1
|
Li X, Han Z, Ai J. Synergistic targeting strategies for prostate cancer. Nat Rev Urol 2025:10.1038/s41585-025-01042-6. [PMID: 40394240 DOI: 10.1038/s41585-025-01042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
Prostate cancer is the second most commonly diagnosed cancer and the fifth leading cause of death among men worldwide. Androgen deprivation therapy is a common prostate cancer treatment, but its efficacy is often hindered by the development of resistance, which results in reducing survival benefits. Immunotherapy showed great promise in treating solid tumours; however, clinically significant improvements have not been demonstrated for patients with prostate cancer, highlighting specific drawbacks of this therapeutic modality. Hence, exploring novel strategies to synergistically enhance the efficacy of prostate cancer immunotherapy is imperative. Clinical investigations have focused on the combined use of targeted or gene therapy and immunotherapy for prostate cancer. Notably, tumour-specific antigens and inflammatory mediators are released from tumour cells after targeted or gene therapy, and the recruitment and infiltration of immune cells, including CD8+ T cells and natural killer cells activated by immunotherapy, are further augmented, markedly improving the efficacy and prognosis of prostate cancer. Thus, immunotherapy, targeted therapy and gene therapy could have reciprocal synergistic effects in prostate cancer in combination, resulting in a proposed synergistic model encompassing these three therapeutic modalities, presenting novel potential treatment strategies for prostate cancer.
Collapse
Affiliation(s)
- Xuanji Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
De Santis A, De Santis L, Rossi F, Gasparini S, Licursi V, Amico VA, Capone I, Fragale A, D'atri S, Gabriele L, Presutti C. NSD2 and miRNAs as Key Regulators of Melanoma Response to Romidepsin and Interferon-α2b Treatment. Cancer Med 2025; 14:e70917. [PMID: 40386826 PMCID: PMC12086509 DOI: 10.1002/cam4.70917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/28/2025] [Accepted: 04/16/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND We investigated the role of Nuclear Receptor Binding SET Domain Protein 2 (NSD2) and microRNAs (miRNAs) in melanoma de-differentiation following Romidepsin and Interferon-α2b (RI) treatment. Melanoma is the most lethal form of skin cancer, and despite advancements in therapy, treatment resistance remains a major challenge. De-differentiation has been widely recognized as a key factor contributing to therapy resistance. METHODS RNA-seq and TCGA transcriptomic data were re-analyzed to identify miRNAs and NSD2 expressions. The functional impact of selected miRNAs was then investigated at the molecular and phenotypic levels using primary and immortalized cell lines. RESULTS Our findings demonstrate that RI treatment induces a de-differentiation process in primary melanoma cells, resembling that observed in therapy-resistant melanoma. This effect is particularly pronounced in cells with an intrinsic proliferative phenotype, where we observed significant downregulation of NSD2, a key epigenetic regulator implicated in multiple cancers. Additionally, we identified specific miRNAs as mediators of NSD2 downregulation, influencing melanoma cell viability and fitness. CONCLUSIONS These findings provide new insights into the molecular mechanisms driving melanoma progression and highlight potential therapeutic targets to counteract treatment resistance.
Collapse
Affiliation(s)
- Alessandro De Santis
- Department of Biology and Biotechnology Charles DarwinSapienza University of RomeRomeItaly
| | - Lucrezia De Santis
- Department of Biology and Biotechnology Charles DarwinSapienza University of RomeRomeItaly
| | - Francesca Rossi
- Max Planck Institute for Molecular GeneticsChromatin Structure and FunctionBerlinGermany
| | - Silvia Gasparini
- Institute of Molecular Biology and Pathology (IBPM)National Research Council (CNR) of ItalyRomeItaly
| | - Valerio Licursi
- Institute of Molecular Biology and Pathology (IBPM)National Research Council (CNR) of ItalyRomeItaly
| | - Vito Antonio Amico
- Department of Biology and Biotechnology Charles DarwinSapienza University of RomeRomeItaly
| | - Imerio Capone
- Molecular Oncology LaboratoryIstituto Dermatopatico Dell'immacolata IDI‐IRCCSRomeItaly
- Istituto Superiore di SanitàDepartment of Oncology and Molecular MedicineRomeItaly
| | - Alessandra Fragale
- Molecular Oncology LaboratoryIstituto Dermatopatico Dell'immacolata IDI‐IRCCSRomeItaly
- Istituto Superiore di SanitàDepartment of Oncology and Molecular MedicineRomeItaly
| | - Stefania D'atri
- Molecular Oncology LaboratoryIstituto Dermatopatico Dell'immacolata IDI‐IRCCSRomeItaly
| | - Lucia Gabriele
- Molecular Oncology LaboratoryIstituto Dermatopatico Dell'immacolata IDI‐IRCCSRomeItaly
- Istituto Superiore di SanitàDepartment of Oncology and Molecular MedicineRomeItaly
| | - Carlo Presutti
- Department of Biology and Biotechnology Charles DarwinSapienza University of RomeRomeItaly
| |
Collapse
|
3
|
Zhao D, Zang Z, Li H, Li R, Wang G, Zhang K, Diao T, Fu Q. Telomere-related gene risk model predicts prognostic and immune microenvironment alterations in prostate cancer. Sci Rep 2025; 15:14536. [PMID: 40280966 PMCID: PMC12032152 DOI: 10.1038/s41598-025-98663-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
The improvement of the prediction of prostate cancer (PCa) is a major challenge in disease management. This study analysed a total of 147,856 cells and identified 15 distinct cell types using single-cell RNA-sequencing (scRNA-seq) and bulk RNA-seq data from TCGA and GEO databases. Of these cells, 31,256 exhibited a high telomere-related gene score and were predominantly composed of myeloid dendritic cells (mDCs). Simultaneously, pseudo-temporal analysis indicated that mDCs are in the later stages of the differentiation trajectory, suggesting the significant role of mDCs as telomere-active cells in the development of PCa. Analysis of cell-cell communication revealed significant differences, particularly an increase in communication between mDCs and CTLs, alongside a decrease in communication between mDCs and B cells. These variations may represent critical nodes influencing the development of PCa. Additionally, two hub genes were utilized to create risk models, with ROC curves confirming their predictive efficacy for 3-, 5-, and 10-year survival rates in patients. Functional analysis of these genes was conducted, and NPY siRNA transfection notably inhibited proliferation in LNCaP and DU145 cells. Furthermore, the models demonstrated that high-risk patients had poorer overall survival, greater immune infiltration, and reduced sensitivity to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Danfeng Zhao
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhenjie Zang
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250199, China
| | - Haodong Li
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Ruiyu Li
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Guanbo Wang
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
- Engineering Laboratory of Urinary Organ and Functional Reconstruction, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tongxiang Diao
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China.
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250199, China.
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Engineering Laboratory of Urinary Organ and Functional Reconstruction, Shandong Provincial Hospital, Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
Su Y, Zhou L, Yu Q, Liu W, Liu W. Silencing of PODXL2 Modulates Cell Viability and Tumor Immune Microenvironment of Prostate Cancer and Involves PI3K/AKT Pathway Inactivation. J Biochem Mol Toxicol 2025; 39:e70210. [PMID: 40152216 DOI: 10.1002/jbt.70210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Prostate cancer (PCa) is one of the malignant tumors affecting men and is an important reason for the increase in male mortality worldwide. The pathogenesis of PCa is not fully understood. Thus, there is an urgent need to discover novel therapeutic targets to facilitate the development of effective anti-PCa strategies. Quantitative real-time PCR and Western blot were applied to detect the PODXL2 expressions in PCa tissues and cells. Progression-free survival of PCa patients was assessed using Kaplan-Meier survival analysis. The relevance between PODXL2 expressions and PCa clinical index was assessed with a Chi-square test. Cell infection, cell coculture system, Cell Counting Kit-8 assay, TUNEL staining, Transwell, analysis of PCa cell epithelial-mesenchymal transition (EMT) morphological changes, flow cytometry, and enzyme-linked immunosorbent assay were used for the analysis of PODXL2 functions in PCa. Meanwhile, the PODXL2 mechanism in PCa was dissected via Western blot, immunofluorescence analysis, Cell Counting Kit-8 assay, Transwell, and flow cytometry. Furthermore, PODXL2 impacts in PCa growth were examined in vivo using TUNEL staining, immunohistochemistry, and Western blot. PODXL2 expressions were raised in PCa tissues and cells, and PCa patients with high PODXL2 expressions owned poorer progression-free survival, and PODXL2 was interrelated to the TNM stage and distant metastasis of PCa. Interference with PODXL2 weakened PCa cell proliferation, invasion, EMT, and immune escape, while promoting PCa cell apoptosis. Furthermore, silencing PODXL2 reduced PCa cell proliferation, invasion, EMT, immune escape, and boosted cell apoptosis, which involved PI3K/AKT pathway inactivation. Meanwhile, PODXL2 knockdown reduced the tumor weight of PCa and promoted apoptosis in vivo. Interference with PODXL2 inhibited PCa cell proliferation, invasion, EMT, immune escape, enhanced cell apoptosis, and involved PI3K/AKT pathway inactivation.
Collapse
Affiliation(s)
- Yaowu Su
- Department of Urology, Ningbo Beilun District People's Hospital, Ningbo City, Zhejiang, China
| | - Liang Zhou
- Department of Urology, Ningbo Beilun District People's Hospital, Ningbo City, Zhejiang, China
| | - Qin Yu
- Department of Urology, Ningbo Beilun District People's Hospital, Ningbo City, Zhejiang, China
| | - Weihua Liu
- Department of Urology, Ningbo Beilun District People's Hospital, Ningbo City, Zhejiang, China
| | - Wei Liu
- Department of Urology, Ningbo Beilun District People's Hospital, Ningbo City, Zhejiang, China
| |
Collapse
|
5
|
Li M, Chen H, Yang X, Zhang W, Ma C, Wang Q, Wang X, Gao R. Conditional knockout of the NSD2 gene in mouse intestinal epithelial cells inhibits colorectal cancer progression. Animal Model Exp Med 2025; 8:322-331. [PMID: 38400589 PMCID: PMC11871126 DOI: 10.1002/ame2.12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Nuclear receptor-binding SET domain 2 (NSD2) is a histone methyltransferase, that catalyzes dimethylation of lysine 36 of histone 3 (H3K36me2) and is associated with active transcription of a series of genes. NSD2 is overexpressed in multiple types of solid human tumors and has been proven to be related to unfavorable prognosis in several types of tumors. METHODS We established a mouse model in which the NSD2 gene was conditionally knocked out in intestinal epithelial cells. We used azoxymethane and dextran sodium sulfate to chemically induce murine colorectal cancer. The development of colorectal tumors were investigated using post-necropsy quantification, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). RESULTS Compared with wild-type (WT) control mice, NSD2fl/fl-Vil1-Cre mice exhibited significantly decreased tumor numbers, histopathological changes, and cytokine expression in colorectal tumors. CONCLUSIONS Conditional knockout of NSD2 in intestinal epithelial cells significantly inhibits colorectal cancer progression.
Collapse
Affiliation(s)
- Mengyuan Li
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Hanxue Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xingjiu Yang
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Wenlong Zhang
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Chengyan Ma
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Qinghong Wang
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Xinpei Wang
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| | - Ran Gao
- National Human Diseases Animal Model Resource CenterInstitute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
| |
Collapse
|
6
|
Zhao Z, An R, Tang W, Chen J, Xu R, Kan L. Modulating Treg cell activity in prostate cancer via chitosan nanoparticles loaded with si-BATF/PRDM1. Int Immunopharmacol 2025; 144:113445. [PMID: 39577215 DOI: 10.1016/j.intimp.2024.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/30/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
Prostate cancer is a significant health issue, with regulatory T (Treg) cells playing a crucial role in its progression. This study explores the potential of chitosan-modified magnetic nanoparticles loaded with si-BATF/PRDM1 to target Treg cell activity in impeding prostate cancer development. By understanding the function of BATF and PRDM1 in Treg cells, the research demonstrates their central involvement in prostate cancer progression. Through experiments in vitro and in vivo, including single-cell sequencing and gene silencing assays, chitosan nanoparticles efficiently deliver siRNA, inhibiting BATF and PRDM1 expression. This inhibition leads to suppressed tumor growth and metastasis in prostate cancer models. The findings highlight the promise of nanoparticle-based approaches in modulating Treg cell activity for prostate cancer therapy, offering a potential avenue for precision medicine interventions in combating this prevalent malignancy.
Collapse
Affiliation(s)
- ZhanPeng Zhao
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - RunZe An
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - WenMin Tang
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - JiaHua Chen
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Rui Xu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
7
|
Hintzen JCJ, Mecinović J. Peptide-based inhibitors of epigenetic proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:25-65. [PMID: 40122647 DOI: 10.1016/bs.pmbts.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Epigenetic drug discovery has become an integral part of medicinal chemistry in the past two decades. Targeting epigenetic proteins-enzymes that modify histone proteins and DNA (writers and erasers) and proteins that recognize such modifications (readers)-has been firmly established as a medicinal strategy for treatment of many human diseases, including cancer and neurological disorders. In this chapter, we systematically describe peptide-based inhibitors of structurally and functionally diverse classes of epigenetic proteins. We show that epigenetic writers, such as DNA methyltransferases, histone methyltransferases and histone acetyltransferases, can be efficiently inhibited by peptides possessing nonproteinogenic amino acids. Moreover, the activity of epigenetic erasers, including TET enzymes, histone demethylases, and histone deacetylases, can be selectively modulated by diverse linear and cyclic peptides. Furthermore, we discuss chromatin-binding epigenetic reader proteins that can be inhibited by histone-mimicking peptides. Overall, this chapter highlights that peptides provide an important molecular platform for epigenetic drug discovery programmes in academia and industry.
Collapse
Affiliation(s)
- Jordi C J Hintzen
- Department of Chemistry and Molecular Biology, Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden.
| | - Jasmin Mecinović
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
8
|
Liu SC. Comprehensive analysis of clinical and biological value of ING family genes in liver cancer. World J Gastrointest Oncol 2024; 16:2580-2597. [DOI: 10.4251/wjgo.v16.i6.2580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Liver cancer (LIHC) is a malignant tumor that occurs in the liver and has a high mortality in cancer. The ING family genes were identified as tumor suppressor genes. Dysregulated expression of these genes can lead to cell cycle arrest, senescence and/or apoptosis. ING family genes are promising targets for anticancer therapy. However, their role in LIHC is still not well understood.
AIM To have a better understanding of the important roles of ING family members in LIHC.
METHODS A series of bioinformatics approaches (including gene expression analysis, genetic alteration analysis, survival analysis, immune infiltration analysis, prediction of upstream microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) of ING1, and ING1-related gene functional enrichment analysis) was applied to study the expression profile, clinical relationship, prognostic significance and immune infiltration of ING in LIHC. The relationship between ING family genes expression and tumor associated immune checkpoints was investigated in LIHC. The molecular mechanism of ING1 mediated hepatocarcinogenesis was preliminarily discussed.
RESULTS mRNA/protein expression of different ING family genes in LIHC was analyzed in different databases, showing that ING family genes were highly expressed in LIHC. In 47 samples from 366 LIHC patients, the ING family genes were altered at a rate of 13%. By comprehensively analyzing the expression, clinical pathological parameters and prognostic value of ING family genes, ING1/5 was identified. ING1/5 was related to poor prognosis of LIHC, suggesting that they may play key roles in LIHC tumorigenesis and progression. One of the target miRNAs of ING1 was identified as hsa-miR-214-3p. Two upstream lncRNAs of hsa-miR-214-3p, U91328.1, and HCG17, were identified. At the same time, we found that the expression of ING family genes was correlated with immune cell infiltration and immune checkpoint genes.
CONCLUSION This study lays a foundation for further research on the potential mechanism and clinical value of ING family genes in the treatment and prognosis of LIHC.
Collapse
Affiliation(s)
- Shi-Cai Liu
- School of Medical Information, Wannan Medical College, Wuhu 241002, Anhui Province, China
| |
Collapse
|
9
|
Liu SC. Comprehensive analysis of clinical and biological value of ING family genes in liver cancer. World J Gastrointest Oncol 2024; 16:2592-2609. [PMID: 38994155 PMCID: PMC11236222 DOI: 10.4251/wjgo.v16.i6.2592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Liver cancer (LIHC) is a malignant tumor that occurs in the liver and has a high mortality in cancer. The ING family genes were identified as tumor suppressor genes. Dysregulated expression of these genes can lead to cell cycle arrest, senescence and/or apoptosis. ING family genes are promising targets for anticancer therapy. However, their role in LIHC is still not well understood. AIM To have a better understanding of the important roles of ING family members in LIHC. METHODS A series of bioinformatics approaches (including gene expression analysis, genetic alteration analysis, survival analysis, immune infiltration analysis, prediction of upstream microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) of ING1, and ING1-related gene functional enrichment analysis) was applied to study the expression profile, clinical relationship, prognostic significance and immune infiltration of ING in LIHC. The relationship between ING family genes expression and tumor associated immune checkpoints was investigated in LIHC. The molecular mechanism of ING1 mediated hepatocarcinogenesis was preliminarily discussed. RESULTS mRNA/protein expression of different ING family genes in LIHC was analyzed in different databases, showing that ING family genes were highly expressed in LIHC. In 47 samples from 366 LIHC patients, the ING family genes were altered at a rate of 13%. By comprehensively analyzing the expression, clinical pathological parameters and prognostic value of ING family genes, ING1/5 was identified. ING1/5 was related to poor prognosis of LIHC, suggesting that they may play key roles in LIHC tumorigenesis and progression. One of the target miRNAs of ING1 was identified as hsa-miR-214-3p. Two upstream lncRNAs of hsa-miR-214-3p, U91328.1, and HCG17, were identified. At the same time, we found that the expression of ING family genes was correlated with immune cell infiltration and immune checkpoint genes. CONCLUSION This study lays a foundation for further research on the potential mechanism and clinical value of ING family genes in the treatment and prognosis of LIHC.
Collapse
Affiliation(s)
- Shi-Cai Liu
- School of Medical Information, Wannan Medical College, Wuhu 241002, Anhui Province, China
| |
Collapse
|
10
|
Song D, Hu F, Huang C, Lan J, She X, Zhao C, Wu H, Liu A, Wu Q, Chen Y, Luo X, Feng Y, Yang X, Xu C, Hu J, Wang G. Tiam1 methylation by NSD2 promotes Rac1 signaling activation and colon cancer metastasis. Proc Natl Acad Sci U S A 2023; 120:e2305684120. [PMID: 38113258 PMCID: PMC10756287 DOI: 10.1073/pnas.2305684120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/03/2023] [Indexed: 12/21/2023] Open
Abstract
Metastasis is a major cause of cancer therapy failure and mortality. However, targeting metastatic seeding and colonization remains a significant challenge. In this study, we identified NSD2, a histone methyltransferase responsible for dimethylating histone 3 at lysine 36, as being overexpressed in metastatic tumors. Our findings suggest that NSD2 overexpression enhances tumor metastasis both in vitro and in vivo. Further analysis revealed that NSD2 promotes tumor metastasis by activating Rac1 signaling. Mechanistically, NSD2 combines with and activates Tiam1 (T lymphoma invasion and metastasis 1) and promotes Rac1 signaling by methylating Tiam1 at K724. In vivo and in vitro studies revealed that Tiam1 K724 methylation could be a predictive factor for cancer prognosis and a potential target for metastasis inhibition. Furthermore, we have developed inhibitory peptide which was proved to inhibit tumor metastasis through blocking the interaction between NSD2 and Tiam1. Our results demonstrate that NSD2-methylated Tiam1 promotes Rac1 signaling and cancer metastasis. These results provide insights into the inhibition of tumor metastasis.
Collapse
Affiliation(s)
- Da Song
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Fuqing Hu
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Changsheng Huang
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jingqin Lan
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xiaowei She
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Chongchong Zhao
- Department of Protein Chemistry and Proteinomics Facility at Technology Center for Protein Sciences, Tsinghua University, Beijing100084, China
| | - Hong Wu
- Department of Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute Sichuan Cancer Center, School of Medicine University of Electronic Science and Technology, Chengdu610000, China
| | - Anyi Liu
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Qi Wu
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yaqi Chen
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xuelai Luo
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yongdong Feng
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xiangping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Chuan Xu
- Department of Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute Sichuan Cancer Center, School of Medicine University of Electronic Science and Technology, Chengdu610000, China
| | - Junbo Hu
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Guihua Wang
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| |
Collapse
|
11
|
Li Q, Zhu J, Zhang Y, Pan Y, Li Z, Wang M, Gao Y, Feng D, He X, Zhang C. Association of WHSC1/NSD2 and T-cell infiltration with prostate cancer metastasis and prognosis. Sci Rep 2023; 13:21629. [PMID: 38062230 PMCID: PMC10703870 DOI: 10.1038/s41598-023-48906-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Progress in immunotherapy for prostate cancer (PCa) lags that for other cancers, mainly because of limited immune infiltration in PCa. This study aimed to assess the feasibility of NSD2 as an immunotherapeutic target in PCa. Immunohistochemistry was performed to evaluate the expression pattern of NSD2 in 34 cases of benign prostatic hyperplasia (BPH), 36 cases of prostatic intraepithelial neoplasia (PIN), and 57 cases of PCa, including 19 cases of metastatic castration-resistant prostatic cancer (mCRPC). Single-cell RNA sequencing and gene set enrichment analysis (GSEA) were used to correlate NSD2 with certain downstream pathways. Furthermore, the Immuno-Oncology-Biological-Research (IOBR) software package was used to analyze the potential roles of NSD2 in the tumor microenvironment. We found that the positive expression rate of NSD2 increased progressively in BPH, PIN and PCa. mCRPC had the highest staining intensity for NSD2. High NSD2 expression was positively correlated with the infiltration level of CD4+ tumor-infiltrating lymphocytes (TILs) and negatively correlated with that of CD8+ TILs. Importantly, a new immune classification based on NSD2 expression and CD4+ TILs and CD8+ TILs was successfully used to stratify PCa patients based on OS.PSA and CD4+ TILs are independent risk factors for PCa bone metastasis. This study demonstrates a novel role for NSD2 in defining immune infiltrate on in PCa and highlights the great potential for its application in immunotherapy response evaluation for prostate malignancies.
Collapse
Affiliation(s)
- Qiheng Li
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Jiang Zhu
- Department of Urology Surgery, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yang Zhang
- Department of General Surgery, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yun Pan
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Zhengjin Li
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Min Wang
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Yixuan Gao
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Dongmei Feng
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Xiaoyong He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Dali University, Yunnan, China
| | - Chunmei Zhang
- Department of Pathology, The First Affiliated Hospital of Dali University, Yunnan, China.
| |
Collapse
|
12
|
Mei W, Dong Y, Gu Y, Kapoor A, Lin X, Su Y, Vega Neira S, Tang D. IQGAP3 is relevant to prostate cancer: A detailed presentation of potential pathomechanisms. J Adv Res 2023; 54:195-210. [PMID: 36681115 DOI: 10.1016/j.jare.2023.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/12/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION IQGAP3 possesses oncogenic actions; its impact on prostate cancer (PC) remains unclear. OBJECTIVE We will investigate IQGAP3's association with PC progression, key mechanisms, prognosis, and immune evasion. METHODS IQGAP3 expression in PC was examined by immunohistochemistry and using multiple datasets. IQGAP3 network was analyzed for pathway alterations and used to construct a multigene signature (SigIQGAP3NW). SigIQGAP3NW was characterized using LNCaP cell-derived castration-resistant PCs (CRPCs), analyzed for prognostic value in 26 human cancer types, and studied for association with immune evasion. RESULTS Increases in IQGAP3 expression associated with PC tumorigenesis, tumor grade, metastasis, and p53 mutation. IQGAP3 correlative genes were dominantly involved in mitosis. IQGAP3 correlated with PLK1 and TOP2A expression at Spearman correlation/R = 0.89 (p ≤ 3.069e-169). Both correlations were enriched in advanced PCs and Taxane-treated CRPCs and occurred at high levels (R > 0.8) in multiple cancer types. SigIQGAP3NW effectively predicted cancer recurrence and poor prognosis in independent PC cohorts and across 26 cancer types. SigIQGAP3NW stratified PC recurrence after adjustment for age at diagnosis, grade, stage, and surgical margin. SigIQGAP3NW component genes were upregulated in PC, metastasis, LNCaP cell-produced CRPC, and showed an association with p53 mutation. SigIQGAP3NW correlated with immune cell infiltration, including Treg in PC and other cancers. RELT, a SigIQGAP3NW component gene, was associated with elevations of multiple immune checkpoints and the infiltration of Treg and myeloid-derived suppressor cells in PC and across cancer types. RELT and SigIQGAP3NW predict response to immune checkpoint blockade (ICB) therapy. CONCLUSIONS In multiple cancers, IQGAP3 robustly correlates with PLK1 and TOP2A expression, and SigIQGAP3NW and/or RELT effectively predict mortality risk and/or resistance to ICB therapy. PLK1 and TOP2A inhibitors should be investigated for treating cancers with elevated IQGAP3 expression. SigIQGAP3NW and/or RELT can be developed for clinical applications in risk stratification and management of ICB therapy.
Collapse
Affiliation(s)
- Wenjuan Mei
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Jiangxi, China; Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| | - Ying Dong
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yan Gu
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Anil Kapoor
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Xiaozeng Lin
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yingying Su
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Sandra Vega Neira
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada.
| |
Collapse
|
13
|
Ma Z, Bolinger AA, Chen H, Zhou J. Drug Discovery Targeting Nuclear Receptor Binding SET Domain Protein 2 (NSD2). J Med Chem 2023; 66:10991-11026. [PMID: 37578463 PMCID: PMC11092389 DOI: 10.1021/acs.jmedchem.3c00948] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear receptor binding SET domain proteins (NSDs) catalyze the mono- or dimethylation of histone 3 lysine 36 (H3K36me1 and H3K36me2), using S-adenosyl-l-methionine (SAM) as a methyl donor. As a key member of the NSD family of proteins, NSD2 plays an important role in the pathogenesis and progression of various diseases such as cancers, inflammations, and infectious diseases, serving as a promising drug target. Developing potent and specific NSD2 inhibitors may provide potential novel therapeutics. Several NSD2 inhibitors and degraders have been discovered while remaining in the early stage of drug development. Excitingly, KTX-1001, a selective NSD2 inhibitor, has entered clinical trials. In this Perspective, the structures and functions of NSD2, its roles in various human diseases, and the recent advances in drug discovery strategies targeting NSD2 have been summarized. The challenges, opportunities, and future directions for developing NSD2 inhibitors and degraders are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
14
|
Maselli FM, Giuliani F, Laface C, Perrone M, Melaccio A, De Santis P, Santoro AN, Guarini C, Iaia ML, Fedele P. Immunotherapy in Prostate Cancer: State of Art and New Therapeutic Perspectives. Curr Oncol 2023; 30:5769-5794. [PMID: 37366915 DOI: 10.3390/curroncol30060432] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Prostate cancer (PC) is the most common type of tumor in men. In the early stage of the disease, it is sensitive to androgen deprivation therapy. In patients with metastatic castration-sensitive prostate cancer (mHSPC), chemotherapy and second-generation androgen receptor therapy have led to increased survival. However, despite advances in the management of mHSPC, castration resistance is unavoidable and many patients develop metastatic castration-resistant disease (mCRPC). In the past few decades, immunotherapy has dramatically changed the oncology landscape and has increased the survival rate of many types of cancer. However, immunotherapy in prostate cancer has not yet given the revolutionary results it has in other types of tumors. Research into new treatments is very important for patients with mCRPC because of its poor prognosis. In this review, we focus on the reasons for the apparent intrinsic resistance of prostate cancer to immunotherapy, the possibilities for overcoming this resistance, and the clinical evidence and new therapeutic perspectives regarding immunotherapy in prostate cancer with a look toward the future.
Collapse
Affiliation(s)
| | | | - Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Assunta Melaccio
- Medical Oncology, San Paolo Hospital, ASL Bari, 70123 Bari, Italy
| | - Pierluigi De Santis
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | | | - Chiara Guarini
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Maria Laura Iaia
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
15
|
Recent advances in nuclear receptor-binding SET domain 2 (NSD2) inhibitors: An update and perspectives. Eur J Med Chem 2023; 250:115232. [PMID: 36863225 DOI: 10.1016/j.ejmech.2023.115232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Nuclear receptor-binding SET domain 2 (NSD2) is a histone lysine methyltransferase (HKMTase), which is mainly responsible for the di-methylation of lysine residues on histones, which are involved in the regulation of various biological pathways. The amplification, mutation, translocation, or overexpression of NSD2 can be linked to various diseases. NSD2 has been identified as a promising drug target for cancer therapy. However, relatively few inhibitors have been discovered and this field still needs further exploration. This review provides a detailed summary of the biological studies related to NSD2 and the current progress of inhibitors, research, and describes the challenges in the development of NSD2 inhibitors, including SET (su(var), enhancer-of-zeste, trithorax) domain inhibitors and PWWP1 (proline-tryptophan-tryptophan-proline 1) domain inhibitors. Through analysis and discussion of the NSD2-related crystal complexes and the biological evaluation of related small molecules, we hope to provide insights for future drug design and optimization methods that will stimulate the development of novel NSD2 inhibitors.
Collapse
|
16
|
Xu C, Zhao S, Cai L. Epigenetic (De)regulation in Prostate Cancer. Cancer Treat Res 2023; 190:321-360. [PMID: 38113006 PMCID: PMC11421856 DOI: 10.1007/978-3-031-45654-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Prostate cancer (PCa) is a heterogeneous disease exhibiting both genetic and epigenetic deregulations. Epigenetic alterations are defined as changes not based on DNA sequence, which include those of DNA methylation, histone modification, and chromatin remodeling. Androgen receptor (AR) is the main driver for PCa and androgen deprivation therapy (ADT) remains a backbone treatment for patients with PCa; however, ADT resistance almost inevitably occurs and advanced diseases develop termed castration-resistant PCa (CRPC), due to both genetic and epigenetic changes. Due to the reversible nature of epigenetic modifications, inhibitors targeting epigenetic factors have become promising anti-cancer agents. In this chapter, we focus on recent studies about the dysregulation of epigenetic regulators crucially involved in the initiation, development, and progression of PCa and discuss the potential use of inhibitors targeting epigenetic modifiers for treatment of advanced PCa.
Collapse
Affiliation(s)
- Chenxi Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shuai Zhao
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ling Cai
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
17
|
Tumor-augmenting Effect of Histone Methyltransferase WHSC1 on Colorectal Cancer Via Epigenetic Upregulation of TACC3 and PI3K/Akt Activation. Arch Med Res 2022; 53:658-665. [DOI: 10.1016/j.arcmed.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
18
|
The Immunotherapy and Immunosuppressive Signaling in Therapy-Resistant Prostate Cancer. Biomedicines 2022; 10:biomedicines10081778. [PMID: 35892678 PMCID: PMC9394279 DOI: 10.3390/biomedicines10081778] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer is one of the most common malignant tumors in men. Initially, it is androgen-dependent, but it eventually develops into castration-resistant prostate cancer (CRPC), which is incurable with current androgen receptor signaling target therapy and chemotherapy. Immunotherapy, specifically with immune checkpoint inhibitors, has brought hope for the treatment of this type of prostate cancer. Approaches such as vaccines, adoptive chimeric antigen receptor-T (CAR-T) cells, and immune checkpoint inhibitors have been employed to activate innate and adaptive immune responses to treat prostate cancer, but with limited success. Only Sipuleucel-T and the immune checkpoint inhibitor pembrolizumab are approved by the US FDA for the treatment of limited prostate cancer patients. Prostate cancer has a complex tumor microenvironment (TME) in which various immunosuppressive molecules and mechanisms coexist and interact. Additionally, prostate cancer is considered a “cold” tumor with low levels of tumor mutational burden, low amounts of antigen-presenting and cytotoxic T-cell activation, and high levels of immunosuppressive molecules including cytokines/chemokines. Thus, understanding the mechanisms of immunosuppressive signaling activation and immune evasion will help develop more effective treatments for prostate cancer. The purpose of this review is to summarize emerging advances in prostate cancer immunotherapy, with a particular focus on the molecular mechanisms that lead to immune evasion in prostate cancer. At the same time, we also highlight some potential therapeutic targets to provide a theoretical basis for the treatment of prostate cancer.
Collapse
|
19
|
Topchu I, Pangeni RP, Bychkov I, Miller SA, Izumchenko E, Yu J, Golemis E, Karanicolas J, Boumber Y. The role of NSD1, NSD2, and NSD3 histone methyltransferases in solid tumors. Cell Mol Life Sci 2022; 79:285. [PMID: 35532818 PMCID: PMC9520630 DOI: 10.1007/s00018-022-04321-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
NSD1, NSD2, and NSD3 constitute the nuclear receptor-binding SET Domain (NSD) family of histone 3 lysine 36 (H3K36) methyltransferases. These structurally similar enzymes mono- and di-methylate H3K36, which contribute to the maintenance of chromatin integrity and regulate the expression of genes that control cell division, apoptosis, DNA repair, and epithelial-mesenchymal transition (EMT). Aberrant expression or mutation of members of the NSD family is associated with developmental defects and the occurrence of some types of cancer. In this review, we discuss the effect of alterations in NSDs on cancer patient's prognosis and response to treatment. We summarize the current understanding of the biological functions of NSD proteins, focusing on their activities and the role in the formation and progression in solid tumors biology, as well as how it depends on tumor etiologies. This review also discusses ongoing efforts to develop NSD inhibitors as a promising new class of cancer therapeutic agents.
Collapse
Affiliation(s)
- Iuliia Topchu
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Rajendra P Pangeni
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
- Department of Natural and Applied Sciences, Nexus Institute of Research and Innovation (NIRI), Sitapakha, Mahalaxmi-4, Lalitpur, Bagmati, 44700, Nepal
| | - Igor Bychkov
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Sven A Miller
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Evgeny Izumchenko
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, IL, 60637, USA
| | - Jindan Yu
- Department of Medicine-Hematology/Oncology and Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Erica Golemis
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine at Temple University, 3500 North Broad St, Philadelphia, PA, 19140, USA
| | - John Karanicolas
- Molecular Therapeutics Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, 19140, USA
| | - Yanis Boumber
- Division of Hematology/Oncology, Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA.
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, ul. 74 Karl Marks, Kazan, 420012, Russia.
| |
Collapse
|
20
|
Ren J, Li N, Pei S, Lian Y, Li L, Peng Y, Liu Q, Guo J, Wang X, Han Y, Zhang G, Wang H, Li Y, Jiang J, Li Q, Tan M, Peng J, Hu G, Xiao Y, Li X, Lin M, Qin J. Histone methyltransferase WHSC1 loss dampens MHC-I antigen presentation pathway to impair IFN-γ-stimulated anti-tumor immunity. J Clin Invest 2022; 132:153167. [PMID: 35230972 PMCID: PMC9012282 DOI: 10.1172/jci153167] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
IFN-γ–stimulated MHC class I (MHC-I) antigen presentation underlies the core of antitumor immunity. However, sustained IFN-γ signaling also enhances the programmed death ligand 1 (PD-L1) checkpoint pathway to dampen antitumor immunity. It remains unclear how these opposing effects of IFN-γ are regulated. Here, we report that loss of the histone dimethyltransferase WHSC1 impaired the antitumor effect of IFN-γ signaling by transcriptional downregulation of the MHC-I machinery without affecting PD-L1 expression in colorectal cancer (CRC) cells. Whsc1 loss promoted tumorigenesis via a non-cell-autonomous mechanism in an Apcmin/+ mouse model, CRC organoids, and xenografts. Mechanistically, we found that the IFN-γ/STAT1 signaling axis stimulated WHSC1 expression and, in turn, that WHSC1 directly interacted with NLRC5 to promote MHC-I gene expression, but not that of PD-L1. Concordantly, silencing Whsc1 diminished MHC-I levels, impaired antitumor immunity, and blunted the effect of immune checkpoint blockade. Patient cohort analysis revealed that WHSC1 expression positively correlated with enhanced MHC-I expression, tumor-infiltrating T cells, and favorable disease outcomes. Together, our findings establish a tumor-suppressive function of WHSC1 that relays IFN-γ signaling to promote antigen presentation on CRC cells and provide a rationale for boosting WHSC1 activity in immunotherapy.
Collapse
Affiliation(s)
- Jiale Ren
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Ni Li
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Siyu Pei
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Yannan Lian
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Li Li
- Department of General Surgery, Department of Gastroenterology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuchong Peng
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Shanghai, China
| | - Jiacheng Guo
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Xuege Wang
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Ying Han
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Guoying Zhang
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Hanling Wang
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Yaqi Li
- Department of Oncology, Fudan University, Shanghai, China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Shanghai, China
| | - Qintong Li
- Department of Obstetrics, Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junjie Peng
- Department of Oncology, Fudan University, Shanghai, China
| | - Guohong Hu
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Yichuan Xiao
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| | - Xiong Li
- Center for Clinical Precision Pharmacy, The First Affiliated Hospital, School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Moubin Lin
- Department of General Surgery, Department of Gastroenterology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Qin
- Shanghai Jiao Tong University School of Medicine (SJTUSM) & Chinese Academy, Shanghai Institute of Nutrition and Health, Shanghai, China
| |
Collapse
|
21
|
Shrestha A, Kim N, Lee SJ, Jeon YH, Song JJ, An H, Cho SJ, Kadayat TM, Chin J. Targeting the Nuclear Receptor-Binding SET Domain Family of Histone Lysine Methyltransferases for Cancer Therapy: Recent Progress and Perspectives. J Med Chem 2021; 64:14913-14929. [PMID: 34488340 DOI: 10.1021/acs.jmedchem.1c01116] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear receptor-binding SET domain (NSD) proteins are a class of histone lysine methyltransferases (HKMTases) that are amplified, mutated, translocated, or overexpressed in various types of cancers. Several campaigns to develop NSD inhibitors for cancer treatment have begun following recent advances in knowledge of NSD1, NSD2, and NSD3 structures and functions as well as the U.S. FDA approval of the first HKMTase inhibitor (tazemetostat, an EZH2 inhibitor) to treat follicular lymphoma and epithelioid sarcoma. This perspective highlights recent findings on the structures of catalytic su(var), enhancer-of-zeste, trithorax (SET) domains and other functional domains of NSD methyltransferases. In addition, recent progress and efforts to discover NSD-specific small molecule inhibitors against cancer-targeting catalytic SET domains, plant homeodomains, and proline-tryptophan-tryptophan-proline domains are summarized.
Collapse
Affiliation(s)
- Aarajana Shrestha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Nayeon Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Su-Jeong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Ji-Joon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hongchan An
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Sung Jin Cho
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Tara Man Kadayat
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Republic of Korea
| |
Collapse
|
22
|
Want MY, Karasik E, Gillard B, McGray AJR, Battaglia S. Inhibition of WHSC1 Allows for Reprogramming of the Immune Compartment in Prostate Cancer. Int J Mol Sci 2021; 22:ijms22168742. [PMID: 34445452 PMCID: PMC8395944 DOI: 10.3390/ijms22168742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy initially demonstrated promising results in prostate cancer (PCa), but the modest or negative results of many recent trials highlight the need to overcome the poor immunogenicity of this cancer. The design of effective therapies for PCa is challenged by the limited understanding of the interface between PCa cells and the immune system in mediating therapeutic resistance. Prompted by our recent observations that elevated WHSC1, a histone methyltransferase known to promote progression of numerous cancers, can silence antigen processing and presentation in PCa, we performed a single-cell analysis of the intratumoral immune dynamics following in vivo pharmacological inhibition of WHSC1 in mice grafted with TRAMP C2 cells. We observed an increase in cytotoxic T and NK cells accumulation and effector function, accompanied by a parallel remodeling of the myeloid compartment, as well as abundant shifts in key ligand–receptor signaling pathways highlighting changes in cell-to-cell communication driven by WHSC1 inhibition. This comprehensive profiling of both immune and molecular changes during the course of WHSC1 blockade deepens our fundamental understanding of how anti-tumor immune responses develop and can be enhanced therapeutically for PCa.
Collapse
Affiliation(s)
- Muzamil Y. Want
- Department of Immunology, Division of Translational Immuno Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.Y.W.); (A.J.R.M.)
| | - Ellen Karasik
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.K.); (B.G.)
| | - Bryan Gillard
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (E.K.); (B.G.)
| | - A. J. Robert McGray
- Department of Immunology, Division of Translational Immuno Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.Y.W.); (A.J.R.M.)
| | - Sebastiano Battaglia
- Department of Immunology, Division of Translational Immuno Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; (M.Y.W.); (A.J.R.M.)
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence:
| |
Collapse
|
23
|
Chen M, Li S, Liang Y, Zhang Y, Luo D, Wang W. Integrative Multi-Omics Analysis of Identified NUF2 as a Candidate Oncogene Correlates With Poor Prognosis and Immune Infiltration in Non-Small Cell Lung Cancer. Front Oncol 2021; 11:656509. [PMID: 34178642 PMCID: PMC8222979 DOI: 10.3389/fonc.2021.656509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023] Open
Abstract
Background Lung cancer is one of the most common malignant tumors and the leading causes of cancer-related deaths worldwide. As a component of the nuclear division cycle 80 complex, NUF2 is a part of the conserved protein complex related to the centromere. Although the high expression of NUF2 has been reported in many different types of human cancers, the multi-omics analysis in non-small cell lung cancer (NSCLC) of NUF2 remains to be elucidated. Methods In this analysis, NUF2 expression difference analysis in non-small cell lung cancer was evaluated by Oncomine, TIMER, GEO, and TCGA database. And the prognosis analysis of NUF2 based on Kaplan-Meier was performed. R language was used to analyze the differential expression genes, functional annotation and protein-protein interaction (PPI). GSEA analysis of differential expression genes was also carried out. Mechanism analysis about exploring the characteristic of NUF2, multi-omics, and correlation analysis was carried out using UALCAN, cBioportal, GEPIA, TIMER, and TISIDB, respectively. Results The expression of NUF2 in NSCLC, both lung adenocarcinoma (LUAD) and squamous lung cancer (LUSC), was significantly higher than that in normal tissues. The analysis of UALCAN database samples proved that NUF2 expression was connected with stage and smoking habits. Meanwhile, the overall survival curve also validated that high expression of NUF2 has a poorer prognosis in NSCLC. GO, KEGG, GSEA, subcellular location from COMPARTMENTS indicated that NUF2 may regulate the cell cycle. Correlation analysis also showed that NUF2 was mainly positively associated with cell cycle and tumor-related genes. NUF2 altered group had a poorer prognosis than unaltered group in NSCLC. Immune infiltration analysis showed that the NUF2 expression mainly have negatively correlation with immune cells and immune subtypes in LUAD and LUSC. Furthermore, quantitative PCR was used to validate the expression difference of NUF2 in LUAD and LUSC. Conclusion Our findings elucidated that NUF2 may play an important role in cell cycle, and significantly associated with tumor-related gene in NSCLC; we consider that NUF2 may be a prognostic biomarkers in NSCLC.
Collapse
Affiliation(s)
- Mengqing Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shangkun Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Liang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yue Zhang
- Department of Respiratory and Critical Care Medicine, Southwest Medical University, Luzhou, China
| | - Dan Luo
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|