038/s41585-025-01042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
Prostate cancer is the second most commonly diagnosed cancer and the fifth leading cause of death among men worldwide. Androgen deprivation therapy is a common prostate cancer treatment, but its efficacy is often hindered by the development of resistance, which results in reducing survival benefits. Immunotherapy showed great promise in treating solid tumours; however, clinically significant improvements have not been demonstrated for patients with prostate cancer, highlighting specific drawbacks of this therapeutic modality. Hence, exploring novel strategies to synergistically enhance the efficacy of prostate cancer immunotherapy is imperative. Clinical investigations have focused on the combined use of targeted or gene therapy and immunotherapy for prostate cancer. Notably, tumour-specific antigens and inflammatory mediators are released from tumour cells after targeted or gene therapy, and the recruitment and infiltration of immune cells, including CD8+ T cells and natural killer cells activated by immunotherapy, are further augmented, markedly improving the efficacy and prognosis of prostate cancer. Thus, immunotherapy, targeted therapy and gene therapy could have reciprocal synergistic effects in prostate cancer in combination, resulting in a proposed synergistic model encompassing these three therapeutic modalities, presenting novel potential treatment strategies for prostate cancer.
Collapse
Affiliation(s)
- Xuanji Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Graff JN, Burotto M, Fong PC, Pook DW, Zurawski B, Kopp RM, Salinas J, Bylow KA, Kramer G, Ratta R, Kwiatkowski M, Retz M, Kwak C, Arranz Arija JA, Gurney H, Matsubara N, Villanueva L, Todenhöfer T, Liang LW, Todoric J, Imai K, Stenzl A. Pembrolizumab plus enzalutamide versus placebo plus enzalutamide for chemotherapy-naive metastatic castration-resistant prostate cancer: the randomized, double-blind, phase III KEYNOTE-641 study. Ann Oncol 2025:S0923-7534(25)00199-1. [PMID: 40383193 DOI: 10.1016/j.annonc.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Established first- and second-line standard-of-care treatment options (abiraterone, enzalutamide, taxane chemotherapy) are available for patients with metastatic castration-resistant prostate cancer (mCRPC), but almost all patients experience subsequent disease progression. The randomized, double-blind, phase III KEYNOTE-641 study evaluated pembrolizumab plus enzalutamide versus placebo plus enzalutamide in participants with chemotherapy-naive mCRPC. PATIENTS AND METHODS Eligible participants were males aged ≥18 years with confirmed mCRPC and no prior chemotherapy except docetaxel in the hormone-sensitive setting. Prior abiraterone treatment was permitted. Participants were randomly assigned 1:1 to receive pembrolizumab 200 mg or placebo intravenously once every 3 weeks for ≤35 cycles plus enzalutamide 160 mg orally daily. Dual primary end points were overall survival (OS) and radiographic progression-free survival (rPFS) per PCWG-modified RECIST v1.1 by blinded independent central review. Safety was a secondary end point. RESULTS Between August 21, 2019, and June 10, 2022, 1244 participants were randomly assigned to pembrolizumab plus enzalutamide (n=621) or placebo plus enzalutamide (n=623). At the data cutoff date (December 12, 2022), median follow-up was 27.6 months (range, 6.1-39.8 months). Primary end points of OS (median, 24.7 vs 27.3 months; hazard ratio [HR], 1.04 [95% CI, 0.88-1.22]; P=0.66) and rPFS (median, 10.4 vs 9.0 months; HR, 0.98 [0.84-1.14]; P=0.41) with pembrolizumab plus enzalutamide versus placebo plus enzalutamide were not met. The prespecified boundary for futility for OS was crossed, and the study was stopped. Grade ≥3 treatment-related adverse events occurred in 192 of 615 participants (31.2%) with ≥1 dose of pembrolizumab plus enzalutamide and in 67 of 620 participants (10.8%) with ≥1 dose of placebo plus enzalutamide. Seventy-one (11.5%) and 21 (3.4%) participants, respectively, discontinued study treatment due to treatment-related adverse events. CONCLUSION Adding pembrolizumab to enzalutamide did not improve efficacy outcomes for participants with chemotherapy-naive mCRPC. Additional toxicity was observed with the combination regimen.
Collapse
Affiliation(s)
- J N Graff
- Oregon Health Sciences University, Portland, OR, USA.
| | | | - P C Fong
- Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | - D W Pook
- Monash Health, Clayton, Australia
| | - B Zurawski
- Centrum Onkologii im. Prof. Franciszka Łukaszczyka, Bydgoszcz, Poland
| | - R M Kopp
- Sociedad de Oncología Y Hematología del Cesar S.A.S., Valledupar, Colombia
| | | | - K A Bylow
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - G Kramer
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - R Ratta
- Hopital Foch, Suresnes, France
| | - M Kwiatkowski
- Szpital Wojewódzki im. Mikołaja Kopernika, Koszalin, Poland
| | - M Retz
- Rechts der Isar Medical Center, Technical University Munich, Munich, Germany
| | - C Kwak
- Seoul National University Hospital, Seoul, Republic of Korea
| | | | - H Gurney
- Macquarie University, Sydney, New South Wales, Australia
| | - N Matsubara
- National Cancer Center Hospital East, Chiba, Japan
| | | | | | | | | | - K Imai
- Merck & Co., Inc., Rahway, NJ, USA
| | - A Stenzl
- Universitätsklinik für Urologie, Tübingen, Germany
| |
Collapse
|
4
|
Guo X, Li S. Bone metastases of prostate cancer: Molecular mechanisms, targeted diagnosis and targeted therapy (Review). Oncol Rep 2025; 53:46. [PMID: 39981932 PMCID: PMC11865881 DOI: 10.3892/or.2025.8879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/12/2024] [Indexed: 02/22/2025] Open
Abstract
Prostate cancer (PCa) is second only to lung cancer in terms of death among men worldwide. Advanced PCa frequently results in bone metastases, which occur in ~90% of patients and frequently result in severe skeleton‑related events. Currently, the treatment for this disease is limited to alleviating its clinical symptoms and cannot provide a complete cure. Therefore, the development of novel treatment strategies is particularly important. In recent years, numerous novel strategies for the diagnosis and treatment of PCa have emerged, resulting in good clinical efficacy. For example, strategies targeting prostate specific membrane antigen, poly ADP‑ribose polymerase and programmed cell death protein 1 have been applied to PCa‑induced bone metastasis, and have shown initial efficacy and great potential. Therefore, understanding the molecular mechanisms underlying the formation of bone metastases in patients with PCa is of importance for the effective management of this disease. The purpose of the present review is to comprehensively outline the roles of protein‑coding genes and non‑coding RNAs in the development of bone metastases of PCa to elucidate their significance in the management of PCa. The aim is to offer clinicians and researchers a comprehensive understanding of this topic.
Collapse
Affiliation(s)
- Xutang Guo
- Department of Urology, Gansu Province Maternity and Child Health Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shaojun Li
- Department of Urology, Gansu Province Maternity and Child Health Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
5
|
Che J, Liu Y, Liu Y, Song J, Cui H, Feng D, Tian A, Zhang Z, Xu Y. The application of emerging immunotherapy in the treatment of prostate cancer: progress, dilemma and promise. Front Immunol 2025; 16:1544882. [PMID: 40145100 PMCID: PMC11937122 DOI: 10.3389/fimmu.2025.1544882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
In recent years, there has been a growing trend towards the utilization of immunotherapy techniques for the treatment of cancer. Some malignancies have acquired significant progress with the use of cancer vaccines, immune checkpoint inhibitors, and adoptive cells therapy. Scholars are exploring the aforementioned methods as potential treatments for advanced prostate cancer (PCa) due to the absence of effective adjuvant therapy to improve the prognosis of metastatic castration-resistant prostate cancer (mCRPC). Immunotherapy strategies have yet to achieve significant advancements in the treatment of PCa, largely attributed to the inhibitory tumor microenvironment and low mutation load characteristic of this malignancy. Hence, researchers endeavor to address these challenges by optimizing the design and efficacy of immunotherapy approaches, as well as integrating them with other therapeutic modalities. To date, studies have also shown potential clinical benefits. This comprehensive review analyzed the utilization of immunotherapy techniques in the treatment of PCa, assessing their advantages and obstacles, with the aim of providing healthcare professionals and scholars with a comprehensive understanding of the progress in this field.
Collapse
Affiliation(s)
- Jizhong Che
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yuanyuan Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yangyang Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Jingheng Song
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Hongguo Cui
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Dongdong Feng
- Department of Urology, Haiyang City People’s Hospital, Yantai, Shandong, China
| | - Aimin Tian
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Zhengchao Zhang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| | - Yankai Xu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
6
|
Li J, Zhou X, Wu L, Ma J, Tan Y, Wu S, Zhu J, Wang Q, Shi Q. Optimal early endpoint for second-line or subsequent immune checkpoint inhibitors in previously treated advanced solid cancers: a systematic review. BMC Cancer 2025; 25:293. [PMID: 39966752 PMCID: PMC11837729 DOI: 10.1186/s12885-025-13712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The administration of second-line or subsequent immune checkpoint inhibitors (ICIs) in previously treated patients with advanced solid cancers has been clinically investigated. However, previous clinical trials lacked an appropriate primary endpoint for efficacy assessment. This systematic review aimed to explore the most optimal early efficacy endpoint for such trials. METHODS Phase 2 or 3 clinical trials involving patients with advanced solid cancers with disease progression following standard first-line therapy receiving second-line or subsequent ICI administration, with adequate survival outcome data, were included from PubMed, Embase, Web of Science, and Cochrane Library databases before February 2023. Quality assessment was conducted using the Cochrane tool and Newcastle-Ottawa Quality Assessment Scale for Cohort Studies for randomized controlled trials (RCTs) and non-randomized trials, respectively. Objective response rate (ORR) and progression-free survival (PFS) at 3, 6, and 9 months were investigated as potential early efficacy endpoint candidates for 12-month overall survival (OS), with a strong correlation defined as Pearson's correlation coefficient r ≥ 0.8. RESULTS A total of 64 RCTs comprising 22,725 patients and 106 non-randomized prospective trials involving 10,608 participants were eligible for modeling and external validation, respectively. RCTs examined 15 different cancer types, predominantly non-small-cell lung cancer (NSCLC) (17, 28%), melanoma (9, 14%), and esophageal squamous cell carcinoma (5, 8%). The median sample size of RCTs was 124 patients, and the median follow-up time was 3.2-57.7 months. The ORR (r = 0.38; 95% confidence interval [CI], 0.18-0.54) and PFS (r = 0.42; 95% CI, 0.14-0.64) exhibited weak trial-level correlations with OS. Within ICI treatment arms, the r values of ORR and 3-, 6-, and 9-month PFS with 12-month OS were 0.61 (95% CI, 0.37-0.79), 0.78 (95% CI, 0.62-0.88), 0.84 (95% CI, 0.77-0.90), and 0.86 (95% CI, 0.79-0.90), respectively. External validation of 6-month PFS indicated an acceptable discrepancy between actual and predicted 12-month OS. CONCLUSIONS In non-randomized phase 2 trials on second-line or subsequent ICI therapy in patients with advanced solid cancers, 6-month PFS could serve as an early efficacy endpoint. However, early efficacy endpoints are not recommended in RCTs to replace OS.
Collapse
Affiliation(s)
- Jingqiu Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoding Zhou
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Wu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiabao Ma
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Tan
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Songke Wu
- Department of Oncology, People'S Hospital of Cangxi County, Guangyuan, China.
| | - Jie Zhu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qifeng Wang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China.
| | - Qiuling Shi
- Center for Cancer Prevention Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Shen X, Zhang Y, Li J, Zhou Y, Butensky S, Zhang Y, Cai Z, DeWan AT, Khan SA, Yan H, Johnson CH, Zhu F. OncoSexome: the landscape of sex-based differences in oncologic diseases. Nucleic Acids Res 2025; 53:D1443-D1459. [PMID: 39535034 PMCID: PMC11701605 DOI: 10.1093/nar/gkae1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The NIH policy on sex as biological variable (SABV) emphasized the importance of sex-based differences in precision oncology. Over 50% of clinically actionable oncology genes are sex-biased, indicating differences in drug efficacy. Research has identified sex differences in non-reproductive cancers, highlighting the need for comprehensive sex-based cancer data. We therefore developed OncoSexome, a multidimensional knowledge base describing sex-based differences in cancer (https://idrblab.org/OncoSexome/) across four key topics: antineoplastic drugs and responses (SDR), oncology-related biomarkers (SBM), risk factors (SRF) and microbial landscape (SML). SDR covers sex-based differences in 2051 anticancer drugs; SBM describes 12 551 sex-differential biomarkers; SRF illustrates 350 sex-dependent risk factors; SML demonstrates 1386 microbes with sex-differential abundances associated with cancer development. OncoSexome is unique in illuminating multifaceted influences of biological sex on cancer, providing both external and endogenous contributors to cancer development and describing sex-based differences for the broadest oncological classes. Given the increasing global research interest in sex-based differences, OncoSexome is expected to impact future precision oncology practices significantly.
Collapse
Affiliation(s)
- Xinyi Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Jiamin Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | | | - Yechi Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
- School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Andrew T DeWan
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Sajid A Khan
- Yale School of Medicine, Yale University, New Haven 06510, USA
- Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven 06510, USA
| | - Hong Yan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
8
|
Heath EI, Chen W, Choi JE, Dobson K, Smith M, Maj T, Kryczek I, Zou W, Chinnaiyan AM, Qiao Y. Phase II trial of multi-tyrosine kinase inhibitor ESK981 in combination with PD-1 inhibitor nivolumab in patients with metastatic castration-resistant prostate cancer. Invest New Drugs 2024; 42:675-684. [PMID: 39503807 DOI: 10.1007/s10637-024-01482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/08/2024]
Abstract
Increasing the response rates of immune checkpoint inhibitors in patients with metastatic castration-resistant prostate cancer (mCRPC) presents a significant challenge. ESK981 is a multi-tyrosine kinase and PIKfyve lipid kinase inhibitor that augments immunotherapeutic responses. In this phase II study, ESK981 was combined with the PD-1 blocking monoclonal antibody nivolumab to test for potentially improved response rates in patients with mCRPC who have progressed on androgen receptor (AR)-targeted agents and chemotherapy. Eligible patients received ESK981 orally once daily for five consecutive days, followed by a two-day break. Patients were also treated with nivolumab intravenously on Day 1 of each 28-day cycle. The primary endpoints were a 50% reduction in prostate-specific antigen (PSA50), and safety. Secondary endpoints included radiographic progression free survival (rPFS) and overall survival (OS). Additional investigations included whole exome sequencing in patients. Ten patients were enrolled. The maximum PSA decline from baseline of 14% was achieved in only one patient. Grade 3 treatment-related adverse events (AEs) included fatigue, anemia, and lymphopenia. There were no Grade 4 events. The median rPFS was 3.7 months (95% CI, 1.6-8.4). The median OS was 9.6 months (95% CI, 1.8-22.4). The study was terminated due to futility after 10 patients. Whole exome sequencing identified AR amplification in 63% of patients (5/8). ESK981 + nivolumab showed no antitumor activity in patients with AR-positive (AR+) mCRPC. Further evaluation of ESK981 combined with the PD-1 inhibitor nivolumab in AR + mCRPC patients is not warranted. (Trial registration: ClinicalTrials.gov NCT04159896. Registration date: November 12, 2019.).
Collapse
Affiliation(s)
- Elisabeth I Heath
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA.
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Wei Chen
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jae E Choi
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kimberlee Dobson
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Melanie Smith
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tomasz Maj
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Ilona Kryczek
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Miller CD, Likasitwatanakul P, Toye E, Hwang JH, Antonarakis ES. Current uses and resistance mechanisms of enzalutamide in prostate cancer treatment. Expert Rev Anticancer Ther 2024; 24:1085-1100. [PMID: 39275993 PMCID: PMC11499039 DOI: 10.1080/14737140.2024.2405103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Prostate cancer continues to be a major cause of morbidity and mortality for men worldwide. Enzalutamide, a second-generation non-steroidal antiandrogen that blocks androgen receptor (AR) transcriptional activity, is a treatment for biochemically recurrent, metastatic, castration-sensitive, and castration-resistant tumors. Unfortunately, most patients ultimately develop resistance to enzalutamide, making long-term treatment with this agent challenging. AREAS COVERED We performed a literature search of PubMed without date restrictions to investigate the literature surrounding enzalutamide and discuss the current uses of enzalutamide, proposed mechanisms driving resistance, and summarize current efforts to mitigate this resistance. EXPERT OPINION Enzalutamide is an effective prostate cancer therapy that is currently used in biochemically recurrent and metastatic disease and for both castration-sensitive and castration-resistant tumors. Unfortunately, resistance to enzalutamide occurs in each of these scenarios. In the clinical setting, enzalutamide-resistant tumors are either AR-driven or AR-indifferent. AR-dependent resistance mechanisms include genomic or epigenomic events that result in enhanced AR signaling. Tumors that do not require AR signaling instead may depend on alternative oncogenic pathways. There are numerous strategies to mitigate enzalutamide resistance, including concurrent use of PARP inhibitors or immune therapies. Additional work is required to uncover novel approaches to treat patients in the enzalutamide-resistant setting.
Collapse
Affiliation(s)
- Carly D. Miller
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | - Pornlada Likasitwatanakul
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Eamon Toye
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Justin H. Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN
| | | |
Collapse
|
10
|
Yan K, Balijepalli C, Gullapalli L, Joshy J, Kotum S, Druyts E. Efficacy and safety of interventions for metastatic castration resistant prostate cancer (mCRPC) patients progressing on androgen receptor-axis-targeted (ARAT) therapy: a systematic literature review. Curr Med Res Opin 2024; 40:1741-1752. [PMID: 39166959 DOI: 10.1080/03007995.2024.2395435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND To review the literature to outline findings from clinical trials assessing interventions for metastatic castration-resistant prostate cancer (mCRPC) in patients who have progressed on androgen receptor-axis-targeted (ARAT) therapies. METHODS A systematic literature review was performed to identify trials that assessed the efficacy and safety of interventions used in patients that progressed on prior ARAT therapies. A literature search was conducted using the OVID platform that searched the EMBASE, MEDLINE, and CENTRAL bibliographic databases. RESULTS Of the 10,114 citations identified, a total of 36 studies representing 33 unique trials were included in the review. Of the 33 trials, 21 were randomized controlled trials and 12 were single-arm trials. A total of 11 were phase III trials, 13 were phase II trials, and 2 were phase I trials. The majority of included trials were open-label (n = 29) and the remaining were double-blind (n = 4). A total of 16 trials evaluated ARAT based therapies, 7 trials evaluated taxane-based treatments, 10 trials evaluated PARP inhibitors, 8 trials evaluated immunotherapies, and 8 trials evaluated other therapies (i.e. cabozantinib, mitoxantrone, radium-223,177[Lu-177]-PNT2002,177Lu-PSMA-617, samotolisib). CONCLUSIONS This systematic review demonstrated there are limited effective treatment options in this patient population. Unlike other cancer types, immunotherapy agents appear to provide little to no benefit. Conversely, agents such as taxane-based chemotherapy (e.g. cabazitaxel) and radionuclide therapy provide the most value in this patient population. Further research is needed to explore new therapies in this disease area and to optimize existing treatment strategies with more effective combination therapies.
Collapse
Affiliation(s)
- Kevin Yan
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | | | | | - Juhi Joshy
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | - Sharon Kotum
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | - Eric Druyts
- Pharmalytics Group, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol 2024; 25:1793-1808. [PMID: 39285252 DOI: 10.1038/s41590-024-01960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/29/2024]
Abstract
Metastasis, the spread of cancer from a primary site to distant organs, is an important challenge in oncology. This Review explores the complexities of immune escape mechanisms used throughout the metastatic cascade to promote tumor cell dissemination and affect organotropism. Specifically, we focus on adaptive plasticity of disseminated epithelial tumor cells to understand how they undergo phenotypic transitions to survive microenvironmental conditions encountered during metastasis. The interaction of tumor cells and their microenvironment is analyzed, highlighting the local and systemic effects that innate and adaptive immune systems have in shaping an immunosuppressive milieu to foster aggressive metastatic tumors. Effectively managing metastatic disease demands a multipronged approach to target the parallel and sequential mechanisms that suppress anti-tumor immunity. This management necessitates a deep understanding of the complex interplay between tumor cells, their microenvironment and immune responses that we provide with this Review.
Collapse
Affiliation(s)
- Nicole M Haynes
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas B Chadwick
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Belinda S Parker
- Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
12
|
Gilloteaux J, Jamison JM, Summers JL, Taper HS. Reactivation of nucleases with peroxidation damages induced by a menadione: ascorbate combination devastates human prostate carcinomas: ultrastructural aspects. Ultrastruct Pathol 2024; 48:378-421. [PMID: 39105605 DOI: 10.1080/01913123.2024.2379300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
INTRODUCTION Xenografts of androgen-independent human DU145 prostate metastatic carcinomas implanted in nu/nu male mice have revealed a significant survival after a prooxidant anticancer treatment consisting of a combination of menadione bisulfite and sodium ascorbate (VK3:VC). METHODS Implanted samples of diaphragm carcinomas from longest survived mice from either oral, intraperitoneal (IP), or both oral and IP treatment groups were assessed with light, scanning, and transmission electron microscopy to analyze morphologic damages. RESULTS Compared with previous fine structure data of in vitro untreated carcinomas, the changes induced by oral, IP, and oral with IP VK3:VC treatment dismantled those xenografts with autoschizis, and necrotic atrophy was accomplished by cell's oxidative stress whose injuries were consequent to reactivated deoxyribonucleases and ribonucleases. Tumor destructions resulted from irreversible damages of nucleus components, endoplasmic reticulum, and mitochondria there. Other alterations included those of the cytoskeleton that resulted in characteristic self-excisions named " autoschizis." All these injuries lead resilient cancer cells to necrotic cell death. CONCLUSION The fine structure damages caused by VK3:VC prooxidant combination in the human DU145 prostate xenografts confirmed those shown in vitro and of other cell lines with histochemistry and biomolecular investigations. These devastations incurred without damage to normal tissues; thus, our data brought support for the above combination to assist in the treatment of prostate cancers and other cancers.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Anatomical Sciences, St Georges' University International School of Medicine, Newcastle upon Tyne, UK
- Department of Anatomical Sciences, NEOMed (NEOUCOM), Rootstown, Ohio, USA
- Department of Medicine, Unit of Research in Molecular Physiology (URPhyM), NARILIS, Université de Namur, Namur, Belgium
| | - James M Jamison
- Department of Urology, Summa Health System, Akron, Ohio, USA
- St Thomas Hospital, The Apatone Development Center, Summa Research Fondation, Akron Ohio, USA
| | - Jack L Summers
- Department of Urology, Summa Health System, Akron, Ohio, USA
- St Thomas Hospital, The Apatone Development Center, Summa Research Fondation, Akron Ohio, USA
| | - Henryk S Taper
- Département des Sciences Pharmaceutiques, Unité de Pharmacocinétique, Métabolisme, Nutrition et Toxicologie, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
13
|
Corres-Mendizabal J, Zacchi F, Martín-Martín N, Mateo J, Carracedo A. Metastatic hormone-naïve prostate cancer: a distinct biological entity. Trends Cancer 2024; 10:825-841. [PMID: 39048488 PMCID: PMC11397905 DOI: 10.1016/j.trecan.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Metastatic hormone-naïve prostate cancer (mHNPC) is often the initial form of presentation for metastatic prostate cancer and encompasses a heterogeneous patient population with high inter-patient heterogeneity in prognosis and response to therapy. A more precise treatment of mHNPC, guided by evidence-based biomarkers, remains an unmet medical need. In addition, the limited number of representative laboratory models of mHNPC hampers the translation of basic research into clinical applications. We provide a comprehensive overview of the clinical and biological features that characterize mHNPC, highlight molecular data that could explain the unique prognostic characteristics of mHNPC, and identify key open questions.
Collapse
Affiliation(s)
- Jon Corres-Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - Francesca Zacchi
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy; Vall Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain
| | - Natalia Martín-Martín
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Joaquin Mateo
- Vall Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital Campus, Barcelona, Spain.
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain; Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biobizkaia Health Research Institute, 48903 Barakaldo, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
14
|
Moore C, Naraine I, Zhang T. Complete remission following pembrolizumab in a man with mCRPC with both microsatellite instability and BRCA2 mutation. Oncologist 2024; 29:716-720. [PMID: 38920278 PMCID: PMC11299937 DOI: 10.1093/oncolo/oyae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Prostate cancer is one of the most prevalent malignancies in men. In the United States, 1 in 8 men will be diagnosed with prostate cancer in their lifetime. Specifically, studies have delved into male subgroups that present a heightened risk for prostate cancer. Despite such high prevalence, prostate cancer can be heterogeneous and carry complexities that manifest differently between individuals. Metastatic hormone-sensitive prostate cancer (mHSPC) often has an abbreviated, aggressive disease course, and can have varying presentations with different molecular profiles that determine response/resistance to the approved treatments targeting the androgen-receptor pathway (eg, enzalutamide, apalutamide, darolutamide, and abiraterone acetate). We present a case of mHSPC quickly progressing to mCRPC, found to have microsatellite instability in mCRPC and excellent response to pembrolizumab, which raises the critical issues of early molecular testing and treatments personalized for the individual patient.
Collapse
Affiliation(s)
- Casey Moore
- Division of Hematology and Oncology, Department of Internal Medicine, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8852, United States
| | - Isabel Naraine
- Division of Hematology and Oncology, Department of Internal Medicine, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8852, United States
| | - Tian Zhang
- Division of Hematology and Oncology, Department of Internal Medicine, Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390-8852, United States
| |
Collapse
|
15
|
Yang J, Xiong X, Zheng W, Xu H, Liao X, Wei Q, Yang L. The roles of tertiary lymphoid structures in genitourinary cancers: molecular mechanisms, therapeutic strategies, and clinical applications. Int J Surg 2024; 110:5007-5021. [PMID: 38978471 PMCID: PMC11325987 DOI: 10.1097/js9.0000000000001939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
The presence of tertiary lymphoid structures (TLSs) associated with distinct treatment efficacy and clinical prognosis has been identified in various cancer types. However, the mechanistic roles and clinical implications of TLSs in genitourinary (GU) cancers remain incompletely explored. Despite their potential role as predictive markers described in numerous studies, it is essential to comprehensively evaluate the characteristics of TLSs, including drivers of formation, structural foundation, cellular compositions, maturation stages, molecular features, and specific functionality to maximize their positive impacts on tumor-specific immunity. The unique contributions of these structures to cancer progression and biology have fueled interest in these structures as mediators of antitumor immunity. Emerging data are trying to explore the effects of therapeutic interventions targeting TLSs. Therefore, a better understanding of the molecular and phenotypic heterogeneity of TLSs may facilitate the development of TLSs-targeting therapeutic strategies to obtain optimal clinical benefits for GU cancers in the setting of immunotherapy. In this review, the authors focus on the phenotypic and functional heterogeneity of TLSs in cancer progression, current therapeutic interventions targeting TLSs and the clinical implications and therapeutic potential of TLSs in GU cancers.
Collapse
Affiliation(s)
- Jie Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
16
|
Miyahira AK, Kamran SC, Jamaspishvili T, Marshall CH, Maxwell KN, Parolia A, Zorko NA, Pienta KJ, Soule HR. Disrupting prostate cancer research: Challenge accepted; report from the 2023 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2024; 84:993-1015. [PMID: 38682886 DOI: 10.1002/pros.24721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
INTRODUCTION The 2023 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, themed "Disrupting Prostate Cancer Research: Challenge Accepted," was convened at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA, from June 22 to 25, 2023. METHODS The 2023 marked the 10th Annual CHPCA Meeting, a discussion-oriented scientific think-tank conference convened annually by the Prostate Cancer Foundation, which centers on innovative and emerging research topics deemed pivotal for advancing critical unmet needs in prostate cancer research and clinical care. The 2023 CHPCA Meeting was attended by 81 academic investigators and included 40 talks across 8 sessions. RESULTS The central topic areas covered at the meeting included: targeting transcription factor neo-enhancesomes in cancer, AR as a pro-differentiation and oncogenic transcription factor, why few are cured with androgen deprivation therapy and how to change dogma to cure metastatic prostate cancer without castration, reducing prostate cancer morbidity and mortality with genetics, opportunities for radiation to enhance therapeutic benefit in oligometastatic prostate cancer, novel immunotherapeutic approaches, and the new era of artificial intelligence-driven precision medicine. DISCUSSION This article provides an overview of the scientific presentations delivered at the 2023 CHPCA Meeting, such that this knowledge can help in facilitating the advancement of prostate cancer research worldwide.
Collapse
Affiliation(s)
- Andrea K Miyahira
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| | - Sophia C Kamran
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tamara Jamaspishvili
- Department of Pathology and Laboratory Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Catherine H Marshall
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kara N Maxwell
- Department of Medicine-Hematology/Oncology and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Medicine Service, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Abhijit Parolia
- Department of Pathology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicholas A Zorko
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Science Department, Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
17
|
Yu P, Zhu C, You X, Gu W, Wang X, Wang Y, Bu R, Wang K. The combination of immune checkpoint inhibitors and antibody-drug conjugates in the treatment of urogenital tumors: a review insights from phase 2 and 3 studies. Cell Death Dis 2024; 15:433. [PMID: 38898003 PMCID: PMC11186852 DOI: 10.1038/s41419-024-06837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
With the high incidence of urogenital tumors worldwide, urinary system tumors are among the top 10 most common tumors in men, with prostate cancer ranking first and bladder cancer fourth. Patients with resistant urogenital tumors often have poor prognosis. In recent years, researchers have discovered numerous specific cancer antigens, which has led to the development of several new anti-cancer drugs. Using protein analysis techniques, researchers developed immune checkpoint inhibitors (ICIs) and antibody-conjugated drugs (ADCs) for the treatment of advanced urogenital tumors. However, tumor resistance often leads to the failure of monotherapy. Therefore, clinical trials of the combination of ICIs and ADCs have been carried out in numerous centers around the world. This article reviewed phase 2 and 3 clinical studies of ICIs, ADCs, and their combination in the treatment of urogenital tumors to highlight safe and effective methods for selecting individualized therapeutic strategies for patients. ICIs activate the immune system, whereas ADCs link monoclonal antibodies to toxins, which can achieve a synergistic effect when the two drugs are combined. This synergistic effect provides multiple advantages for the treatment of urogenital tumors.
Collapse
Affiliation(s)
- Puguang Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiangyun You
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Urology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443002, China
- Department of Urology, Yichang Central People's Hospital, Yichang, 443002, China
| | - Wen Gu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Renge Bu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
18
|
Yu EY, Berry WR, Gurney H, Retz M, Conter HJ, Laguerre B, Fong PCC, Ferrario C, Todenhöfer T, Gravis G, Piulats JM, Emmenegger U, Shore ND, Romano E, Mourey L, Li XT, Poehlein CH, Schloss C, Appleman LJ, de Bono JS. Pembrolizumab and Enzalutamide in Patients with Abiraterone Acetate-Pretreated Metastatic Castration-Resistant Prostate Cancer: Cohort C of the Phase 1b/2 KEYNOTE-365 Study. Eur Urol Oncol 2024; 7:509-518. [PMID: 37940446 DOI: 10.1016/j.euo.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Limited responses have been observed in patients treated with enzalutamide after disease progression on abiraterone for metastatic castration-resistant prostate cancer (mCRPC), but androgen receptor signaling impacts T-cell function. OBJECTIVE To evaluate the efficacy and safety of pembrolizumab plus enzalutamide in mCRPC. DESIGN, SETTING, AND PARTICIPANTS Patients in cohort C of the phase 1b/2 KEYNOTE-365 study, who received ≥4 wk of treatment with abiraterone acetate in the prechemotherapy mCRPC state and experienced treatment failure or became drug-intolerant, were included. INTERVENTION Pembrolizumab 200 mg intravenously every 3 wk plus enzalutamide 160 mg orally once daily. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The primary endpoints were safety, the confirmed prostate-specific antigen (PSA) response rate, and the objective response rate (ORR) according to Response Evaluation Criteria in Solid Tumors version 1.1 on blinded independent central review (BICR). Secondary endpoints included radiographic progression-free survival (rPFS) on BICR and overall survival (OS). RESULTS AND LIMITATIONS A total of 102 patients received pembrolizumab plus enzalutamide. Median follow-up was 51 mo (interquartile range 37-56). The confirmed PSA response rate was 24% (95% confidence interval [CI] 16-33%). The confirmed ORR was 11% (95% CI 2.9-25%; 4/38 patients; two complete responses). Median rPFS was 6.0 mo (95% CI 4.1-6.3). Median OS was 20 mo (95% CI 17-24). Treatment-related adverse events (TRAEs) occurred in 94 patients (92%); grade 3-5 TRAEs occurred in 44 patients (43%). The incidence of treatment-related rash was higher with combination therapy than expected from the safety profile of each drug. One patient (1.0%) died of a TRAE (cause unknown). Study limitations include the single-arm design. CONCLUSIONS Pembrolizumab plus enzalutamide had limited antitumor activity in patients who received prior abiraterone treatment without previous chemotherapy for mCRPC, with a safety profile consistent with the individual profiles of each agent. PATIENT SUMMARY Pembrolizumab plus enzalutamide showed limited antitumor activity and manageable safety in patients with metastatic castration-resistant prostate cancer. The KEYNOTE-365 trial is registered on ClinicalTrials.gov as NCT02861573.
Collapse
Affiliation(s)
- Evan Y Yu
- Division of Hematology and Oncology, Fred Hutchinson Cancer Center and University of Washington, Seattle, WA, USA.
| | | | - Howard Gurney
- Department of Clinical Medicine, Macquarie University, Sydney, Australia
| | - Margitta Retz
- University Hospital Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | - Urban Emmenegger
- Division of Medical Oncology, Odette Cancer Centre, Toronto, Canada
| | - Neal D Shore
- Carolina Urologic Research Center, Myrtle Beach, SC, USA
| | - Emanuela Romano
- Department of Oncology, Center for Cancer Immunotherapy, Institut Curie, Paris, France
| | - Loic Mourey
- Department of Medical Oncology, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | | | | | | | - Johann S de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK
| |
Collapse
|
19
|
Lopez-Bujanda ZA, Hadavi SH, Ruiz De Porras V, Martínez-Balibrea E, Dallos MC. Chemotactic signaling pathways in prostate cancer: Implications in the tumor microenvironment and as potential therapeutic targets. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 388:162-205. [PMID: 39260936 DOI: 10.1016/bs.ircmb.2024.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Prostate cancer (PCa) stands as a significant global health concern, ranking among the leading causes of cancer deaths in men. While there are several treatment modalities for localized PCa, metastatic castration-resistant PCa (mCRPC) remains incurable. Despite therapeutic advancements showing promise in mCRPC, their impact on overall survival has been limited. This chapter explores the process by which tumors form, reviews our current understanding of PCa progression to mCRPC, and addresses the challenges of boosting anti-tumor immune responses in these tumors. It specifically discusses how chemotactic signaling affects the tumor microenvironment and its role in immune evasion and cancer progression. The chapter further examines the rationale of directly or indirectly targeting these pathways as adjuvant therapies for mCRPC, highlighting recent pre-clinical and clinical studies currently underway. The discussion emphasizes the potential of targeting specific chemokines and chemokine receptors as combination therapies with mainstream treatments for PCa and mCRPC to maximize long-term survival for this deadly disease.
Collapse
Affiliation(s)
- Zoila A Lopez-Bujanda
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, United States.
| | - Shawn H Hadavi
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Vicenç Ruiz De Porras
- Badalona Applied Research Group of Oncology (B-ARGO), Catalan Institute of Oncology, Badalona, BCN, Spain; CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain
| | - Eva Martínez-Balibrea
- CARE program, Germans Trias i Pujol Research Institute (IGTP), Badalona, BCN, Spain; ProCURE Program, Catalan Institute of Oncology, Badalona, BCN, Spain
| | - Matthew C Dallos
- Memorial Solid Tumor Group, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
20
|
Capuozzo M, Santorsola M, Ianniello M, Ferrara F, Zovi A, Petrillo N, Castiello R, Fantuz MR, Ottaiano A, Savarese G. Innovative Drug Modalities for the Treatment of Advanced Prostate Cancer. Diseases 2024; 12:87. [PMID: 38785742 PMCID: PMC11119780 DOI: 10.3390/diseases12050087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Prostate cancer, a prevalent malignancy affecting the prostate gland, is a significant global health concern. Androgen-deprivation therapy (ADT) has proven effective in controlling advanced disease, with over 50% of patients surviving at the 10-year mark. However, a diverse spectrum of responses exists, and resistance to ADT may emerge over time. This underscores the need to explore innovative treatment strategies for effectively managing prostate cancer progression. Ongoing research endeavors persist in unraveling the complexity of prostate cancer and fostering the development of biologic and innovative approaches, including immunotherapies and targeted therapies. This review aims to provide a valuable synthesis of the dynamic landscape of emerging drug modalities in this context. Interestingly, the complexities posed by prostate cancer not only present a formidable challenge but also serve as a model and an opportunity for translational research and innovative therapies in the field of oncology.
Collapse
Affiliation(s)
- Maurizio Capuozzo
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy; (M.C.); (F.F.)
| | - Mariachiara Santorsola
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Monica Ianniello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Francesco Ferrara
- Coordinamento Farmaceutico, ASL-Naples-3, 80056 Ercolano, Italy; (M.C.); (F.F.)
| | - Andrea Zovi
- Ministry of Health, Viale Giorgio Ribotta 5, 00144 Rome, Italy;
| | - Nadia Petrillo
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Rosa Castiello
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Maria Rosaria Fantuz
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, Via M. Semmola, 80131 Naples, Italy;
| | - Giovanni Savarese
- AMES, Centro Polidiagnostico Strumentale srl, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (M.I.); (N.P.); (R.C.); (M.R.F.)
| |
Collapse
|
21
|
Xiong X, Zhang S, Zheng W, Liao X, Yang J, Xu H, Hu S, Wei Q, Yang L. Second-line treatment options in metastatic castration-resistant prostate cancer after progression on first-line androgen-receptor targeting therapies: A systematic review and Bayesian network analysis. Crit Rev Oncol Hematol 2024; 196:104286. [PMID: 38316286 DOI: 10.1016/j.critrevonc.2024.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To summarize and indirectly compare the efficacy and safety of different second-line systematic therapies after first-line androgen-receptor targeting therapies (ARTs) for biomarker-unselected metastatic castration-resistant prostate cancer (mCRPC) patients. METHODS Studies published in English up to May 2023 were identified in PubMed, Web of Science and ASCO-GU 2023. Studies accessing the efficacy and safety of second-line systematic therapies after first-line ARTs for biomarker-unselected mCRPC patients were eligible for current systematic review and network meta-analysis (NMA). RESULTS Thirty-two studies with 5388 patients and 10 unique treatment modalities met our inclusion criteria. Current evidence suggested that docetaxel (DOC) combined with the same ART as first-line (ART1) (ART1 + DOC) were associated with significantly improved PSA response, PSA progression-free survival (PFS) and clinical or radiographic PFS (rPFS) compared with other reported second-line systematic therapies, including DOC. An increase in toxicity was observed with ART1 + DOC. Our NMA indicated that DOC monotherapy was only inferior to ART1 + DOC in improvement disease outcomes. The incidence of toxicity between patients received second-line DOC and an alternative ART (ART2) was similar. CONCLUSION The available evidence reviewed in our work suggested a clinical benefit of DOC nomotherapy and DOC plus ART1 as the second-line systematic therapy for biomarker-unselected mCRPC patients progressed on a first-line ART. More studies and RCTs are needed to evaluate the optimal second-line treatments for mCRPC patients with one prior first-line ART.
Collapse
Affiliation(s)
- Xingyu Xiong
- Department of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China; Institute of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China
| | - Shiyu Zhang
- Department of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China; Institute of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China
| | - Weitao Zheng
- Department of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China; Institute of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China
| | - Xinyang Liao
- Department of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China
| | - Jie Yang
- Department of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China; Institute of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China
| | - Hang Xu
- Department of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China
| | - Siping Hu
- National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China
| | - Qiang Wei
- Department of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China; National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China.
| | - Lu Yang
- Department of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China; Institute of Urology, West China Hospital of Sichuan University, 610000 Chengdu, Sichuan Province, China.
| |
Collapse
|
22
|
Garnham R, Geh D, Nelson R, Ramon-Gil E, Wilson L, Schmidt EN, Walker L, Adamson B, Buskin A, Hepburn AC, Hodgson K, Kendall H, Frame FM, Maitland N, Coffey K, Strand DW, Robson CN, Elliott DJ, Heer R, Macauley M, Munkley J, Gaughan L, Leslie J, Scott E. ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3Gal1) synthesis of Siglec ligands mediates anti-tumour immunity in prostate cancer. Commun Biol 2024; 7:276. [PMID: 38448753 PMCID: PMC10918101 DOI: 10.1038/s42003-024-05924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Immune checkpoint blockade has yet to produce robust anti-cancer responses for prostate cancer. Sialyltransferases have been shown across several solid tumours, including breast, melanoma, colorectal and prostate to promote immune suppression by synthesising sialoglycans, which act as ligands for Siglec receptors. We report that ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3Gal1) levels negatively correlate with androgen signalling in prostate tumours. We demonstrate that ST3Gal1 plays an important role in modulating tumour immune evasion through the synthesises of sialoglycans with the capacity to engage the Siglec-7 and Siglec-9 immunoreceptors preventing immune clearance of cancer cells. Here, we provide evidence of the expression of Siglec-7/9 ligands and their respective immunoreceptors in prostate tumours. These interactions can be modulated by enzalutamide and may maintain immune suppression in enzalutamide treated tumours. We conclude that the activity of ST3Gal1 is critical to prostate cancer anti-tumour immunity and provide rationale for the use of glyco-immune checkpoint targeting therapies in advanced prostate cancer.
Collapse
Affiliation(s)
- Rebecca Garnham
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Daniel Geh
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Ryan Nelson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Erik Ramon-Gil
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Laura Wilson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Laura Walker
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Beth Adamson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Adriana Buskin
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Anastasia C Hepburn
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Kirsty Hodgson
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Hannah Kendall
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Norman Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Kelly Coffey
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Craig N Robson
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - David J Elliott
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Rakesh Heer
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Matthew Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jennifer Munkley
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Luke Gaughan
- Newcastle University, Centre for Cancer, Newcastle University Translational and Clinical Research Institute, Newcastle, NE1 3BZ, UK
| | - Jack Leslie
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK
| | - Emma Scott
- Newcastle University, Centre for Cancer, Newcastle University Biosciences Institute, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
23
|
Markowski MC, Taplin ME, Aggarwal R, Sena LA, Wang H, Qi H, Lalji A, Sinibaldi V, Carducci MA, Paller CJ, Marshall CH, Eisenberger MA, Sanin DE, Yegnasubramanian S, Gomes-Alexandre C, Ozbek B, Jones T, De Marzo AM, Denmeade SR, Antonarakis ES. Bipolar androgen therapy plus nivolumab for patients with metastatic castration-resistant prostate cancer: the COMBAT phase II trial. Nat Commun 2024; 15:14. [PMID: 38167882 PMCID: PMC10762051 DOI: 10.1038/s41467-023-44514-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Cyclic high-dose testosterone administration, known as bipolar androgen therapy (BAT), is a treatment strategy for patients with metastatic castration-resistant prostate cancer (mCRPC). Here, we report the results of a multicenter, single arm Phase 2 study (NCT03554317) enrolling 45 patients with heavily pretreated mCRPC who received BAT (testosterone cypionate, 400 mg intramuscularly every 28 days) with the addition of nivolumab (480 mg intravenously every 28 days) following three cycles of BAT monotherapy. The primary endpoint of a confirmed PSA50 response rate was met and estimated at 40% (N = 18/45, 95% CI: 25.7-55.7%, P = 0.02 one-sided against the 25% null hypothesis). Sixteen of the PSA50 responses were achieved before the addition of nivolumab. Secondary endpoints included objective response rate (ORR), median PSA progression-free survival, radiographic progression-free survival (rPFS), overall survival (OS), and safety/tolerability. The ORR was 24% (N = 10/42). Three of the objective responses occurred following the addition of nivolumab. After a median follow-up of 17.9 months, the median rPFS was 5.6 (95% CI: 5.4-6.8) months, and median OS was 24.4 (95% CI: 17.6-31.1) months. BAT/nivolumab was well tolerated, resulting in only five (11%) drug related, grade-3 adverse events. In a predefined exploratory analysis, clinical response rates correlated with increased baseline levels of intratumoral PD-1 + T cells. In paired metastatic tumor biopsies, BAT induced pro-inflammatory gene expression changes that were restricted to patients achieving a clinical response. These data suggest that BAT may augment antitumor immune responses that are further potentiated by immune checkpoint blockade.
Collapse
Affiliation(s)
- Mark C Markowski
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Laura A Sena
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Hao Wang
- Division of Quantitative Sciences, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hanfei Qi
- Division of Quantitative Sciences, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Aliya Lalji
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Victoria Sinibaldi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Michael A Carducci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Channing J Paller
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Catherine H Marshall
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Mario A Eisenberger
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - David E Sanin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Busra Ozbek
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tracy Jones
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Angelo M De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Samuel R Denmeade
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Masonic Cancer Center, University of Minnesota Medical Center, Minneapolis, MN, USA
| |
Collapse
|
24
|
Plas S, Pircher A, Heidegger I. Pembrolizumab in mCRPC - Combination therapies as breakthrough to success? Curr Opin Urol 2023; 33:458-471. [PMID: 37603022 DOI: 10.1097/mou.0000000000001121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitors (ICIs) have shown promising antitumor activity in various malignant diseases. This narrative review provides an update on ongoing clinical studies investigating the only FDA-approved ICI programmed death receptor 1 (PD-1) inhibitor pembrolizumab in mono- and combination therapy in patients with metastatic castration-resistant prostate cancer (mCRPC). RECENT FINDINGS Although most clinical trials investigating pembrolizumab as mono- or combinational therapy did not meet their primary endpoints, there exist subgroups of patients that demonstrate impressive responses rates justifying further investigation of ICI in prostate cancer. Beside combination of pembrolizumab with approved mCRPC agents, innovative approaches, like combining pembrolizumab with radioligands, deoxyribonucleic acid vaccines or innovative immunotherapeutic agents (i.e., ONC-392, AMG160, BXCL701) are ongoing exerting promising preliminary findings. SUMMARY ICI monotherapy seems to be effective in a small biomarker-preselected population, however, there is evidence that especially novel ICI combination approaches can improve patient survival, which could ultimately refocus and revolutionize the treatment of mCRPC.
Collapse
Affiliation(s)
- Stefan Plas
- Medical University of Innsbruck, Department of Urology
| | - Andreas Pircher
- Medical University of Innsbruck, Department of Internal Medicine V, Hematology and Oncology Innsbruck, Austria
| | | |
Collapse
|
25
|
Noori M, Azizi S, Mahjoubfar A, Abbasi Varaki F, Fayyaz F, Mousavian AH, Bashash D, Kardoust Parizi M, Kasaeian A. Efficacy and safety of immune checkpoint inhibitors for patients with prostate cancer: a systematic review and meta-analysis. Front Immunol 2023; 14:1181051. [PMID: 38022569 PMCID: PMC10644317 DOI: 10.3389/fimmu.2023.1181051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/04/2023] [Indexed: 12/01/2023] Open
Abstract
Immunotherapy has revolutionized the treatment paradigm of many cancers, however, its effectiveness in prostate cancer patients is still under question. In the present systematic review and meta-analysis, we sought for assessing the efficacy and safety of Immune checkpoint inhibitors (ICIs) in patients with prostate cancer. PubMed, Scopus, Web of Science, and EMBASE databases were searched on Aguste 19, 2022. Thirty five studies met the eligibility criteria. The median overall survival (mOS) of all treatments was 14.1 months, with the longest and shortest mOS was seen among patients who received anti-CTLA-4 monotherapy and anti-PD-1/PD-L1+anti-CTLA-4 regimen at 24.9 and 9.2 months, respectively. Noteworthy, all types of adverse events had the lowest incidence in the anti-PD-1/PD-L1 monotherapy group. Considering the ICI monotherapy regimens, we found that fatigue, diarrhea, and infusion reaction had the highest incidence rates. Future studies evaluating the efficacy and safety of novel combination therapies with ICIs are warranted.
Collapse
Affiliation(s)
- Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shadi Azizi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Mahjoubfar
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhan Abbasi Varaki
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farimah Fayyaz
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amir-Hossein Mousavian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Kardoust Parizi
- Department of Urology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Amir Kasaeian
- Hematology, Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Le TK, Duong QH, Baylot V, Fargette C, Baboudjian M, Colleaux L, Taïeb D, Rocchi P. Castration-Resistant Prostate Cancer: From Uncovered Resistance Mechanisms to Current Treatments. Cancers (Basel) 2023; 15:5047. [PMID: 37894414 PMCID: PMC10605314 DOI: 10.3390/cancers15205047] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. Despite recent advances in diagnosis and treatment, castration-resistant prostate cancer (CRPC) remains a significant medical challenge. Prostate cancer cells can develop mechanisms to resist androgen deprivation therapy, such as AR overexpression, AR mutations, alterations in AR coregulators, increased steroidogenic signaling pathways, outlaw pathways, and bypass pathways. Various treatment options for CRPC exist, including androgen deprivation therapy, chemotherapy, immunotherapy, localized or systemic therapeutic radiation, and PARP inhibitors. However, more research is needed to combat CRPC effectively. Further investigation into the underlying mechanisms of the disease and the development of new therapeutic strategies will be crucial in improving patient outcomes. The present work summarizes the current knowledge regarding the underlying mechanisms that promote CRPC, including both AR-dependent and independent pathways. Additionally, we provide an overview of the currently approved therapeutic options for CRPC, with special emphasis on chemotherapy, radiation therapy, immunotherapy, PARP inhibitors, and potential combination strategies.
Collapse
Affiliation(s)
- Thi Khanh Le
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
| | - Quang Hieu Duong
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
- Vietnam Academy of Science and Technology (VAST), University of Science and Technology of Hanoi (USTH), Hanoi 10000, Vietnam
| | - Virginie Baylot
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
| | - Christelle Fargette
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, 13005 Marseille, France
| | - Michael Baboudjian
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
- Department of Urology AP-HM, Aix-Marseille University, 13005 Marseille, France
| | - Laurence Colleaux
- Faculté de Médecine Timone, INSERM, MMG, U1251, Aix-Marseille University, 13385 Marseille, France;
| | - David Taïeb
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, 13005 Marseille, France
| | - Palma Rocchi
- Centre de Recherche en Cancérologie de Marseille—CRCM, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University U105, 13009 Marseille, France; (T.K.L.); (Q.H.D.); (V.B.); (M.B.); (D.T.)
- European Center for Research in Medical Imaging (CERIMED), Aix-Marseille University, 13005 Marseille, France;
| |
Collapse
|
27
|
Piombino C, Oltrecolli M, Tonni E, Pirola M, Matranga R, Baldessari C, Pipitone S, Dominici M, Sabbatini R, Vitale MG. De Novo Metastatic Prostate Cancer: Are We Moving toward a Personalized Treatment? Cancers (Basel) 2023; 15:4945. [PMID: 37894312 PMCID: PMC10605467 DOI: 10.3390/cancers15204945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
De novo metastatic hormone-sensitive PC (mHSPC) accounts for 5-10% of all prostate cancer (PC) diagnoses but it is responsible for nearly 50% of PC-related deaths. Since 2015, the prognosis of mHSPC has slightly improved thanks to the introduction of new hormonal agents and chemotherapy combined with androgen deprivation therapy from the first-line setting. This review describes the current therapeutic opportunities for de novo mHSPC, focusing on potential molecular biomarkers identified in the main clinical trials that have modified the standard of care, the genomic features of de novo mHSPC, and the principal ongoing trials that are investigating new therapeutic approaches and the efficacy of a biomarker-guided treatment in this setting. The road toward personalized treatment for de novo mHSPC is still long, considering that the randomized clinical trials, which have furnished the basis of the current therapeutic options, stratified patients according to clinical criteria that did not necessarily reflect the biological rationale of the chosen therapy. The role of transcriptomic profiling of mHSPC as a predictive biomarker requires further validation, and it remains to be ascertained how the genomic variants detected in mHSPC, which are regarded as predictive in the castration-resistant disease, can be exploited in the mHSPC setting.
Collapse
Affiliation(s)
- Claudia Piombino
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (M.O.); (E.T.); (M.P.); (R.M.); (C.B.); (S.P.); (M.D.); (R.S.)
| | - Marco Oltrecolli
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (M.O.); (E.T.); (M.P.); (R.M.); (C.B.); (S.P.); (M.D.); (R.S.)
| | - Elena Tonni
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (M.O.); (E.T.); (M.P.); (R.M.); (C.B.); (S.P.); (M.D.); (R.S.)
| | - Marta Pirola
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (M.O.); (E.T.); (M.P.); (R.M.); (C.B.); (S.P.); (M.D.); (R.S.)
| | - Rossana Matranga
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (M.O.); (E.T.); (M.P.); (R.M.); (C.B.); (S.P.); (M.D.); (R.S.)
| | - Cinza Baldessari
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (M.O.); (E.T.); (M.P.); (R.M.); (C.B.); (S.P.); (M.D.); (R.S.)
| | - Stefania Pipitone
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (M.O.); (E.T.); (M.P.); (R.M.); (C.B.); (S.P.); (M.D.); (R.S.)
| | - Massimo Dominici
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (M.O.); (E.T.); (M.P.); (R.M.); (C.B.); (S.P.); (M.D.); (R.S.)
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Roberto Sabbatini
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (M.O.); (E.T.); (M.P.); (R.M.); (C.B.); (S.P.); (M.D.); (R.S.)
| | - Maria Giuseppa Vitale
- Division of Oncology, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy; (C.P.); (M.O.); (E.T.); (M.P.); (R.M.); (C.B.); (S.P.); (M.D.); (R.S.)
| |
Collapse
|
28
|
Conteduca V, Brighi N, Schepisi G, De Giorgi U. Immunogenomic profiles associated with response to life-prolonging agents in prostate cancer. Br J Cancer 2023; 129:1050-1060. [PMID: 37443349 PMCID: PMC10539309 DOI: 10.1038/s41416-023-02354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer but the management of advanced prostate cancer remains a therapeutic challenge, despite the survival benefits imparted by several therapeutic discoveries targeting different molecular pathways. The mechanisms of resistance to androgen deprivation and tumour progression to lethal metastatic variants are often regulated by androgen receptor (AR) bypass mechanisms and/or neuroendocrine differentiation. Moreover, recent data also suggested the involvement of adaptive and innate infiltrated immune cells in prostate tumour progression. Improvements in cancer genome analyses contributed to a better understanding of antitumour immunity and provided solutions for targeting highly cancer-specific neoantigens generated from somatic mutations in individual patients. In this review, we investigated the current knowledge on the interplay between cancer development and the complex mechanisms of immune regulation. Particularly, we focused on the role of tumour immune microenvironment, generally characterised by strong barriers for immunotherapy, and we discuss the rationale for the potential application of single agent and combination immune-targeting strategies that could lead to improved outcomes. Careful selection based on clinical and genomic factors may allow identification of patients who could benefit from this treatment approach in multiple settings (from localised to advanced prostate tumour) and in different histological subtypes (from adenocarcinoma to neuroendocrine prostate cancer).
Collapse
Affiliation(s)
- Vincenza Conteduca
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences, University of Foggia, Policlinico Riuniti, 71122, Foggia, Italy.
| | - Nicole Brighi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giuseppe Schepisi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| |
Collapse
|
29
|
Katleba KD, Ghosh PM, Mudryj M. Beyond Prostate Cancer: An Androgen Receptor Splice Variant Expression in Multiple Malignancies, Non-Cancer Pathologies, and Development. Biomedicines 2023; 11:2215. [PMID: 37626712 PMCID: PMC10452427 DOI: 10.3390/biomedicines11082215] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple studies have demonstrated the importance of androgen receptor (AR) splice variants (SVs) in the progression of prostate cancer to the castration-resistant phenotype and their utility as a diagnostic. However, studies on AR expression in non-prostatic malignancies uncovered that AR-SVs are expressed in glioblastoma, breast, salivary, bladder, kidney, and liver cancers, where they have diverse roles in tumorigenesis. AR-SVs also have roles in non-cancer pathologies. In granulosa cells from women with polycystic ovarian syndrome, unique AR-SVs lead to an increase in androgen production. In patients with nonobstructive azoospermia, testicular Sertoli cells exhibit differential expression of AR-SVs, which is associated with impaired spermatogenesis. Moreover, AR-SVs have been identified in normal cells, including blood mononuclear cells, neuronal lipid rafts, and the placenta. The detection and characterization of AR-SVs in mammalian and non-mammalian species argue that AR-SV expression is evolutionarily conserved and that AR-SV-dependent signaling is a fundamental regulatory feature in multiple cellular contexts. These discoveries argue that alternative splicing of the AR transcript is a commonly used mechanism that leads to an expansion in the repertoire of signaling molecules needed in certain tissues. Various malignancies appropriate this mechanism of alternative AR splicing to acquire a proliferative and survival advantage.
Collapse
Affiliation(s)
- Kimberley D. Katleba
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Paramita M. Ghosh
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Urologic Surgery, 4860 Y Street, UC Davis, Sacramento, CA 95718, USA
- Department of Biochemistry and Molecular Medicine, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Maria Mudryj
- Veterans Affairs-Northern California Health Care System, 10535 Hospital Way, Mather, CA 95655, USA; (K.D.K.); (P.M.G.)
- Department of Medical Microbiology and Immunology, 1 Shields Avenue, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
30
|
García-Vílchez R, Añazco-Guenkova AM, Dietmann S, López J, Morón-Calvente V, D'Ambrosi S, Nombela P, Zamacola K, Mendizabal I, García-Longarte S, Zabala-Letona A, Astobiza I, Fernández S, Paniagua A, Miguel-López B, Marchand V, Alonso-López D, Merkel A, García-Tuñón I, Ugalde-Olano A, Loizaga-Iriarte A, Lacasa-Viscasillas I, Unda M, Azkargorta M, Elortza F, Bárcena L, Gonzalez-Lopez M, Aransay AM, Di Domenico T, Sánchez-Martín MA, De Las Rivas J, Guil S, Motorin Y, Helm M, Pandolfi PP, Carracedo A, Blanco S. METTL1 promotes tumorigenesis through tRNA-derived fragment biogenesis in prostate cancer. Mol Cancer 2023; 22:119. [PMID: 37516825 PMCID: PMC10386714 DOI: 10.1186/s12943-023-01809-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/17/2023] [Indexed: 07/31/2023] Open
Abstract
Newly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N7-methylguanosine (m7G) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of m7G tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments. 5'tRNA-derived small RNAs steer translation control to favour the synthesis of key regulators of tumour growth suppression, interferon pathway, and immune effectors. Knockdown of Mettl1 in prostate cancer preclinical models increases intratumoural infiltration of pro-inflammatory immune cells and enhances responses to immunotherapy. Collectively, our findings reveal a therapeutically actionable role of METTL1-directed m7G tRNA methylation in cancer cell translation control and tumour biology.
Collapse
Affiliation(s)
- Raquel García-Vílchez
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Ana M Añazco-Guenkova
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Sabine Dietmann
- Washington University School of Medicine in St. Louis, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Judith López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Virginia Morón-Calvente
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Silvia D'Ambrosi
- Present Address: Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
| | - Paz Nombela
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Kepa Zamacola
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
| | - Isabel Mendizabal
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Saioa García-Longarte
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
| | - Amaia Zabala-Letona
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ianire Astobiza
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sonia Fernández
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Alejandro Paniagua
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
| | - Borja Miguel-López
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Virginie Marchand
- Université de Lorraine, UAR2008 IBSLor CNRS-UL-INSERM, Biopôle UL, 9, Avenue de La Forêt de Haye, 54505, Vandoeuvre-Les-Nancy, France
| | - Diego Alonso-López
- Bioinformatics Unit, Cancer Research Center (CIC-IBMCC, CSIC/USAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007, Salamanca, Spain
| | - Angelika Merkel
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Barcelona, Catalonia, Spain
- Germans Trias I Pujol Health Science Research Institute, Badalona, 08916, Barcelona, Catalonia, Spain
| | - Ignacio García-Tuñón
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
| | | | - Ana Loizaga-Iriarte
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Urology, Basurto University Hospital, 48013, Bilbao, Spain
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Avenida Montevideo 18, 48013, Bilbao, Spain
| | | | - Miguel Unda
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Urology, Basurto University Hospital, 48013, Bilbao, Spain
- Traslational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Avenida Montevideo 18, 48013, Bilbao, Spain
| | - Mikel Azkargorta
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), Madrid, Spain
| | - Félix Elortza
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Carlos III Networked Proteomics Platform (ProteoRed-ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Laura Bárcena
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
| | - Monika Gonzalez-Lopez
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
| | - Ana M Aransay
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Tomás Di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Manuel A Sánchez-Martín
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
- Servicio de Transgénesis, Nucleus, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Javier De Las Rivas
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain
| | - Sònia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, 08916, Barcelona, Catalonia, Spain
- Germans Trias I Pujol Health Science Research Institute, Badalona, 08916, Barcelona, Catalonia, Spain
| | - Yuri Motorin
- Université de Lorraine, UAR2008 IBSLor CNRS-UL-INSERM, Biopôle UL, 9, Avenue de La Forêt de Haye, 54505, Vandoeuvre-Les-Nancy, France
- Université de Lorraine, UMR7365 IMoPA CNRS-UL, Biopôle UL, 9, Avenue de La Forêt de Haye, 54505, Vandoeuvre-Les-Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Pier Paolo Pandolfi
- Molecular Biotechnology Center (MBC), Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126, Turin, TO, Italy
- William N. Pennington Cancer Center, Renown Health, Nevada System of Higher Education, Reno, NV, 89502, USA
| | - Arkaitz Carracedo
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Department of Pathology, Basurto University Hospital, 48013, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P. O. Box 644, 48080, Bilbao, Spain
| | - Sandra Blanco
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 801 Bld, 48160, Derio, Bizkaia, Spain.
| |
Collapse
|
31
|
Koufopoulos N, Ieronimaki AI, Zacharatou A, Gouloumis AR, Leventakou D, Boutas I, Dimas DT, Kontogeorgi A, Sitara K, Khaldi L, Zanelli M, Palicelli A. A Case of Prostatic Signet-Ring Cell-like Carcinoma with Pagetoid Spread and Intraductal Carcinoma and Long-Term Survival: PD-L1 and Mismatch Repair System Proteins (MMR) Immunohistochemical Evaluation with Systematic Literature Review. J Pers Med 2023; 13:1016. [PMID: 37374005 DOI: 10.3390/jpm13061016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
Prostatic adenocarcinoma (PA) is the second most common malignancy in men globally. Signet-ring cell-like adenocarcinoma (SRCC) is a very rare PA subtype, with around 200 cases reported in the English literature. Histologically, the tumor cells show a vacuole compressing the nucleus to the periphery. Pagetoid spread in acini and ducts is usually related to metastases from urothelial or colorectal carcinomas, less commonly associated with intraductal carcinoma (IC); histologically, the tumor cells grow between the acinar secretory and basal cell layers. To our knowledge, we report the first prostatic SRCC (Gleason score 10, stage pT3b) associated with IC and pagetoid spread to prostatic acini and seminal vesicles. To our systematic literature review (PRISMA guidelines), it is the first tested case for both PD-L1 (<1% of positive tumor cells, clone 22C3) and mismatch repair system proteins (MMR) (MLH1+/MSH2+/PMS2+/MSH6+). We found no SRCC previously tested for MMR, while only four previous cases showed high expression of another PD-L1 clone (28-8). Finally, we discussed the differential diagnoses of prostatic SRCC.
Collapse
Affiliation(s)
- Nektarios Koufopoulos
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece
| | - Argyro-Ioanna Ieronimaki
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece
| | - Andriani Zacharatou
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece
| | - Alina Roxana Gouloumis
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece
| | - Danai Leventakou
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece
| | - Ioannis Boutas
- Breast Unit, Rea Maternity Hospital, P. Faliro, 17564 Athens, Greece
| | - Dionysios T Dimas
- Breast Unit, Athens Medical Center, Psychiko Clinic, 11525 Athens, Greece
| | - Adamantia Kontogeorgi
- Third Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece
| | - Kyparissia Sitara
- Department of Internal Medicine, "Elpis" General Hospital of Athens, 11522 Athens, Greece
| | - Lubna Khaldi
- Pathology Department "Saint Savvas" Anti-Cancer Hospital, 10447 Athens, Greece
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
32
|
Lin M, Sun X, Lv L. New insights and options into the mechanisms and effects of combined targeted therapy and immunotherapy in prostate cancer. Mol Ther Oncolytics 2023; 29:91-106. [PMID: 37215386 PMCID: PMC10199166 DOI: 10.1016/j.omto.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Chronic inflammation is believed to drive prostate carcinogenesis by producing reactive oxygen species or reactive nitrogen species to induce DNA damage. This effect might subsequently cause epigenetic and genomic alterations, leading to malignant transformation. Although established therapeutic advances have extended overall survival, tumors in patients with advanced prostate cancer are prone to metastasis, transformation into metastatic castration-resistant prostate cancer, and therapeutic resistance. The tumor microenvironment (TME) of prostate cancer is involved in carcinogenesis, invasion and drug resistance. A plethora of preclinical studies have focused on immune-based therapies. Understanding the intricate TME system in prostate cancer may hold much promise for developing novel therapies, designing combinational therapeutic strategies, and further overcoming resistance to established treatments to improve the lives of prostate cancer patients. In this review, we discuss nonimmune components and various immune cells within the TME and their putative roles during prostate cancer initiation, progression, and metastasis. We also outline the updated fundamental research focusing on therapeutic advances of targeted therapy as well as combinational options for prostate cancer.
Collapse
Affiliation(s)
- Mingen Lin
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Xue Sun
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
| | - Lei Lv
- Nourse Centre for Pet Nutrition, Wuhu 241200, China
- Shanghai Chowsing Pet Products Co., Ltd, Shanghai 201103, China
| |
Collapse
|
33
|
Maselli FM, Giuliani F, Laface C, Perrone M, Melaccio A, De Santis P, Santoro AN, Guarini C, Iaia ML, Fedele P. Immunotherapy in Prostate Cancer: State of Art and New Therapeutic Perspectives. Curr Oncol 2023; 30:5769-5794. [PMID: 37366915 DOI: 10.3390/curroncol30060432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Prostate cancer (PC) is the most common type of tumor in men. In the early stage of the disease, it is sensitive to androgen deprivation therapy. In patients with metastatic castration-sensitive prostate cancer (mHSPC), chemotherapy and second-generation androgen receptor therapy have led to increased survival. However, despite advances in the management of mHSPC, castration resistance is unavoidable and many patients develop metastatic castration-resistant disease (mCRPC). In the past few decades, immunotherapy has dramatically changed the oncology landscape and has increased the survival rate of many types of cancer. However, immunotherapy in prostate cancer has not yet given the revolutionary results it has in other types of tumors. Research into new treatments is very important for patients with mCRPC because of its poor prognosis. In this review, we focus on the reasons for the apparent intrinsic resistance of prostate cancer to immunotherapy, the possibilities for overcoming this resistance, and the clinical evidence and new therapeutic perspectives regarding immunotherapy in prostate cancer with a look toward the future.
Collapse
Affiliation(s)
| | | | - Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Assunta Melaccio
- Medical Oncology, San Paolo Hospital, ASL Bari, 70123 Bari, Italy
| | - Pierluigi De Santis
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | | | - Chiara Guarini
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Maria Laura Iaia
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
34
|
Nguyen T, Sridaran D, Chouhan S, Weimholt C, Wilson A, Luo J, Li T, Koomen J, Fang B, Putluri N, Sreekumar A, Feng FY, Mahajan K, Mahajan NP. Histone H2A Lys130 acetylation epigenetically regulates androgen production in prostate cancer. Nat Commun 2023; 14:3357. [PMID: 37296155 PMCID: PMC10256812 DOI: 10.1038/s41467-023-38887-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The testicular androgen biosynthesis is well understood, however, how cancer cells gauge dwindling androgen to dexterously initiate its de novo synthesis remained elusive. We uncover dual-phosphorylated form of sterol regulatory element-binding protein 1 (SREBF1), pY673/951-SREBF1 that acts as an androgen sensor, and dissociates from androgen receptor (AR) in androgen deficient environment, followed by nuclear translocation. SREBF1 recruits KAT2A/GCN5 to deposit epigenetic marks, histone H2A Lys130-acetylation (H2A-K130ac) in SREBF1, reigniting de novo lipogenesis & steroidogenesis. Androgen prevents SREBF1 nuclear translocation, promoting T cell exhaustion. Nuclear SREBF1 and H2A-K130ac levels are significantly increased and directly correlated with late-stage prostate cancer, reversal of which sensitizes castration-resistant prostate cancer (CRPC) to androgen synthesis inhibitor, Abiraterone. Further, we identify a distinct CRPC lipid signature resembling lipid profile of prostate cancer in African American (AA) men. Overall, pY-SREBF1/H2A-K130ac signaling explains cancer sex bias and reveal synchronous inhibition of KAT2A and Tyr-kinases as an effective therapeutic strategy.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Section of Gastroenterology & Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dhivya Sridaran
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Surbhi Chouhan
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Cody Weimholt
- Siteman Cancer Center, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Pathology & Immunology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Audrey Wilson
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Tiandao Li
- Bioinformatics Research Core, Center of Regenerative Medicine, Department of Developmental Biology, Washington University at St. Louis, St Louis, MO, 63110, USA
| | - John Koomen
- Molecular Oncology and Molecular Medicine, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Bin Fang
- Molecular Oncology and Molecular Medicine, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Nagireddy Putluri
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arun Sreekumar
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, 94158, USA
| | - Kiran Mahajan
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA
| | - Nupam P Mahajan
- Department of Surgery, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA.
- Department of Urology, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA.
- Siteman Cancer Center, Cancer Research Building, Washington University in St Louis, 660 Euclid Ave., St Louis, MO, 63110, USA.
| |
Collapse
|
35
|
Shenderov E, De Marzo AM, Lotan TL, Wang H, Chan S, Lim SJ, Ji H, Allaf ME, Chapman C, Moore PA, Chen F, Sorg K, White AM, Church SE, Hudson B, Fields PA, Hu S, Denmeade SR, Pienta KJ, Pavlovich CP, Ross AE, Drake CG, Pardoll DM, Antonarakis ES. Neoadjuvant enoblituzumab in localized prostate cancer: a single-arm, phase 2 trial. Nat Med 2023; 29:888-897. [PMID: 37012549 PMCID: PMC10921422 DOI: 10.1038/s41591-023-02284-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
B7 homolog 3 (B7-H3; CD276), a tumor-associated antigen and possible immune checkpoint, is highly expressed in prostate cancer (PCa) and is associated with early recurrence and metastasis. Enoblituzumab is a humanized, Fc-engineered, B7-H3-targeting antibody that mediates antibody-dependent cellular cytotoxicity. In this phase 2, biomarker-rich neoadjuvant trial, 32 biological males with operable intermediate to high-risk localized PCa were enrolled to evaluate the safety, anti-tumor activity and immunogenicity of enoblituzumab when given before prostatectomy. The coprimary outcomes were safety and undetectable prostate-specific antigen (PSA) level (PSA0) 1 year postprostatectomy, and the aim was to obtain an estimate of PSA0 with reasonable precision. The primary safety endpoint was met with no notable unexpected surgical or medical complications, or surgical delay. Overall, 12% of patients experienced grade 3 adverse events and no grade 4 events occurred. The coprimary endpoint of the PSA0 rate 1 year postprostatectomy was 66% (95% confidence interval 47-81%). The use of B7-H3-targeted immunotherapy in PCa is feasible and generally safe and preliminary data suggest potential clinical activity. The present study validates B7-H3 as a rational target for therapy development in PCa with larger studies planned. The ClinicalTrials.gov identifier is NCT02923180.
Collapse
Affiliation(s)
- Eugene Shenderov
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Angelo M De Marzo
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tamara L Lotan
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hao Wang
- Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sin Chan
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Su Jin Lim
- Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mohamad E Allaf
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Carolyn Chapman
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | - Samuel R Denmeade
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kenneth J Pienta
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Ashley E Ross
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA
| |
Collapse
|
36
|
Chen S, Lu K, Hou Y, You Z, Shu C, Wei X, Wu T, Shi N, Zhang G, Wu J, Chen S, Zhang L, Li W, Zhang D, Ju S, Chen M, Xu B. YY1 complex in M2 macrophage promotes prostate cancer progression by upregulating IL-6. J Immunother Cancer 2023; 11:jitc-2022-006020. [PMID: 37094986 PMCID: PMC10152059 DOI: 10.1136/jitc-2022-006020] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages are mainly polarized into the M2 phenotype, remodeling the tumor microenvironment and promoting tumor progression by secreting various cytokines. METHODS Tissue microarray consisting of prostate cancer (PCa), normal prostate, and lymph node metastatic samples from patients with PCa were stained with Yin Yang 1 (YY1) and CD163. Transgenic mice overexpressing YY1 were constructed to observe PCa tumorigenesis. Furthermore, in vivo and in vitro experiments, including CRISPR-Cas9 knock-out, RNA sequencing, chromatin immunoprecipitation (ChIP) sequencing, and liquid-liquid phase separation (LLPS) assays, were performed to investigate the role and mechanism of YY1 in M2 macrophages and PCa tumor microenvironment. RESULTS YY1 was highly expressed in M2 macrophages in PCa and was associated with poorer clinical outcomes. The proportion of tumor-infiltrated M2 macrophages increased in transgenic mice overexpressing YY1. In contrast, the proliferation and activity of anti-tumoral T lymphocytes were suppressed. Treatment targeting YY1 on M2 macrophages using an M2-targeting peptide-modified liposome carrier suppressed PCa cell lung metastasis and generated synergistic anti-tumoral effects with PD-1 blockade. IL-4/STAT6 pathway regulated YY1, and YY1 increased the macrophage-induced PCa progression by upregulating IL-6. Furthermore, by conducting H3K27ac-ChIP-seq in M2 macrophages and THP-1, we found that thousands of enhancers were gained during M2 macrophage polarization, and these M2-specific enhancers were enriched in YY1 ChIP-seq signals. In addition, an M2-specific IL-6 enhancer upregulated IL-6 expression through long-range chromatin interaction with IL-6 promoter in M2 macrophages. During M2 macrophage polarization, YY1 formed an LLPS, in which p300, p65, and CEBPB acted as transcriptional cofactors. CONCLUSIONS Phase separation of the YY1 complex in M2 macrophages upregulated IL-6 by promoting IL-6 enhancer-promoter interactions, thereby increasing PCa progression.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Kai Lu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Yue Hou
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zonghao You
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoying Wei
- Department of Pathology, Southeast University Zhongda Hospital, Nanjing, China
| | - Tiange Wu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Naipeng Shi
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Guangyuan Zhang
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Jianping Wu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Lihua Zhang
- Department of Pathology, Southeast University Zhongda Hospital, Nanjing, China
| | - Wenchao Li
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Dingxiao Zhang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, China
| | - Shenghong Ju
- Department of Radiology, Southeast University Zhongda Hospital, Nanjing, China
| | - Ming Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Bin Xu
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
- Institute of Medical Phenomics Research, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Han S, Shi T, Liao Y, Chen D, Yang F, Wang M, Ma J, Li H, Xu Y, Zhu T, Chen W, Wang G, Han Y, Xu C, Wang W, Cai S, Zhang X, Xing N. Tumor immune contexture predicts recurrence after prostatectomy and efficacy of androgen deprivation and immunotherapy in prostate cancer. J Transl Med 2023; 21:194. [PMID: 36918939 PMCID: PMC10012744 DOI: 10.1186/s12967-022-03827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/11/2022] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Prostate cancer is one of the most common cancers in men with notable interpatient heterogeneity. Implications of the immune microenvironment in predicting the biochemical recurrence-free survival (BCRFS) after radical prostatectomy and the efficacy of systemic therapies in prostate cancer remain ambiguous. METHODS The tumor immune contexture score (TICS) involving eight immune contexture-related signatures was developed using seven cohorts of 1120 patients treated with radical prostatectomy (training: GSE46602, GSE54460, GSE70769, and GSE94767; validation: GSE70768, DKFZ2018, and TCGA). The association between the TICS and treatment efficacy was investigated in GSE111177 (androgen deprivation therapy [ADT]) and EGAS00001004050 (ipilimumab). RESULTS A high TICS was associated with prolonged BCRFS after radical prostatectomy in the training (HR = 0.32, 95% CI 0.24-0.45, P < 0.001) and the validation cohorts (HR = 0.45, 95% CI 0.32-0.62, P < 0.001). The TICS showed stable prognostic power independent of tumor stage, surgical margin, pre-treatment prostatic specific antigen (PSA), and Gleason score (multivariable HR = 0.50, 95% CI 0.39-0.63, P < 0.001). Adding the TICS into the prognostic model constructed using clinicopathological features significantly improved its 1/2/3/4/5-year area under curve (P < 0.05). A low TICS was associated with high homologous recombination deficiency scores, abnormally activated pathways concerning DNA replication, cell cycle, steroid hormone biosynthesis, and drug metabolism, and fewer tumor-infiltrating immune cells (P < 0.05). The patients with a high TICS had favorable BCRFS with ADT (HR = 0.25, 95% CI 0.06-0.99, P = 0.034) or ipilimumab monotherapy (HR = 0.23, 95% CI 0.06-0.81, P = 0.012). CONCLUSIONS Our study delineates the associations of tumor immune contexture with molecular features, recurrence after radical prostatectomy, and the efficacy of ADT and immunotherapy. The TICS may improve the existing risk stratification systems and serve as a patient-selection tool for ADT and immunotherapy in prostate cancer.
Collapse
Affiliation(s)
- Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Taoping Shi
- Department of Urology, Chinese PLA General Hospital, No 28 Fuxing Road, Beijing, 100853, China
| | - Yuchen Liao
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Mingshuai Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jing Ma
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Hu Li
- Department of Urology, Shanxian Central Hospital of Shandong Province, Heze, 274300, Shandong, China
| | - Yu Xu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Tengfei Zhu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Wenxi Chen
- Burning Rock Biotech, Guangzhou, 510300, China
| | | | - Yusheng Han
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Chunwei Xu
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Wenxian Wang
- Department of Clinical Trial, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, 310022, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital, No 28 Fuxing Road, Beijing, 100853, China.
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
38
|
Ramesh S, Selvakumar P, Ameer MY, Lian S, Abdullah Alzarooni AIM, Ojha S, Mishra A, Tiwari A, Kaushik A, Jung YD, Chouaib S, Lakshmanan VK. State-of-the-art therapeutic strategies for targeting cancer stem cells in prostate cancer. Front Oncol 2023; 13:1059441. [PMID: 36969009 PMCID: PMC10035756 DOI: 10.3389/fonc.2023.1059441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
The development of new therapeutic strategies is on the increase for prostate cancer stem cells, owing to current standardized therapies for prostate cancer, including chemotherapy, androgen deprivation therapy (ADT), radiotherapy, and surgery, often failing because of tumor relapse ability. Ultimately, tumor relapse develops into advanced castration-resistant prostate cancer (CRPC), which becomes an irreversible and systemic disease. Hence, early identification of the intracellular components and molecular networks that promote prostate cancer is crucial for disease management and therapeutic intervention. One of the potential therapeutic methods for aggressive prostate cancer is to target prostate cancer stem cells (PCSCs), which appear to be a primary focal point of cancer metastasis and recurrence and are resistant to standardized therapies. PCSCs have also been documented to play a major role in regulating tumorigenesis, sphere formation, and the metastasis ability of prostate cancer with their stemness features. Therefore, the current review highlights the origin and identification of PCSCs and their role in anti-androgen resistance, as well as stemness-related signaling pathways. In addition, the review focuses on the current advanced therapeutic strategies for targeting PCSCs that are helping to prevent prostate cancer initiation and progression, such as microRNAs (miRNAs), nanotechnology, chemotherapy, immunotherapy, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene-editing system, and photothermal ablation (PTA) therapy.
Collapse
Affiliation(s)
- Saravanan Ramesh
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Preethi Selvakumar
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Mohamed Yazeer Ameer
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | | | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anshuman Mishra
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
| | - Ashutosh Tiwari
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, United States
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, India
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
- INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Equipe Labellisée par la Ligue Contre le Cancer, EPHE, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Vinoth-Kumar Lakshmanan
- Prostate Cancer Biomarker Laboratory, Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
- Translational Research & Sustainable Healthcare Management, Institute of Advanced Materials, IAAM, Ulrika, Sweden
- *Correspondence: Vinoth-Kumar Lakshmanan,
| |
Collapse
|
39
|
Immunotherapy for Prostate Cancer: A Current Systematic Review and Patient Centric Perspectives. J Clin Med 2023; 12:jcm12041446. [PMID: 36835981 PMCID: PMC9966657 DOI: 10.3390/jcm12041446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed cancer in men worldwide, making up 21% of all cancer cases. With 345,000 deaths per year owing to the disease, there is an urgent need to optimize prostate cancer care. This systematic review collated and synthesized findings of completed Phase III clinical trials administering immunotherapy; a current clinical trial index (2022) of all ongoing Phase I-III clinical trial records was also formulated. A total of four Phase III clinical trials with 3588 participants were included administering DCVAC, ipilimumab, personalized peptide vaccine, and the PROSTVAC vaccine. In this original research article, promising results were seen for ipilimumab intervention, with improved overall survival trends. A total of 68 ongoing trial records pooling in 7923 participants were included, spanning completion until June 2028. Immunotherapy is an emerging option for patients with prostate cancer, with immune checkpoint inhibitors and adjuvant therapies forming a large part of the emerging landscape. With various ongoing trials, the characteristics and premises of the prospective findings will be key in improving outcomes in the future.
Collapse
|
40
|
Gratzke C, Kwiatkowski M, De Giorgi U, Martins da Trindade K, De Santis M, Armstrong AJ, Niu C, Liu Y, Poehlein CH. KEYNOTE-991: pembrolizumab plus enzalutamide and androgen deprivation for metastatic hormone-sensitive prostate cancer. Future Oncol 2023; 18:4079-4087. [PMID: 36705526 DOI: 10.2217/fon-2022-0776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Current treatment for patients with metastatic hormone-sensitive prostate cancer (mHSPC) delays disease progression and improves survival, but resistance is inevitable. Additional therapies that prolong survival are needed. Androgen deprivation therapy (ADT) combined with next-generation hormonal agents, such as enzalutamide, is standard-of-care for men with mHSPC. Emerging evidence suggests potential synergism between enzalutamide and the PD-1 inhibitor pembrolizumab in prostate cancer. The phase III randomized, placebo-controlled, double-blind KEYNOTE-991 trial will investigate the efficacy and safety of pembrolizumab versus placebo in combination with enzalutamide when initiating ADT in participants with mHSPC naive to next-generation hormonal agents. Approximately 1232 patients will be randomly assigned 1:1 to receive pembrolizumab 200 mg every 3 weeks or placebo every 3 weeks, both with enzalutamide 160 mg once daily and ADT. Dual primary end points are overall survival and radiographic progression-free survival. Secondary end points include time to first subsequent therapy, time to symptomatic skeletal related event, objective response rate and safety and tolerability. Clinical Trial Registration: NCT04191096 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Christian Gratzke
- Department of Urology, University Hospital Freiburg, Hugstetterstr. 55, Freiburg, 79106, Germany
| | - Mariusz Kwiatkowski
- Szpital Wojewodzki im Mikolaja Kopernika, Chałubińskiego 7, Koszalin, 75-581, Poland
| | - Ugo De Giorgi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) Dino Amadori, Via Piero Maroncelli, 40, Meldola, 47014, Italy
| | | | - Maria De Santis
- Charite Universitaetsmedizin, Charitépl. 1, Berlin, 10117, Germany
- Department of Urology, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria
| | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate & Urologic Cancers, Duke University, 20 Duke Medicine Cir, Durham, NC 27710, USA
| | - Cuizhen Niu
- MSD China, Plot B-12, Electronic City West Zone, Chaoyang District, Beijing, 100012, China
| | - Yingjie Liu
- Merck & Co., Inc., 90 E Scott Ave, Rahway, NJ 07065, USA
| | | |
Collapse
|
41
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Badawi JK. Resveratrol used as nanotherapeutic: a promising additional therapeutic tool against hormone-sensitive, hormone-insensitive and resistant prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:1-11. [PMID: 36923720 PMCID: PMC10009313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/30/2022] [Indexed: 03/18/2023]
Abstract
Prostate cancer is one of the most common cancers in men. Despite the development of diverse therapeutic agents for different types and stages, the progression or spread of the disease is inevitable. Another problem is the development of resistance of cancer cells to available therapeutics. Therefore, additional medicaments are urgently needed. Resveratrol is a polyphenolic phytoalexin found in numerous plants and fruits like red grapes or blueberries. Resveratrol possesses antiproliferative, anti-angiogenic and anticancer activities well proven in different types of cancer including prostate cancer. To date, it is not used clinically due to poor solubility, low bioavailability, and other limiting factors. In order to overcome these limitations, novel nanoparticle-based formulations were developed over the past years. In this review article, studies about the effect of resveratrol on prostate cancer cells are discussed focusing especially on those studies using nanotechnology. An electronic literature research was performed utilizing PubMed in August 2022. Scientific publications, which examine resveratrol using nanotechnology, are discussed. The studies clearly indicate that resveratrol-loaded nanoparticles exhibited a remarkable anti-cancer activity in various hormone-sensitive and hormone-insensitive prostate cancer cell lines including docetaxel-resistant prostate-cancer cells. The types of nanoparticles that were used varied and influenced the outcome. Additionally, the meaning of the surface functionality of the nanoparticles is emphasized. No reduction of the anti-proliferative activity of resveratrol was shown when used encapsulated. Additionally, synergistic effects of resveratrol and docetaxel were proven. Resveratrol-loaded nanoparticles, especially when combined, may represent the next generation of anticancer substances. However, further in vivo/clinical studies are necessary to confirm their clinical effectiveness.
Collapse
Affiliation(s)
- Jasmin Katrin Badawi
- Medical Faculty Mannheim of The Ruprecht-Karls-University of Heidelberg Mannheim, Germany
| |
Collapse
|
43
|
Rodriguez-Vida A, Maroto P, Font A, Martin C, Mellado B, Corbera A, Orrillo M, Reig O, Querol R, Rios-Hoyo A, Cano L, Alonso J, Martinez G, Galtes S, Taus A, Martinez-Garcia M, Juanpere N, Juan O, Bellmunt J. Safety and efficacy of avelumab plus carboplatin in patients with metastatic castration-resistant prostate cancer in an open-label Phase Ib study. Br J Cancer 2023; 128:21-29. [PMID: 36289372 PMCID: PMC9814154 DOI: 10.1038/s41416-022-01991-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Single-agent PD-1/PD-L1 inhibitors have shown limited efficacy in unselected mCRPC. The evidence of a survival benefit with sipuleucel-T and ipilimumab, provides a rationale to study further increasing immunogenicity in mCRPC through combinations. METHODS Safety and efficacy avelumab plus carboplatin was investigated in a single-arm Phase Ib study in mCRPC, progressing to at least one taxane and one androgen-receptor inhibitor. The primary endpoint was safety. Secondary endpoints included PSA/radiographic responses, progression-free survival (PFS) and overall survival (OS). Germline/somatic mutation analysis was performed. RESULTS In total, 26 patients were included. Patients were heavily pretreated: 76.9% received ≥3 and 42.3% ≥4 prior lines. A DNA damage repair (DDR) alteration was found in three patients (11.5%). The safety profile was acceptable with 73% Grade 3-4 treatment-related adverse events. PSA response rate ≥50% was seen in 7.7% of patients. The objective response rate was 17.6%, including one complete response (5.9%). Two of these responders had a known DDR alteration (one BRCA2, one ATM). The median response duration was 6 months. Median radiographic PFS was 6.6 months (95% CI 4.28-9.01), and median OS 10.6 months (95% CI 6.68-NR). CONCLUSIONS Avelumab plus carboplatin has an acceptable safety profile and was associated with a prolonged OS given the heavily pretreated population.
Collapse
Affiliation(s)
- Alejo Rodriguez-Vida
- Medical Oncology Department, Hospital del Mar-CIBERONC, IMIM Research Institute, Barcelona, Spain
| | - Pablo Maroto
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Albert Font
- Medical Oncology Department, Catalan Institute of Oncology - Badalona, B-ARGO Group, IGTP, Barcelona, Spain
| | - Cristina Martin
- Medical Oncology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Begoña Mellado
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Uro-Oncology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Alex Corbera
- Medical Oncology Department, Hospital del Mar-CIBERONC, IMIM Research Institute, Barcelona, Spain
| | - Mayra Orrillo
- Medical Oncology Department, Hospital del Mar-CIBERONC, IMIM Research Institute, Barcelona, Spain
| | - Oscar Reig
- Medical Oncology Department, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapeutics in Solid Tumors Lab, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Uro-Oncology Unit, Hospital Clínic, University of Barcelona, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Rosa Querol
- Medical Oncology Department, Hospital de Mataró, Barcelona, Spain
| | - Alejandro Rios-Hoyo
- Medical Oncology Department, Hospital del Mar-CIBERONC, IMIM Research Institute, Barcelona, Spain
| | - Laia Cano
- Clinical Trials Unit, Hospital del Mar, Barcelona, Spain
| | - Judith Alonso
- Clinical Trials Unit, Hospital del Mar, Barcelona, Spain
| | - Gemma Martinez
- Clinical Trials Unit, Hospital del Mar, Barcelona, Spain
| | - Susana Galtes
- Clinical Trials Unit, Hospital del Mar, Barcelona, Spain
| | - Alvaro Taus
- Medical Oncology Department, Hospital del Mar-CIBERONC, IMIM Research Institute, Barcelona, Spain
| | - Maria Martinez-Garcia
- Medical Oncology Department, Hospital del Mar-CIBERONC, IMIM Research Institute, Barcelona, Spain
| | - Nuria Juanpere
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Oscar Juan
- Pivotal SLU Clinical Research Organization, Madrid, Spain
| | - Joaquim Bellmunt
- Medical Oncology Department, Hospital del Mar-CIBERONC, IMIM Research Institute, Barcelona, Spain.
- Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Pozas J, Álvarez Rodríguez S, Fernández VA, Burgos J, Santoni M, Manneh Kopp R, Molina-Cerrillo J, Alonso-Gordoa T. Androgen Receptor Signaling Inhibition in Advanced Castration Resistance Prostate Cancer: What Is Expected for the Near Future? Cancers (Basel) 2022; 14:6071. [PMID: 36551557 PMCID: PMC9776956 DOI: 10.3390/cancers14246071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The androgen signaling pathway is the cornerstone in the treatment of high risk or advanced prostate cancer patients. However, in recent years, different mechanisms of resistance have been defined in this field, limiting the efficacy of the currently approved antiandrogen drugs. Different therapeutic approaches are under research to assess the role of combination therapies against escape signaling pathways or the development of novel antiandrogen drugs to try to solve the primary or acquired resistance against androgen dependent or independent pathways. The present review aims to summarize the current state of androgen inhibition in the therapeutic algorithm of patients with advanced prostate cancer and the mechanisms of resistance to those available drugs. In addition, this review conducted a comprehensive overview of the main present and future research approaches in the field of androgen receptor inhibition to overcome these resistances and the potential new drugs under research coming into this setting.
Collapse
Affiliation(s)
- Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sara Álvarez Rodríguez
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | | | - Javier Burgos
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Matteo Santoni
- Medical Oncology Department, Mazerata Hospital, 62100 Macerata, Italy
| | - Ray Manneh Kopp
- Sociedad de Oncología y Hematología del Cesar, Valledupar 200001, Colombia
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| |
Collapse
|
45
|
Mazzaschi G, Quaini F, Buti S. Exploring genetic and immune underpinnings of the sexual dimorphism in tumor response to immune checkpoints inhibitors: A narrative review. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 4:100146. [PMID: 36571078 PMCID: PMC9772791 DOI: 10.1016/j.crphar.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction In spite of the undisputed relevance of sex as critical biologic variable of the immune landscape, still limited is our understanding of the basic mechanisms implicated in sex-biased immune response thereby conditioning the therapeutic outcome in cancer patients. This hindrance delays the actual attempts to decipher the heterogeneity of cancer and its immune surveillance, further digressing the achievement of predictive biomarkers in the current immunotherapy-driven scenario. Body: The present review concisely reports on genetic, chromosomal, hormonal, and immune features underlying sex-differences in the response to immune checkpoint inhibitors (ICIs). In addition to outline the need of robust data on ICI pharmaco-kinetics/dynamics, our survey might provide new insights on sex determinants of ICI efficacy and suggests uncovered pathways that warrant prospective investigations. Conclusion According to a sharable view, we propose to widely include sex among the co-variates when assessing the clinical response to ICI in cancer patients.
Collapse
Affiliation(s)
- Giulia Mazzaschi
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sebastiano Buti
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
46
|
Wasim S, Lee SY, Kim J. Complexities of Prostate Cancer. Int J Mol Sci 2022; 23:14257. [PMID: 36430730 PMCID: PMC9696501 DOI: 10.3390/ijms232214257] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer has a long disease history and a wide variety and uncertainty in individual patients' clinical progress. In recent years, we have seen a revolutionary advance in both prostate cancer patient care and in the research field. The power of deep sequencing has provided cistromic and transcriptomic knowledge of prostate cancer that has not discovered before. Our understanding of prostate cancer biology, from bedside and molecular imaging techniques, has also been greatly advanced. It is important that our current theragnostic schemes, including our diagnostic modalities, therapeutic responses, and the drugs available to target non-AR signaling should be improved. This review article discusses the current progress in the understanding of prostate cancer biology and the recent advances in diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Sobia Wasim
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Sang-Yoon Lee
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
47
|
Gilloteaux DJ, Jamison JM, Summers JL, Taper HS. Xenografts on nude mouse diaphragm of human DU145 prostate carcinoma cells: mesothelium removal by outgrowths and angiogenesis. Ultrastruct Pathol 2022; 46:413-438. [PMID: 36165802 DOI: 10.1080/01913123.2022.2115596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Human prostate carcinoma DU145 cells, androgen-independent malignant cells, implanted in the athymic nu/nu male mouse, developed numerous tumors on peritoneal and retro-peritoneal organs whose growth aspects and vascular supply have yet to be investigated with fine structure techniques. A series of necropsies from moribund implanted mice diaphragms were examined with light, scanning, and transmission electron microscopy. DU145 xenografts installations, far away from the implanted site, were described as the smallest installation to large diaphragm outgrowths in moribund mice. Carcinomas did not show extracellular matrix and, reaching more than 0.15 mm in thickness, they revealed new structures in these outgrowths. Voids to be gland-like structures with mediocre secretion and, unexpectedly, intercellular spaces connected with fascicles of elongated DU145 cells that merged with a vascular supply originated from either the tumor cells and/or some perimysium vessels. In the largest carcinomas, most important vascular invasions coincidently accompanied the mouse lethality, similarly to human cancers. This androgen-independent model would be useful to study tumor outgrowth's changes related to testing anticancer strategy, including anti-angiogenic therapies involving toxicity, simultaneously with those of other vital organs with combined biomolecular and fine structure techniques.
Collapse
Affiliation(s)
- Dr Jacques Gilloteaux
- Department of Anatomical Sciences, St Georges' University International School of Medicine, KB Taylor Global Scholar's Program, Newcastle upon Tyne, UK, NE1 8JG.,Unit of Research in Molecular Physiology (URPhyM), NARILIS, Université de Namur, Namur, Belgium, 5000.,Department of Anatomical Sciences, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272
| | - James M Jamison
- Department of Urology, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272.,St Thomas Hospital, The Apatone Development Center, Summa Research Foundation, Akron, OH, USA, 44310
| | - Jack L Summers
- Department of Urology, Ohio Medical University (NEOMed/Northeastern Ohio Universities College of Medicine, Rootstown, OH, USA, 44272.,St Thomas Hospital, The Apatone Development Center, Summa Research Foundation, Akron, OH, USA, 44310
| | - Henryk S Taper
- Laboratoire de Pharmacologie Toxicologique et Cancérologique, School of Pharmacy, Université Catholique de Louvain, Brussels, Belgium, 1200
| |
Collapse
|
48
|
Wu N, Wang Y, Wang K, Zhong B, Liao Y, Liang J, Jiang N. Cathepsin K regulates the tumor growth and metastasis by IL-17/CTSK/EMT axis and mediates M2 macrophage polarization in castration-resistant prostate cancer. Cell Death Dis 2022; 13:813. [PMID: 36138018 PMCID: PMC9499936 DOI: 10.1038/s41419-022-05215-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 01/23/2023]
Abstract
A common stage of advanced prostate cancer is castration-resistant prostate cancer (CRPC), greater understanding of which is required in order to address and solve the clinically difficult challenge. Cathepsin K (CTSK) is a cysteine protease that usually has a strong activity of degrading extracellular matrix and is related to osteoclast-mediated bone destruction. However, the mechanism of CTSK-regulation in CRPC is still unclear to us. The current study aimed to analyze the expression of differentially expressed genes (DEGs) in patient samples (from localized PC and CRPC). Interestingly, we found that CTSK to be significantly up-regulated in CRPC. Through further signal pathway enrichment analysis, we found that the IL-17 signaling pathway to be highly correlated with CTSK. The oncogenic functions of CTSK and IL-17 in CRPC were proven by a series of in vivo and in vitro experiments. Possible downstream molecules of CTSK were investigated, which could serve as control elements to regulate the expression of EMT, thereby facilitating the metastasis and excessive proliferation of PC cells. Expression of CTSK was related to high concentration of M2 tumor-associated macrophages (TAMs) M2 in CRPC. A CTSK-mediated feedback circuit between TAMs and CRPC tissues was indicated in the process of transfer, proving the possibility of CTSK could be use as an available therapeutic target for CRPC.
Collapse
Affiliation(s)
- Ning Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - YouZhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - KeKe Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - BoQiang Zhong
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - YiHao Liao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - JiaMing Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, PR China.
| |
Collapse
|
49
|
Could immunotherapy finally break through in prostate cancer? Nature 2022; 609:S42-S44. [DOI: 10.1038/d41586-022-02861-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Luechtefeld T, Bozada T, Goel R, Wang L, Paller CJ. Applications for open access normalized synthesis in metastatic prostate cancer trials. Front Artif Intell 2022; 5:984836. [PMID: 36171797 PMCID: PMC9511148 DOI: 10.3389/frai.2022.984836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Recent metastatic castration-resistant prostate cancer (mCRPC) clinical trials have integrated homologous recombination and DNA repair deficiency (HRD/DRD) biomarkers into eligibility criteria and secondary objectives. These trials led to the approval of some PARP inhibitors for mCRPC with HRD/DRD indications. Unfortunately, biomarker-trial outcome data is only discovered by reviewing publications, a process that is error-prone, time-consuming, and laborious. While prostate cancer researchers have written systematic evidence reviews (SERs) on this topic, given the time involved from the last search to publication, an SER is often outdated even before publication. The difficulty in reusing previous review data has resulted in multiple reviews of the same trials. Thus, it will be useful to create a normalized evidence base from recently published/presented biomarker-trial outcome data that one can quickly update. We present a new approach to semi-automating normalized, open-access data tables from published clinical trials of metastatic prostate cancer using a data curation and SER platform. Clinicaltrials.gov and Pubmed.gov were used to collect mCRPC clinical trial publications with HRD/DRD biomarkers. We extracted data from 13 publications covering ten trials that started before 22nd Apr 2021. We extracted 585 hazard ratios, response rates, duration metrics, and 543 adverse events. Across 334 patients, we also extracted 8,180 patient-level survival and biomarker values. Data tables were populated with survival metrics, raw patient data, eligibility criteria, adverse events, and timelines. A repeated strong association between HRD and improved PARP inhibitor response was observed. Several use cases for the extracted data are demonstrated via analyses of trial methods, comparison of treatment hazard ratios, and association of treatments with adverse events. Machine learning models are also built on combined and normalized patient data to demonstrate automated discovery of therapy/biomarker relationships. Overall, we demonstrate the value of systematically extracted and normalized data. We have also made our code open-source with simple instructions on updating the analyses as new data becomes available, which anyone can use even with limited programming knowledge. Finally, while we present a novel method of SER for mCRPC trials, one can also implement such semi-automated methods in other clinical trial domains to advance precision medicine.
Collapse
Affiliation(s)
| | | | - Rahul Goel
- Independent Researcher, San Francisco, CA, United States
| | - Lin Wang
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Channing J. Paller
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Channing J. Paller
| |
Collapse
|