1
|
Cheng L, Wang Y, Zhang Y. Dying to survive: harnessing inflammatory cell death for better immunotherapy. Trends Cancer 2025; 11:376-402. [PMID: 39986988 DOI: 10.1016/j.trecan.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Immunotherapy has transformed cancer treatment paradigms, but its effectiveness depends largely on the immunogenicity of the tumor. Unfortunately, the high resemblance of cancer to normal tissues makes most tumors immunologically 'cold', with a poor response to immunotherapy. Danger signals are critical for breaking immune tolerance and mobilizing robust, long-lasting antitumor immunity. Recent studies have identified inflammatory cell death modalities and their power in providing danger signals to trigger optimal tumor suppression. However, key mediators of inflammatory cell death are preferentially silenced during early tumor immunoediting. Strategies to rejuvenate inflammatory cell death hold great promise for broadening immunotherapy-responsive tumors. In this review, we examine how inflammatory cell death enhances tumor immunogenicity, how it is suppressed during immunoediting, and the potential of harnessing it for improved immunotherapy.
Collapse
Affiliation(s)
- Long Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yibo Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ying Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Seetharam D, Chandar J, Ramsoomair CK, Desgraves JF, Alvarado Medina A, Hudson AJ, Amidei A, Castro JR, Govindarajan V, Wang S, Zhang Y, Sonabend AM, Mendez Valdez MJ, Maric D, Govindarajan V, Rivas SR, Lu VM, Tiwari R, Sharifi N, Thomas E, Alexander M, DeMarino C, Johnson K, De La Fuente MI, Alshiekh Nasany R, Noviello TMR, Ivan ME, Komotar RJ, Iavarone A, Nath A, Heiss J, Ceccarelli M, Chiappinelli KB, Figueroa ME, Bayik D, Shah AH. Activating antiviral immune responses potentiates immune checkpoint inhibition in glioblastoma models. J Clin Invest 2025; 135:e183745. [PMID: 40091830 PMCID: PMC11910234 DOI: 10.1172/jci183745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025] Open
Abstract
Viral mimicry refers to the activation of innate antiviral immune responses due to the induction of endogenous retroelements (REs). Viral mimicry augments antitumor immune responses and sensitizes solid tumors to immunotherapy. Here, we found that targeting what we believe to be a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression, and poor immune cell infiltration. Targeting ZNF638 decreased H3K9 trimethylation, increased REs, and activated intracellular dsRNA signaling cascades. Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in diverse GBM models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate IFN signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1, and perivascular CD8 cell infiltration, suggesting that dsRNA signaling may mediate response to immunotherapy. Finally, low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in patients with rGBM and patients with melanoma. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.
Collapse
Affiliation(s)
- Deepa Seetharam
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jay Chandar
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Christian K. Ramsoomair
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jelisah F. Desgraves
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alexandra Alvarado Medina
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Anna Jane Hudson
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ava Amidei
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jesus R. Castro
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Vaidya Govindarajan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sarah Wang
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Yong Zhang
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery and
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Mynor J. Mendez Valdez
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Vasundara Govindarajan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Sarah R. Rivas
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Victor M. Lu
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ritika Tiwari
- Desai Sethi Urology Institute University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Nima Sharifi
- Desai Sethi Urology Institute University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Emmanuel Thomas
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Marcus Alexander
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Catherine DeMarino
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Kory Johnson
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - Macarena I. De La Fuente
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Ruham Alshiekh Nasany
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
| | - Teresa Maria Rosaria Noviello
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Biostatistics and Bioinformatics Shared Resource of the Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michael E. Ivan
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ricardo J. Komotar
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Antonio Iavarone
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland, USA
| | - John Heiss
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michele Ceccarelli
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Biostatistics and Bioinformatics Shared Resource of the Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Katherine B. Chiappinelli
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Maria E. Figueroa
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Defne Bayik
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Ashish H. Shah
- Department of Neurosurgery and
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Schroers-Martin JG, Advani R. Integrating Novel Agents Into the Clinical Management of Classic Hodgkin Lymphoma. JCO Oncol Pract 2025; 21:300-312. [PMID: 39265129 DOI: 10.1200/op.24.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/11/2024] [Accepted: 08/08/2024] [Indexed: 09/14/2024] Open
Abstract
Classic Hodgkin lymphoma (cHL) is highly curable at all stages. Research efforts over the past few decades have largely focused on interim PET-adapted strategies for therapy de-escalation or intensification. The overarching goals have been to increase cure rates, minimize potential therapy-related effects, and optimize survivorship. Better understanding of the biology of cHL has led to the development and approval of effective novel agents including the antibody-drug conjugate brentuximab vedotin and the checkpoint inhibitor immunotherapies. In this review, we discuss recent trial results and how these agents are integrated into clinical practice with the goal of further optimizing outcomes.
Collapse
Affiliation(s)
| | - Ranjana Advani
- Department of Medicine, Division of Oncology, Stanford University Medical Center, Stanford, CA
| |
Collapse
|
4
|
Galassi C, Esteller M, Vitale I, Galluzzi L. Epigenetic control of immunoevasion in cancer stem cells. Trends Cancer 2024; 10:1052-1071. [PMID: 39244477 DOI: 10.1016/j.trecan.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/24/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
Cancer stem cells (CSCs) are a poorly differentiated population of malignant cells that (at least in some neoplasms) is responsible for tumor progression, resistance to therapy, and disease relapse. According to a widely accepted model, all stages of cancer progression involve the ability of neoplastic cells to evade recognition or elimination by the host immune system. In line with this notion, CSCs are not only able to cope with environmental and therapy-elicited stress better than their more differentiated counterparts but also appear to better evade tumor-targeting immune responses. We summarize epigenetic modifications of DNA and histones through which CSCs evade immune recognition or elimination, and propose that such alterations constitute promising therapeutic targets to increase the sensitivity of some malignancies to immunotherapy.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain; Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Nie J, Wang C, Zheng L, Liu Y, Wang C, Chang Y, Hu Y, Guo B, Pan Y, Yang Q, Hu X, Han W. Epigenetic agents plus anti-PD-1 reprogram the tumor microenvironment and restore antitumor efficacy in Hodgkin lymphoma. Blood 2024; 144:1936-1950. [PMID: 39093981 DOI: 10.1182/blood.2024024487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
ABSTRACT DNA methyltransferase inhibitor decitabine plus anti-programmed cell death 1 (DP) therapy was effective in relapsed/refractory classic Hodgkin lymphoma (cHL). However, a subset of patients experienced primary resistance or relapse/progression after DP therapy. In this study, we evaluated the efficacy and safety of a triplet regimen consisting of the histone deacetylase inhibitor chidamide, decitabine, and anti-PD-1 camrelizumab (CDP) in 52 patients who previously received DP therapy. CDP treatment was well tolerated and resulted in an objective response rate of 94% (95% confidence interval [CI], 84-99), with 50% (95% CI, 36-64) of patients achieving complete response (CR). Notably, all patients who were recalcitrant to previous DP treatment exhibited therapeutic responses after CDP therapy, although their CR rate was lower than patients responsive to prior DP. Overall, the median progression-free survival was 29.4 months. Through single-cell RNA sequencing of pretreatment and on-treatment cHL tumor biopsy samples, we observed the heterogeneity of rare malignant Hodgkin Reed/Sternberg (HRS)-like cells. The classical CD30+ HRS-like cells interacted with abundant immunosuppressive IL21+CD4+ T helper cells, forming a positive feedback loop that supported their survival. While the CD30- HRS-like cell population showed potential resistance to anti-PD-1 immunotherapy. CDP treatment promoted the activation of diverse tumor-reactive CD8+ T cells and suppressed the proliferation of IL21+CD4+ T cells by inhibiting STAT1/3 signaling, thereby alleviating their immunosuppressive effects. These findings provide insights into the cHL microenvironment that contributes to anti-PD-1 resistance and highlight the therapeutic effectiveness of dual epi-immunotherapy in overcoming immunotherapy resistance. This trial was registered at www.clinicaltrials.gov as #NCT04233294.
Collapse
Affiliation(s)
- Jing Nie
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Chunmeng Wang
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | - Yang Liu
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | | | - Yixin Chang
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yudi Hu
- Analytical Biosciences Limited, Beijing, China
| | - Bing Guo
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuting Pan
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Qingming Yang
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xueda Hu
- Analytical Biosciences Limited, Beijing, China
| | - Weidong Han
- Department of Biotherapeutics, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China
- Changping Laboratory, Beijing, China
| |
Collapse
|
6
|
Seetharam D, Chandar J, Ramsoomair CK, Desgraves JF, Medina AA, Hudson AJ, Amidei A, Castro JR, Govindarajan V, Wang S, Zhang Y, Sonabend AM, Valdez MJM, Maric D, Govindarajan V, Rivas SR, Lu VM, Tiwari R, Sharifi N, Thomas E, Alexander M, DeMarino C, Johnson K, De La Fuente MI, Nasany RA, Noviello TMR, Ivan ME, Komotar RJ, Iavarone A, Nath A, Heiss J, Ceccarelli M, Chiappinelli KB, Figueroa ME, Bayik D, Shah AH. Targeting ZNF638 activates antiviral immune responses and potentiates immune checkpoint inhibition in glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618076. [PMID: 39464150 PMCID: PMC11507686 DOI: 10.1101/2024.10.13.618076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Viral mimicry refers to the activation of innate anti-viral immune responses due to the induction of endogenous retroelement (RE) expression. Viral mimicry has been previously described to augment anti-tumor immune responses and sensitize solid tumors to immunotherapy including colorectal cancer, melanoma, and clear renal cell carcinoma. Here, we found that targeting a novel, master epigenetic regulator, Zinc Finger Protein 638 (ZNF638), induces viral mimicry in glioblastoma (GBM) preclinical models and potentiates immune checkpoint inhibition (ICI). ZNF638 recruits the HUSH complex, which precipitates repressive H3K9me3 marks on endogenous REs. In GBM, ZNF638 is associated with marked locoregional immunosuppressive transcriptional signatures, reduced endogenous RE expression and poor immune cell infiltration (CD8 + T-cells, dendritic cells). ZNF638 knockdown decreased H3K9-trimethylation, increased cytosolic dsRNA and activated intracellular dsRNA-signaling cascades (RIG-I, MDA5 and IRF3). Furthermore, ZNF638 knockdown upregulated antiviral immune programs and significantly increased PD-L1 immune checkpoint expression in patient-derived GBM neurospheres and diverse murine models. Importantly, targeting ZNF638 sensitized mice to ICI in syngeneic murine orthotopic models through innate interferon signaling. This response was recapitulated in recurrent GBM (rGBM) samples with radiographic responses to checkpoint inhibition with widely increased expression of dsRNA, PD-L1 and perivascular CD8 cell infiltration, suggesting dsRNA-signaling may mediate response to immunotherapy. Finally, we showed that low ZNF638 expression was a biomarker of clinical response to ICI and improved survival in rGBM patients and melanoma patients. Our findings suggest that ZNF638 could serve as a target to potentiate immunotherapy in gliomas.
Collapse
|
7
|
Zeng S, Chen L, Tian J, Liu Z, Liu X, Tang H, Wu H, Liu C. Integrative analysis of pan-cancer single-cell data reveals a tumor ecosystem subtype predicting immunotherapy response. NPJ Precis Oncol 2024; 8:205. [PMID: 39277681 PMCID: PMC11401940 DOI: 10.1038/s41698-024-00703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
Tumor ecosystem shapes cancer biology and potentially influence the response to immunotherapy, but there is a lack of direct clinical evidence. In this study, we utilized EcoTyper and publicly available scRNA-Seq cohorts from ICI-treated patients. We found a ecosystem subtype (ecotype) was linked to improved responses to immunotherapy. Then, a novel immunotherapy-responsive ecotype signature (IRE.Sig) was established and validated through the analysis of pan-cancer data. Utilizing IRE.Sig, machine learning models successfully predicted ICI responses in both validation and testing cohorts, achieving area under the curve (AUC) values of 0.72 and 0.71, respectively. Furthermore, using 5 CRISPR screening cohorts, we identified several potential drugs that may augment the efficacy of ICI. We also elucidated the candidate cellular biomarkers of response to the combined treatment of pembrolizumab plus eribulin in breast cancer. This signature has the potential to serve as a valuable tool for patients in selecting appropriate immunotherapy treatments.
Collapse
Affiliation(s)
- Shengjie Zeng
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Liuxun Chen
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinyu Tian
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengxin Liu
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Liu
- Department of Cardiothoracic Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haibin Tang
- Department of Urology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wu
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chuan Liu
- Department of Urology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Sun W, Hu S, Wang X. Advances and clinical applications of immune checkpoint inhibitors in hematological malignancies. Cancer Commun (Lond) 2024; 44:1071-1097. [PMID: 39073258 PMCID: PMC11492363 DOI: 10.1002/cac2.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Immune checkpoints are differentially expressed on various immune cells to regulate immune responses in tumor microenvironment. Tumor cells can activate the immune checkpoint pathway to establish an immunosuppressive tumor microenvironment and inhibit the anti-tumor immune response, which may lead to tumor progression by evading immune surveillance. Interrupting co-inhibitory signaling pathways with immune checkpoint inhibitors (ICIs) could reinvigorate the anti-tumor immune response and promote immune-mediated eradication of tumor cells. As a milestone in tumor treatment, ICIs have been firstly used in solid tumors and subsequently expanded to hematological malignancies, which are in their infancy. Currently, immune checkpoints have been investigated as promising biomarkers and therapeutic targets in hematological malignancies, and novel immune checkpoints, such as signal regulatory protein α (SIRPα) and tumor necrosis factor-alpha-inducible protein 8-like 2 (TIPE2), are constantly being discovered. Numerous ICIs have received clinical approval for clinical application in the treatment of hematological malignancies, especially when used in combination with other strategies, including oncolytic viruses (OVs), neoantigen vaccines, bispecific antibodies (bsAb), bio-nanomaterials, tumor vaccines, and cytokine-induced killer (CIK) cells. Moreover, the proportion of individuals with hematological malignancies benefiting from ICIs remains lower than expected due to multiple mechanisms of drug resistance and immune-related adverse events (irAEs). Close monitoring and appropriate intervention are needed to mitigate irAEs while using ICIs. This review provided a comprehensive overview of immune checkpoints on different immune cells, the latest advances of ICIs and highlighted the clinical applications of immune checkpoints in hematological malignancies, including biomarkers, targets, combination of ICIs with other therapies, mechanisms of resistance to ICIs, and irAEs, which can provide novel insight into the future exploration of ICIs in tumor treatment.
Collapse
Affiliation(s)
- Wenyue Sun
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
| | - Shunfeng Hu
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
| | - Xin Wang
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongP. R. China
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongP. R. China
- Taishan Scholars Program of Shandong ProvinceJinanShandongP. R. China
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongP. R. China
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| |
Collapse
|
9
|
Lee AV, Nestler KA, Chiappinelli KB. Therapeutic targeting of DNA methylation alterations in cancer. Pharmacol Ther 2024; 258:108640. [PMID: 38570075 DOI: 10.1016/j.pharmthera.2024.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
DNA methylation is a critical component of gene regulation and plays an important role in the development of cancer. Hypermethylation of tumor suppressor genes and silencing of DNA repair pathways facilitate uncontrolled cell growth and synergize with oncogenic mutations to perpetuate cancer phenotypes. Additionally, aberrant DNA methylation hinders immune responses crucial for antitumor immunity. Thus, inhibiting dysregulated DNA methylation is a promising cancer therapy. Pharmacologic inhibition of DNA methylation reactivates silenced tumor suppressors and bolster immune responses through induction of viral mimicry. Now, with the advent of immunotherapies and discovery of the immune-modulatory effects of DNA methylation inhibitors, there is great interest in understanding how targeting DNA methylation in combination with other therapies can enhance antitumor immunity. Here, we describe the role of aberrant DNA methylation in cancer and mechanisms by which it promotes tumorigenesis and modulates immune responses. Finally, we review the initial discoveries and ongoing efforts to target DNA methylation as a cancer therapeutic.
Collapse
Affiliation(s)
- Abigail V Lee
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Kevin A Nestler
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
10
|
Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M, Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer 2024; 23:108. [PMID: 38762484 PMCID: PMC11102195 DOI: 10.1186/s12943-024-02023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Immune evasion contributes to cancer growth and progression. Cancer cells have the ability to activate different immune checkpoint pathways that harbor immunosuppressive functions. The programmed death protein 1 (PD-1) and programmed cell death ligands (PD-Ls) are considered to be the major immune checkpoint molecules. The interaction of PD-1 and PD-L1 negatively regulates adaptive immune response mainly by inhibiting the activity of effector T cells while enhancing the function of immunosuppressive regulatory T cells (Tregs), largely contributing to the maintenance of immune homeostasis that prevents dysregulated immunity and harmful immune responses. However, cancer cells exploit the PD-1/PD-L1 axis to cause immune escape in cancer development and progression. Blockade of PD-1/PD-L1 by neutralizing antibodies restores T cells activity and enhances anti-tumor immunity, achieving remarkable success in cancer therapy. Therefore, the regulatory mechanisms of PD-1/PD-L1 in cancers have attracted an increasing attention. This article aims to provide a comprehensive review of the roles of the PD-1/PD-L1 signaling in human autoimmune diseases and cancers. We summarize all aspects of regulatory mechanisms underlying the expression and activity of PD-1 and PD-L1 in cancers, including genetic, epigenetic, post-transcriptional and post-translational regulatory mechanisms. In addition, we further summarize the progress in clinical research on the antitumor effects of targeting PD-1/PD-L1 antibodies alone and in combination with other therapeutic approaches, providing new strategies for finding new tumor markers and developing combined therapeutic approaches.
Collapse
Affiliation(s)
- Xin Lin
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Kuan Kang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China
| | - Mei Yi
- Department of Dermotology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
11
|
Benevolo Savelli C, Bisio M, Legato L, Fasano F, Santambrogio E, Nicolosi M, Morra D, Boccomini C, Freilone R, Botto B, Novo M. Advances in Hodgkin Lymphoma Treatment: From Molecular Biology to Clinical Practice. Cancers (Basel) 2024; 16:1830. [PMID: 38791909 PMCID: PMC11120540 DOI: 10.3390/cancers16101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Classical Hodgkin Lymphoma (cHL) is a highly curable disease, but around 20% of patients experience progression or relapse after standard frontline chemotherapy regimens. Salvage regimens followed by autologous stem cell transplants represent the historical treatment approach for these cases. In the last decade, with the increasing understanding of cHL biology and tumor microenvironment role in disease course, novel molecules have been introduced in clinical practice, improving outcomes in the relapsed/refractory setting. The anti-CD30 antibody-drug conjugated brentuximab vedotin and PD-1/PD-L1 checkpoint inhibitors represent nowadays curative options for chemorefractory patients, and randomized trials recently demonstrated their efficacy in frontline immune-chemo-combined modalities. Several drugs able to modulate the patients' T-lymphocytes and NK cell activity are under development, as well as many anti-CD30 chimeric antigen receptor T-cell products. Multiple tumor aberrant epigenetic mechanisms are being investigated as targets for antineoplastic compounds such as histone deacetylase inhibitors and hypomethylating agents. Moreover, JAK2 inhibition combined with anti-PD1 blockade revealed a potential complementary therapeutic pathway in cHL. In this review, we will summarize recent findings on cHL biology and novel treatment options clinically available, as well as promising future perspectives in the field.
Collapse
Affiliation(s)
- Corrado Benevolo Savelli
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.B.); (L.L.); (F.F.); (E.S.); (M.N.); (D.M.); (C.B.); (R.F.); (B.B.)
| | | | | | | | | | | | | | | | | | | | - Mattia Novo
- Hematology Division, A.O.U. Città della Salute e della Scienza di Torino, C.so Bramante 88, 10126 Turin, Italy; (M.B.); (L.L.); (F.F.); (E.S.); (M.N.); (D.M.); (C.B.); (R.F.); (B.B.)
| |
Collapse
|
12
|
Zhou X, Yan X, Wu Y. Reactive cutaneous capillary endothelial proliferations of the eyelids induced by camrelizumab: A case report. Biomed Rep 2024; 20:53. [PMID: 38357230 PMCID: PMC10865177 DOI: 10.3892/br.2024.1743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
With the widespread application of immune checkpoint inhibitors, a series of adverse events (AEs) related to treatment resulting from alterations in the immune system have emerged that warrant attention. The present study report the case of a patient with reactive cutaneous capillary endothelial proliferations (RCCEPs) on the eye lid, following treatment with the programmed cell death protein 1 inhibitor camrelizumab (SHR-1210) for stage IIa2 well- to moderately differentiated squamous cell carcinoma of the cervix. Although RCCEPs have been revealed to be the most common AEs of SHR-1210, they are usually distributed on the head, neck, trunk and extremities. The current study presents a rare case of ocular RCCEPs induced by SHR-1210. Prompt diagnosis and treatment of immune-related AEs is crucial for the optimal management of patients. Although RCCEPs are usually slight-risk toxicities that pose no threat to the continuity of treatment, lesions with unusual distributions that cause disturbances in normal life require proper treatment, such as surgical excision.
Collapse
Affiliation(s)
- Xuecong Zhou
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Xiaoming Yan
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| | - Yuan Wu
- Department of Ophthalmology, Peking University First Hospital, Peking University, Beijing 100034, P.R. China
| |
Collapse
|
13
|
Shalitin S. Endocrine-Related Adverse Conditions in Pediatric Patients Treated with Immune Checkpoint Inhibition for Malignancies. Horm Res Paediatr 2024; 98:124-135. [PMID: 38402861 DOI: 10.1159/000537969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND In recent years, remarkable advances in cancer immunotherapy have been introduced in the field of oncology. Since the discovery of immune checkpoint inhibitors (ICIs), these groups of medications have become a crucial treatment for several types of adult cancer. SUMMARY To date, pediatric experience with this group of medications is limited. Nevertheless, as clinicians, we have to be aware of the possible immune-related adverse events including immune-related endocrinopathies (thyroid dysfunction, diabetes mellitus, adrenal insufficiency, and pituitary insufficiency) that have been reported regarding these medications. These adverse events probably result from uncontrolled activation of the immune system. KEY MESSAGE Early diagnosis, monitoring, and treatment of immune-related endocrinopathies associated with ICIs treatment are also essential for the best supportive care and administration of ICIs in pediatric patients. This review presents the current data on the immune-related endocrinopathies associated with the ICIs treatment, with suggestions for management.
Collapse
Affiliation(s)
- Shlomit Shalitin
- The Jesse Z. and Lea Shafer Institute of Endocrinology and Diabetes, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Godfrey J, Mei M, Chen L, Song JY, Bedell V, Budde E, Armenian S, Puverel S, Nikolaenko L, Chen R, Daniels S, Kennedy N, Peters L, Rosen ST, Forman SJ, Popplewell LL, Kwak LW, Herrera AF. Results from a phase I trial of pembrolizumab plus vorinostat in relapsed/refractory B-cell non-Hodgkin lymphoma. Haematologica 2024; 109:533-542. [PMID: 37470137 PMCID: PMC10828763 DOI: 10.3324/haematol.2023.283002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
Outcomes after programmed death-1 (PD-1) blockade in B-cell lymphomas are disappointing with few durable responses. Histone deacetylase inhibitors exhibit favorable immunomodulatory effects and demonstrate synergistic anti-tumor immune responses with anti-PD-1 therapy in preclinical models. We, therefore, developed a phase I study to evaluate the safety and preliminary efficacy of pembrolizumab with vorinostat in relapsed/refractory B-cell lymphomas. Patients were treated in a dose-escalation cohort using a Rolling 6 design followed by an expansion cohort at the recommended phase II dose (R2PD). Fifty-two patients were enrolled (32 Hodgkin and 20 non-Hodgkin lymphoma [NHL]). Here, we report safety data from the dose escalation cohort, and the toxicity and efficacy within NHL patients. Vorinostat was administered twice daily on days 1-5 and 8-12 (dose-level [DL]1: 100 mg; DL2: 200 mg) and pembrolizumab (200 mg) was administered on day 1 of each 3-week cycle. Of six patients treated at DL1, one had a dose-limiting toxicity (DLT) (Stevens-Johnson syndrome [SJS]), and one of six had a DLT at DL2 (thromboembolism); therefore, DL2 was the RP2D. The patient developing SJS was treated with corticosteroids, infliximab, and cyclosporine but ultimately died of invasive fungal infection from the extensive immunosuppression used to treat the SJS. The most common adverse events were hypertension, diarrhea, and cytopenias. Of 20 NHL patients, nine had follicular lymphoma (FL) and 11 had diffuse large B-cell lymphoma (DLBCL). Five DLBCL patients had primary mediastinal B-cell lymphoma (PMBL). The complete and overall response rates (CR and ORR) were 11% and 22% for FL and 45% and 55% for all DLBCL. Amongst DLBCL, the CR and ORR was 80% and 80% for PMBL and 17% and 33% for non-PMBL. In conclusion, pembrolizumab with vorinostat was tolerable and produced responses in relapsed/refractory B-cell NHL, with particularly notable efficacy in PMBL (clinicaltrials gov. Identifier: NCT03150329).
Collapse
Affiliation(s)
- James Godfrey
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Matthew Mei
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Lu Chen
- Department of Information Sciences, City of Hope, Duarte, CA
| | - Joo Y Song
- Department of Pathology, City of Hope, Duarte, CA
| | | | - Elizabeth Budde
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | | | - Sandrine Puverel
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Liana Nikolaenko
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Robert Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Shari Daniels
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Neena Kennedy
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Lacolle Peters
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Steven T Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Stephen J Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Leslie L Popplewell
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Larry W Kwak
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA
| | - Alex F Herrera
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA.
| |
Collapse
|
15
|
Alotaibi F, Alshammari K, Alotaibi BA, Alsaab H. Destabilizing the genome as a therapeutic strategy to enhance response to immune checkpoint blockade: a systematic review of clinical trials evidence from solid and hematological tumors. Front Pharmacol 2024; 14:1280591. [PMID: 38264532 PMCID: PMC10803447 DOI: 10.3389/fphar.2023.1280591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Genomic instability is increased alterations in the genome during cell division and is common among most cancer cells. Genome instability enhances the risk of initial carcinogenic transformation, generating new clones of tumor cells, and increases tumor heterogeneity. Although genome instability contributes to malignancy, it is also an "Achilles' heel" that constitutes a therapeutically-exploitable weakness-when sufficiently advanced, it can intrinsically reduce tumor cell survival by creating DNA damage and mutation events that overwhelm the capacity of cancer cells to repair those lesions. Furthermore, it can contribute to extrinsic survival-reducing events by generating mutations that encode new immunogenic antigens capable of being recognized by the immune system, particularly when anti-tumor immunity is boosted by immunotherapy drugs. Here, we describe how genome-destabilization can induce immune activation in cancer patients and systematically review the induction of genome instability exploited clinically, in combination with immune checkpoint blockade. Methods: We performed a systematic review of clinical trials that exploited the combination approach to successfully treat cancers patients. We systematically searched PubMed, Cochrane Central Register of Controlled Trials, Clinicaltrials.gov, and publication from the reference list of related articles. The most relevant inclusion criteria were peer-reviewed clinical trials published in English. Results: We identified 1,490 studies, among those 164 were clinical trials. A total of 37 clinical trials satisfied the inclusion criteria and were included in the study. The main outcome measurements were overall survival and progression-free survival. The majority of the clinical trials (30 out of 37) showed a significant improvement in patient outcome. Conclusion: The majority of the included clinical trials reported the efficacy of the concept of targeting DNA repair pathway, in combination with immune checkpoint inhibitors, to create a "ring of synergy" to treat cancer with rational combinations.
Collapse
Affiliation(s)
- Faizah Alotaibi
- College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Kanaan Alshammari
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- Oncology Department, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Badi A. Alotaibi
- King Abdullah International Medical Research Center, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hashem Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| |
Collapse
|
16
|
Wang C, Pan Y, Liu Y, Guo B, Shi J, Rong G, Guo Z, Li Z, Yang Q, Nie J, Han W. Long-term complete remission and peripheral biomarkers in Hodgkin lymphoma patients after decitabine-plus-camrelizumab epi-immunotherapy and treatment cessation. MedComm (Beijing) 2023; 4:e428. [PMID: 38020717 PMCID: PMC10665599 DOI: 10.1002/mco2.428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Patients with relapsed/refractory classical Hodgkin lymphoma (cHL) achieve complete response (CR) after decitabine-plus-camrelizumab therapy, while long-term outcome especially after treatment discontinuation remains unclear. We present a retrospective analysis of 87 relapsed/refractory cHL patients who acquired CR after decitabine-plus-camrelizumab. Patients were divided into two groups and received consolidation treatment every 3-4 or 6-12 weeks, and 1-year of continuous CR was guaranteed for treatment cessation. At a median follow-up of 5.3 years, the median relapse-free survival (RFS) after achieving CR with decitabine-plus-camrelizumab therapy was 4.5 years, and patients underwent consolidation per 3-4 weeks might have longer RFS. The baseline percentage of peripheral central memory T cells was not associated with RFS, while patients with higher pretreatment serum levels of interleukin-6 (IL-6) and lactate dehydrogenase (LDH) had significantly shorter RFS and increased risk for disease recurrence. Fifty-seven patients completed and discontinued decitabine-plus-camrelizumab, and their median RFS had not been reached. The 2-year RFS rate after treatment cessation was 78% (95% CI, 67-90%). Patients in the high-risk subgroup with higher pretreatment IL-6 and LDH levels showed poor treatment-free remission. Moreover, decitabine-plus-camrelizumab therapy was safe and cost-effective. In conclusion, patients who obtained CR with decitabine-plus-camrelizumab and received consolidation per 3-4 weeks can achieve long-term remission after treatment discontinuation.
Collapse
Affiliation(s)
- Chunmeng Wang
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of Bio‐therapeuticthe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Department of Bio‐therapeuticthe Fifth Medical Centre, Chinese PLA General HospitalBeijingChina
| | - Yuting Pan
- Chinese People's Liberation Army Medical SchoolChinese PLA General HospitalBeijingChina
| | - Yang Liu
- Department of Bio‐therapeuticthe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Department of Bio‐therapeuticthe Fifth Medical Centre, Chinese PLA General HospitalBeijingChina
| | - Bing Guo
- Department of Bio‐therapeuticthe Fifth Medical Centre, Chinese PLA General HospitalBeijingChina
| | - Jinhong Shi
- Department of Bio‐therapeuticthe Fifth Medical Centre, Chinese PLA General HospitalBeijingChina
| | - Guanghua Rong
- Department of Bio‐therapeuticthe Fifth Medical Centre, Chinese PLA General HospitalBeijingChina
| | - Zhipeng Guo
- Department of Bio‐therapeuticthe Fifth Medical Centre, Chinese PLA General HospitalBeijingChina
| | - Zhifang Li
- Department of Bio‐therapeuticthe Fifth Medical Centre, Chinese PLA General HospitalBeijingChina
| | - Qingming Yang
- Department of Bio‐therapeuticthe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Department of Bio‐therapeuticthe Fifth Medical Centre, Chinese PLA General HospitalBeijingChina
| | - Jing Nie
- Department of Bio‐therapeuticthe First Medical Centre, Chinese PLA General HospitalBeijingChina
| | - Weidong Han
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
- Department of Bio‐therapeuticthe First Medical Centre, Chinese PLA General HospitalBeijingChina
- Department of Bio‐therapeuticthe Fifth Medical Centre, Chinese PLA General HospitalBeijingChina
- Changping LaboratoryBeijingChina
| |
Collapse
|
17
|
Sun C, Chen H, Wang Y, Zheng C. Safety and efficacy of PD-1 and PD-L1 inhibitors in relapsed and refractory Hodgkin's lymphoma: a systematic review and meta-analysis of 20 prospective studies. Hematology 2023; 28:2181749. [PMID: 36892260 DOI: 10.1080/16078454.2023.2181749] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Inhibitors of programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) have been used in the treatment of relapsed and refractory Hodgkin's lymphoma (R/R HL) recently. To further understand the safety and efficacy of PD-1/PD-L1 inhibitors in R/R HL, we conducted this meta-analysis. METHODS Databases and the Clinical Registration Platforms have been systematically searched for related studies by March 2022. For safety analysis, the incidence and exhibition of any grade and grade 3 or higher adverse effects (AEs) were evaluated. Besides, severe AEs (SAEs), treatment-related deaths, and AEs leading to treatment discontinuation were summarized. The overall response rate (ORR), complete response (CR) rate, partial response (PR) rate, progression-free survival (PFS), overall survival (OS), and duration of response (DOR) were calculated for efficacy analysis. All processes were implemented mainly through the package Meta and MetaSurv of software R 4.1.2. RESULTS Overall 20 studies and 1440 patients were enrolled. The pooled incidence of any grade and grade 3 or higher AEs were 92% and 26%, respectively. The pooled ORR, CR rate and PR rate were 79%, 44% and 34%, respectively. The most common AEs were neuropathy (29%), nausea (27%), pyrexia (26%), and leukopenia (25%), and the most common grade 3 or higher AEs included leukopenia (10%), infusion reaction (8%), weight gain (3%), and neutropenia (2.7%). In survival analysis, pembrolizumab monotherapy appeared to perform better compared to nivolumab monotherapy. CONCLUSIONS PD-1/PD-L1 inhibitors show promising efficacy and tolerable AEs in the treatment of R/R HL.
Collapse
Affiliation(s)
- Chenxi Sun
- The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Huixian Chen
- Center for Clinical Research, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yongjing Wang
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, People's Republic of China
| | - Chengyun Zheng
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China.,Institute of Biotherapy for Hematological Malignancies, Shandong University, Jinan, Shandong, People's Republic of China.,Shandong University-Karolinska Institute Collaboration Laboratory for Stem Cell Research, Jinan, Shandong, People's Republic of China
| |
Collapse
|
18
|
To KKW, Cho WC. Drug Repurposing to Circumvent Immune Checkpoint Inhibitor Resistance in Cancer Immunotherapy. Pharmaceutics 2023; 15:2166. [PMID: 37631380 PMCID: PMC10459070 DOI: 10.3390/pharmaceutics15082166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) have achieved unprecedented clinical success in cancer treatment. However, drug resistance to ICI therapy is a major hurdle that prevents cancer patients from responding to the treatment or having durable disease control. Drug repurposing refers to the application of clinically approved drugs, with characterized pharmacological properties and known adverse effect profiles, to new indications. It has also emerged as a promising strategy to overcome drug resistance. In this review, we summarized the latest research about drug repurposing to overcome ICI resistance. Repurposed drugs work by either exerting immunostimulatory activities or abolishing the immunosuppressive tumor microenvironment (TME). Compared to the de novo drug design strategy, they provide novel and affordable treatment options to enhance cancer immunotherapy that can be readily evaluated in the clinic. Biomarkers are exploited to identify the right patient population to benefit from the repurposed drugs and drug combinations. Phenotypic screening of chemical libraries has been conducted to search for T-cell-modifying drugs. Genomics and integrated bioinformatics analysis, artificial intelligence, machine and deep learning approaches are employed to identify novel modulators of the immunosuppressive TME.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
19
|
Perdikis-Prati S, Sheikh S, Bouroumeau A, Lang N. Efficacy of Immune Checkpoint Blockade and Biomarkers of Response in Lymphoma: A Narrative Review. Biomedicines 2023; 11:1720. [PMID: 37371815 DOI: 10.3390/biomedicines11061720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Immune checkpoint blockade (ICB) has revolutionized the prognosis of several advanced-stage solid tumors. However, its success has been far more limited in hematological malignancies and is mostly restricted to classical Hodgkin lymphoma (cHL) and primary mediastinal B cell lymphoma (PMBCL). In patients with non-Hodgkin lymphoma (NHL), response to PD-1/PD-L1 ICB monotherapy has been relatively limited, although some subtypes are more sensitive than others. Numerous predictive biomarkers have been investigated in solid malignancies, such as PD-L1 expression, tumor mutational burden (TMB) and microsatellite instability (MSI), among others. This review aims to appraise the current knowledge on PD-1/PD-L1 ICB efficacy in lymphoma when used either as monotherapy or combined with other agents, and describes potential biomarkers of response in this specific setting.
Collapse
Affiliation(s)
| | - Semira Sheikh
- Department of Hematology, Universitätsspital Basel, 4031 Basel, Switzerland
| | - Antonin Bouroumeau
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospital, 1206 Geneva, Switzerland
| | - Noémie Lang
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
- Center of Translational Research in Oncohematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| |
Collapse
|
20
|
Sadaf H, Ambroziak M, Binkowski R, Kluebsoongnoen J, Paszkiewicz-Kozik E, Steciuk J, Markowicz S, Walewski J, Sarnowska E, Sarnowski TJ, Konopinski R. New molecular targets in Hodgkin and Reed-Sternberg cells. Front Immunol 2023; 14:1155468. [PMID: 37266436 PMCID: PMC10230546 DOI: 10.3389/fimmu.2023.1155468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Recent discoveries shed light on molecular mechanisms responsible for classical Hodgkin lymphoma (HL) development and progression, along with features of Hodgkin - Reed and Sternberg cells (HRS). Here, we summarize current knowledge on characteristic molecular alterations in HL, as well as existing targeted therapies and potential novel treatments for this disease. We discuss the importance of cluster of differentiation molecule 30 (CD30) and the programmed cell death-1 protein (PD-1) and ligands (PD-L1/2), and other molecules involved in immune modulation in HL. We highlight emerging evidence indicating that the altered function of SWI/SNF-type chromatin remodeling complexes, PRC2, and other epigenetic modifiers, contribute to variations in chromatin status, which are typical for HL. We postulate that despite of the existence of plentiful molecular data, the understanding of HL development remains incomplete. We therefore propose research directions involving analysis of reverse signaling in the PD-1/PD-L1 mechanism, chromatin remodeling, and epigenetics-related alterations, in order to identify HL features at the molecular level. Such attempts may lead to the identification of new molecular targets, and thus will likely substantially contribute to the future development of more effective targeted therapies.
Collapse
Affiliation(s)
- Hummaira Sadaf
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Biotechnology, Sardar Bahadur Khan Womens’ University, Balochistan, Pakistan
| | - Maciej Ambroziak
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Robert Binkowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | | - Ewa Paszkiewicz-Kozik
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Sergiusz Markowicz
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Elzbieta Sarnowska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Ryszard Konopinski
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
21
|
Tang Q, Wu D, Huang H, Fang H, Wu Y, Liu F, Li N. Adverse events of PD-(L)1 inhibitors plus anti-VEGF(R) agents compared with PD-(L)1 inhibitors alone for cancer patients: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1093194. [PMID: 37180706 PMCID: PMC10166877 DOI: 10.3389/fphar.2023.1093194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Background: Anti-PD-(L)1 antibody monotherapy or in combination with VEGF(R) blockade has been applied widely for cancer treatment. Whether combination therapy increases irAEs still remains controversial. Methods: A systematic review and meta-analysis comparing PD-(L)1 and VEGF(R) blockade combination therapy with PD-(L)1 inhibitors alone was performed. Phase II or III randomized clinical trials reporting irAEs or trAEs were included. The protocol was registered with PROSPERO, CRD42021287603. Results: Overall, 77 articles were included in the meta-analysis. A total of 31 studies involving 8,638 participants were pooled and an incidence for PD-(L)1 inhibitor monotherapy with any grade and grade ≥3 irAEs of 0.25 (0.20, 0.32) and 0.06 (0.05, 0.07), respectively, were reported. Two studies with 863 participants pooled for PD-(L)1 and VEGF(R) blockade showed that an incidence of any grade and grade ≥3 irAEs were 0.47 (0.30, 0.65) and 0.11 (0.08, 0.16), respectively. Regarding pairwise comparisons for irAEs, only one study was included, indicating no significant difference between the two regimens in terms of colitis, hyperthyroidism, and hypothyroidism for any grade and grade ≥3, while there was a trend of higher incidence for any grade hyperthyroidism under the combination therapy. The incidence of reactive cutaneous capillary endothelial proliferation (RCCEP) was as high as 0.80 under camrelizumab monotherapy. Conclusion: Total incidences of any grade and grade ≥3 irAEs were higher in the combination treatment group. Direct comparisons indicated no significant difference between the two regimens for any grade and grade ≥3 specific irAEs. RCCEP and thyroid disorders need to be paid attention to clinically. Moreover, trials with direct comparisons are needed and the safety profiles of the two regimens should be further explored. Exploration of the mechanism of action and regulatory management of adverse events should be enhanced. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=287603, identifier CRD42021287603.
Collapse
Affiliation(s)
- Qiyu Tang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dawei Wu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiyao Huang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Wu
- Phase I Clinical Trails Center, The First Hospital, China Medical University, Shenyang, China
| | - Funan Liu
- Phase I Clinical Trails Center, The First Hospital, China Medical University, Shenyang, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
22
|
Wu M, Zheng X, Zhang Y, Song J, Zhao J. Camrelizumab for cancers in patients living with HIV: one-single center experience. AIDS Res Ther 2023; 20:23. [PMID: 37062823 PMCID: PMC10108516 DOI: 10.1186/s12981-023-00518-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
OBJECTIVES The primary objective was to evaluate the safety of the anti-PD-1 antibody camrelizumab in people living with HIV (PLWH); the secondary objective was to evaluate tumor response. METHODS From May 8, 2018, to December 10, 2021, twenty-four patients with HIV and advanced cancer as well as a CD4+ T-cell count greater than or equal to 100 cells/µL were treated with camrelizumab in daily practice. We describe the demographic characteristics, safety, and clinical course of these 24 PLWH with cancer treated with camrelizumab. Safety was assessed using the current Common Terminology Criteria for Adverse Events (CTCAE). The tumor response was assessed according to the Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1). RESULTS The median number of cycles was 8 (4-26). Only two grade 3 adverse reactions were reported (no toxic deaths or immune-related deaths). Among the 24 patients, 2 (8%) complete responses and 6 (25%) partial responses were observed. 7 patients (29%) were at stable tumor status and others progressed. CONCLUSIONS Data from the present study strongly support the use of camrelizumab (monoclonal antibodies targeting the PD-1 pathway) in this population, as it appears to be a feasible approach with no deleterious effects on PLWH and tolerability and acceptable efficacy. In addition, these findings further support the inclusion of PLWH with cancer in clinical trials evaluating the safety and efficacy of ICIs on cancer.
Collapse
Affiliation(s)
- Menghua Wu
- Department of Urology, Capital Medical University, Beijing Youan Hospital, Beijing, China
- Department of Urology, Capital Medical University, Beijing Friendship Hospital, Beijing, China
| | - Xin Zheng
- Department of Urology, Capital Medical University, Beijing Youan Hospital, Beijing, China
| | - Yu Zhang
- Department of Urology, Capital Medical University, Beijing Youan Hospital, Beijing, China
| | - Jian Song
- Department of Urology, Capital Medical University, Beijing Friendship Hospital, Beijing, China
| | - Jimao Zhao
- Department of Urology, Capital Medical University, Beijing Friendship Hospital, Beijing, China.
| |
Collapse
|
23
|
Hou YZ, Zhang Q, Bai H, Wu T, Chen YJ. Immune-related adverse events induced by programmed death protein-1 inhibitors from the perspective of lymphoma immunotherapy. World J Clin Cases 2023; 11:1458-1466. [PMID: 36926390 PMCID: PMC10011990 DOI: 10.12998/wjcc.v11.i7.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 03/02/2023] Open
Abstract
Lymphoma, which is highly malignant, stems from lymph nodes and lymphoid tissue. Lymphoma cells express programmed death-ligand 1/2 (PD-L1/PD-L2), which binds with programmed cell death 1 protein (PD-1) to establish inhibitory signaling that impedes the normal function of T cells and allows tumor cells to escape immune system surveillance. Recently, immune checkpoint inhibitor immunotherapies such as PD-1 inhibitors (nivolumab and pembrolizumab) have been introduced into the lymphoma treatment algorithm and have shown remarkable clinical efficacy and greatly improve prognosis in lymphoma patients. Accordingly, the number of lymphoma patients who are seeking treatment with PD-1 inhibitors is growing annually, which results in an increasing number of patients developing immune-related adverse events (irAEs). The occurrence of irAEs inevitably affects the benefits provided by immunotherapy, particularly when PD-1 inhibitors are applied. However, the mechanisms and characteristics of irAEs induced by PD-1 inhibitors in lymphoma need further investigation. This review article summarizes the latest research advances in irAEs during treatment of lymphoma with PD-1 inhibitors. A comprehensive understanding of irAEs incurred in immunotherapy can help to achieve better efficacy with PD-1 inhibitors in lymphoma.
Collapse
Affiliation(s)
- Yong-Zhe Hou
- Department of Hematology, Center of Hematologic Diseases of Chinese PLA, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu Province, China
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, Lanzhou 730050, Gansu Province, China
| | - Qin Zhang
- Department of First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu Province, China
| | - Hai Bai
- Department of Hematology, Center of Hematologic Diseases of Chinese PLA, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Tao Wu
- Department of Hematology, Center of Hematologic Diseases of Chinese PLA, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Ya-Jie Chen
- Department of First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
24
|
Kong X, Zhang X, Ding M, Feng X, Dong M, Zhang L, Fu X, Li L, Li X, Sun Z, Yan J, Wang X, Wu X, Chen Q, Zhang M, Zhu L. Decitabine combined with RDHAP regimen in relapsed/refractory diffuse large B cell lymphoma. Cancer Med 2023; 12:8134-8143. [PMID: 36695162 PMCID: PMC10134321 DOI: 10.1002/cam4.5615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND There is an urgent need for effective treatment of patients with relapsed/refractory diffuse large B-cell lymphoma (R/R-DLBCL). This trial investigated the efficacy of decitabine in combination with rituximab, cisplatin, cytarabine, dexamethasone (RDHAP) in R/R-DLBCL. METHODS 56 patients were divided into two groups (decitabine-RDHAP group. n = 35; RDHAP group, n = 21). The primary endpoints were the overall response rate (ORR) and duration of remission (DOR). Secondary objectives were toxicity, progression-free survival (PFS), and overall survival (OS). RESULTS The ORR was 40% and 33% for decitabine-RDHAP and RDHAP groups, respectively, with no difference between the groups. The DOR for the decitabine-RDHAP regimen was higher than that for the RDHAP regimen (p = 0.044). After a median follow-up of 12.0 months, the median PFS and OS were 7.0 and 17.0 months for in the decitabine-RDHAP group and 5.0 and 9.0 months in the RDHAP group with no significant differences between the two groups (p = 0.47, 0.17). The incidence of adverse events was not significantly different between groups. CONCLUSION The decitabine-RDHAP regimen is effective and well tolerated, and is a promising salvage regimen for R/R-DLBCL.
Collapse
Affiliation(s)
- Xiaoshuang Kong
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xudong Zhang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjie Ding
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyan Feng
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Dong
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaorui Fu
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ling Li
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Li
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenchang Sun
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaqin Yan
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xinhua Wang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaolong Wu
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingjiang Chen
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Linan Zhu
- Department of Oncology, Lymphoma Diagnosis and Treatment Centre of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Yang T, Liu S, Zuo R, Liang H, Xu L, Wang Z, Chen X, Pang H. Prognostic role of pretreatment 18F-FDG PET/CT and hematological parameters in relapsed/refractory Hodgkin lymphoma patients treated with immune checkpoint inhibitors and chemotherapy: a dual-center cohort study. BMC Med Imaging 2023; 23:12. [PMID: 36681824 PMCID: PMC9867864 DOI: 10.1186/s12880-023-00967-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The combination of anti-programmed death-1 antibodies and chemotherapy is effective; however, there are no reliable outcome prediction factors. We investigated the prognostic factors based on 18Fluorine-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) quantitative and hematological parameters to predict progression-free survival (PFS) in relapsed/refractory classical Hodgkin lymphoma (R/R cHL) patients treated with immune checkpoint inhibitors (ICIs) and chemotherapy. METHODS This retrospective study included 31 patients who underwent 18F-FDG PET/CT before and during treatment. Pretreatment metabolic and hematological parameters were evaluated using Cox regression analysis to identify predictors of PFS. Based on the cut-off values calculated using the receiver operating characteristic (ROC) curve, patients were classified into low-, intermediate-, and high-risk groups. Kaplan-Meier curves and the log-rank test were used to compare survival differences between the groups. RESULTS Cox multivariable analysis indicted that the treatment response based on Lactate dehydrogenase (LDH), Lugano classification and SUVmax were independent predictors of PFS (P = 0.004, 0.007 and 0.039, respectively). The optimal cut-off values for SUVmax and LDH were 11.62 and 258.5 U/L, respectively (P < 0.01). Survival curves showed that LDH ≥ 258.5U/L and SUVmax ≥ 11.62 were correlated to shorter PFS (P < 0.001, P = 0.003, respectively). The differences in PFS between the low-, intermediate-, and high-risk groups were statistically significant (P = 0.0043). CONCLUSION In R/R cHL patients treated with ICIs and chemotherapy, Lugano classification, SUVmax, and LDH were significantly correlated with PFS. The combination of metabolic and hematological parameters predicts PFS and may help to improve patient selection.
Collapse
Affiliation(s)
- Tianyu Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042 China
| | - Shuang Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042 China
| | - Rui Zuo
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042 China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042 China
| | - Lu Xu
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042 China
| | - Zhengjie Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042 China
| | - Xiaoliang Chen
- Department of Nuclear Medicine, Chongqing University Cancer Hospital, Chongqing, 400030 China
| | - Hua Pang
- Department of Nuclear Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042 China
| |
Collapse
|
26
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
27
|
Gutierrez WR, Scherer A, Rytlewski JD, Laverty EA, Sheehan AP, McGivney GR, Brockman QR, Knepper-Adrian V, Roughton GA, Quelle DE, Gordon DJ, Monga V, Dodd RD. Augmenting chemotherapy with low-dose decitabine through an immune-independent mechanism. JCI Insight 2022; 7:e159419. [PMID: 36227698 PMCID: PMC9746804 DOI: 10.1172/jci.insight.159419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
The DNA methyltransferase inhibitor decitabine has classically been used to reactivate silenced genes and as a pretreatment for anticancer therapies. In a variation of this idea, this study explores the concept of adding low-dose decitabine (DAC) following administration of chemotherapy to bolster therapeutic efficacy. We find that addition of DAC following treatment with the chemotherapy agent gemcitabine improves survival and slows tumor growth in a mouse model of high-grade sarcoma. Unlike prior studies in epithelial tumor models, DAC did not induce a robust antitumor T cell response in sarcoma. Furthermore, DAC synergizes with gemcitabine independently of the immune system. Mechanistic analyses demonstrate that the combination therapy induces biphasic cell cycle arrest and apoptosis. Therapeutic efficacy was sequence dependent, with gemcitabine priming cells for treatment with DAC through inhibition of ribonucleotide reductase. This study identifies an apparently unique application of DAC to augment the cytotoxic effects of conventional chemotherapy in an immune-independent manner. The concepts explored in this study represent a promising paradigm for cancer treatment by augmenting chemotherapy through addition of DAC to increase tolerability and improve patient response. These findings have widespread implications for the treatment of sarcomas and other aggressive malignancies.
Collapse
Affiliation(s)
- Wade R. Gutierrez
- Cancer Biology Graduate Program
- Medical Scientist Training Program
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
| | - Amanda Scherer
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
| | | | | | - Alexa P. Sheehan
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Molecular Medicine Graduate Program
| | - Gavin R. McGivney
- Cancer Biology Graduate Program
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Department of Molecular Physiology and Biophysics
| | - Qierra R. Brockman
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Molecular Medicine Graduate Program
| | | | | | - Dawn E. Quelle
- Cancer Biology Graduate Program
- Medical Scientist Training Program
- Holden Comprehensive Cancer Center
- Molecular Medicine Graduate Program
- Department of Neuroscience and Pharmacology
- Department of Pathology, and
| | - David J. Gordon
- Holden Comprehensive Cancer Center
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| | - Varun Monga
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
| | - Rebecca D. Dodd
- Cancer Biology Graduate Program
- Medical Scientist Training Program
- Holden Comprehensive Cancer Center
- Department of Internal Medicine
- Molecular Medicine Graduate Program
| |
Collapse
|
28
|
Filling the Gap: The Immune Therapeutic Armamentarium for Relapsed/Refractory Hodgkin Lymphoma. J Clin Med 2022; 11:jcm11216574. [PMID: 36362802 PMCID: PMC9656939 DOI: 10.3390/jcm11216574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Despite years of clinical progress which made Hodgkin lymphoma (HL) one of the most curable malignancies with conventional chemotherapy, refractoriness and recurrence may still affect up to 20–30% of patients. The revolution brought by the advent of immunotherapy in all kinds of neoplastic disorders is more than evident in this disease because anti-CD30 antibodies and checkpoint inhibitors have been able to rescue patients previously remaining without therapeutic options. Autologous hematopoietic cell transplantation still represents a significant step in the treatment algorithm for chemosensitive HL; however, the possibility to induce complete responses after allogeneic transplant procedures in patients receiving reduced-intensity conditioning regimens informs on its sensitivity to immunological control. Furthermore, the investigational application of adoptive T cell transfer therapies paves the way for future indications in this setting. Here, we seek to provide a fresh and up-to-date overview of the new immunotherapeutic agents dominating the scene of relapsed/refractory HL. In this optic, we will also review all the potential molecular mechanisms of tumor resistance, theoretically responsible for treatment failures, and we will discuss the place of allogeneic stem cell transplantation in the era of novel therapies.
Collapse
|
29
|
Li LJ, Zhang JY. Treatment of refractory/relapsed extranodal NK/T cell lymphoma with decitabine plus anti-PD-1: A case report. World J Clin Cases 2022; 10:10193-10200. [PMID: 36246799 PMCID: PMC9561561 DOI: 10.12998/wjcc.v10.i28.10193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Extranodal natural killer/T cell lymphoma, nasal type (ENKL) is a highly aggressive malignancy characterized by its association with Epstein-Barr virus (EBV) and extranodal involvement, which shows a poor clinical outcome. Although L-asparaginase-based chemotherapy has improved the response rates of relapsed/refractory (R/R) ENKL, relapse occurs in up to 50% of patients with disseminated disease.
CASE SUMMARY Immune evasion has emerged as a critical pathway for survival in ENKL and may be effectuated via STAT3-driven upregulation of programmed cell death ligand 1 (PD-L1) or other molecular pathways. Anti-PD-1 is effective for R/R ENKL with EBV-driven upregulation of PD-L1 expression. Anti-PD-1 combined with decitabine showed positive preliminary results in a patient with R/R ENKL and resistance to anti-PD-1.
CONCLUSION The treatment experience, in this case, demonstrated the potential ability of decitabine combined with PD-1 inhibitor to treat R/R ENKL, thus providing a new treatment strategy for this tumor.
Collapse
Affiliation(s)
- Lin-Jie Li
- Department of Hematology, Lishui Municipal Central Hospital, Lishui 323000, Zhejiang Province, China
| | - Jun-Yu Zhang
- Department of Hematology, Lishui Municipal Central Hospital, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
30
|
Johnson AL, Laterra J, Lopez-Bertoni H. Exploring glioblastoma stem cell heterogeneity: Immune microenvironment modulation and therapeutic opportunities. Front Oncol 2022; 12:995498. [PMID: 36212415 PMCID: PMC9532940 DOI: 10.3389/fonc.2022.995498] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Despite its growing use in cancer treatment, immunotherapy has been virtually ineffective in clinical trials for gliomas. The inherently cold tumor immune microenvironment (TIME) in gliomas, characterized by a high ratio of pro-tumor to anti-tumor immune cell infiltrates, acts as a seemingly insurmountable barrier to immunotherapy. Glioma stem cells (GSCs) within these tumors are key contributors to this cold TIME, often functioning indirectly through activation and recruitment of pro-tumor immune cell types. Furthermore, drivers of GSC plasticity and heterogeneity (e.g., reprogramming transcription factors, epigenetic modifications) are associated with induction of immunosuppressive cell states. Recent studies have identified GSC-intrinsic mechanisms, including functional mimicry of immune suppressive cell types, as key determinants of anti-tumor immune escape. In this review, we cover recent advancements in our understanding of GSC-intrinsic mechanisms that modulate GSC-TIME interactions and discuss cutting-edge techniques and bioinformatics platforms available to study immune modulation at high cellular resolution with exploration of both malignant (i.e., GSC) and non-malignant (i.e., immune) cell fractions. Finally, we provide insight into the therapeutic opportunities for targeting immunomodulatory GSC-intrinsic mechanisms to potentiate immunotherapy response in gliomas.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
31
|
Zhang Y, Xing Z, Mi L, Li Z, Zhu J, Wei T, Wu W. Novel Agents For Relapsed and Refractory Classical Hodgkin Lymphoma: A Review. Front Oncol 2022; 12:929012. [PMID: 35928877 PMCID: PMC9344040 DOI: 10.3389/fonc.2022.929012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
Classical Hodgkin lymphoma (cHL) is the most common type of HL that occurs mainly in people aged between 15–30 and over 55 years. Although its general prognosis is favorable, 10%–30% of patients with cHL will ultimately develop relapsed or refractory disease (r/r cHL). Improving the cure rate of r/r cHL has proven to be challenging. Some novel agents, such as brentuximab vedotin and immune checkpoint inhibitors, which have been used in conventional regimens for patients with r/r cHL in the past decade, have been shown to have good curative effects. This paper reviews the conventional regimens for patients with r/r cHL and focuses on the newest clinical trials and treatment measures to prolong prognosis and reduce adverse events. The evaluation of prognosis plays a vital role in analyzing the risk of relapse or disease progression; thus, finding new predictive strategies may help treat patients with r/r cHL more efficaciously.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhichao Xing
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Li Mi
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Li
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenshuang Wu, ; Tao Wei,
| | - Wenshuang Wu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenshuang Wu, ; Tao Wei,
| |
Collapse
|
32
|
Liu K, Bao JF, Wang T, Yang H, Xu BP. Camrelizumab-induced anaphylactic shock in an esophageal squamous cell carcinoma patient: A case report and review of literature. World J Clin Cases 2022; 10:6198-6204. [PMID: 35949858 PMCID: PMC9254201 DOI: 10.12998/wjcc.v10.i18.6198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Camrelizumab (SHR-1210), an immune checkpoint inhibitor, is clinically used as a therapeutic option for various types of tumors. However, reports of adverse reactions associated with camrelizumab are gradually increasing. Anaphylactic shock due to camrelizumab has not been reported previously, until now. We report here, for the first time, a case of anaphylactic shock associated with camrelizumab in a patient with esophageal squamous cell carcinoma.
CASE SUMMARY An 84-year-old male esophageal cancer patient received radiotherapy and chemotherapy 11 years ago. He was diagnosed with advanced esophageal squamous cell carcinoma with liver metastasis (TxN1M1) and received the first immunotherapy (camrelizumab 200 mg/each time, once every 3 wk) dose in December 2020, with no adverse reactions. Three weeks later, a generalized rash was noted on the chest and upper limbs; palpitations and breathing difficulties with a sense of dying occurred 10 min after the patient had been administered with the second camrelizumab therapy. Electrocardiograph monitoring revealed a 70 beats/min pulse rate, 69/24 mmHg (1 mmHg = 0.133 kPa) blood pressure, 28 breaths/min respiratory rate, and 86% pulse oximetry in room air. The patient was diagnosed with anaphylactic shock and was managed with intravenous fluid, adrenaline, dexamethasone sodium phosphate, calcium glucosate, and noradrenaline. Approximately 2 h after treatment, the patient’s anaphylactic shock symptoms had been completely relieved.
CONCLUSION Due to the widespread use of camrelizumab, attention should be paid to anti-programmed cell death 1 antibody therapy-associated hypersensitivity or anaphylactic shock.
Collapse
Affiliation(s)
- Kai Liu
- Department of Radiotherapy, Traditional Chinese Hospital of Lu’an affiliated to Anhui University of Traditional Chinese Medicine, Lu’an 237000, Anhui Province, China
| | - Jian-Feng Bao
- Department of Immunology, Xixi Hospital of Hangzhou affiliated to Zhejiang University of Traditional Chinese Medicine, Hangzhou 310023, Zhejiang Province, China
| | - Tao Wang
- Department of Urology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Zhongshan 528401, Guangdong Province, China
| | - Hao Yang
- Department of Critical Care Medicine, Traditional Chinese Hospital of Lu’an affiliated to Anhui University of Traditional Chinese Medicine, Lu’an 237000, Anhui Province, China
| | - Bao-Ping Xu
- Department of Critical Care Medicine, Traditional Chinese Hospital of Lu’an affiliated to Anhui University of Traditional Chinese Medicine, Lu’an 237000, Anhui Province, China
| |
Collapse
|
33
|
Nakhoda S, Rizwan F, Vistarop A, Nejati R. Updates in the Role of Checkpoint Inhibitor Immunotherapy in Classical Hodgkin's Lymphoma. Cancers (Basel) 2022; 14:2936. [PMID: 35740598 PMCID: PMC9220999 DOI: 10.3390/cancers14122936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022] Open
Abstract
Classical Hodgkin's lymphoma is a highly curable disease, but 10-25% of patients with higher-risk disease relapse. The introduction of checkpoint inhibitors (CPIs) targeting PD-1 have changed the landscape of treatment for patients with relapsed/refractory disease to multiple lines of therapy. The depth of response to CPI as a monotherapy is highest in the first relapse as salvage therapy based on outcomes reported in several phase II studies. With earlier use of CPI and brentuximab vedotin, the optimal sequencing of therapy is evolving. In this review, we will summarize clinical investigation of anti-PD-1 mAb in earlier line settings to provide insights on utilizing these agents as chemotherapy- and radiation-sparing approaches, increasing depth of response, and as part of combination regimens.
Collapse
Affiliation(s)
- Shazia Nakhoda
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (A.V.); (R.N.)
| | - Farsha Rizwan
- Department of Internal Medicine, Temple University Hospital, Philadelphia, PA 19140, USA;
| | - Aldana Vistarop
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (A.V.); (R.N.)
| | - Reza Nejati
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; (A.V.); (R.N.)
| |
Collapse
|
34
|
Xu Y, Li P, Liu Y, Xin D, Lei W, Liang A, Han W, Qian W. Epi-immunotherapy for cancers: rationales of epi-drugs in combination with immunotherapy and advances in clinical trials. Cancer Commun (Lond) 2022; 42:493-516. [PMID: 35642676 PMCID: PMC9198339 DOI: 10.1002/cac2.12313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Over the last two decades, several epi-drugs, immune checkpoint inhibitors (ICIs) and adoptive cell therapies have received clinical approval for use in certain types of cancer. However, monotherapy with epi-drugs or ICIs has shown limited efficacy in most cancer patients. Epigenetic agents have been shown to regulate the crosstalk between the tumor and host immunity to alleviate immune evasion, suggesting that epi-drugs can potentially synergize with immunotherapy. In this review, we discuss recent insights into the rationales of incorporating epigenetic therapy into immunotherapy, called epi-immunotherapy, and focus on an update of current clinical trials in both hematological and solid malignancies. Furthermore, we outline the future challenges and strategies in the field of cancer epi-immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ping Li
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Yang Liu
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Dijia Xin
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Wen Lei
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Aibin Liang
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Weidong Han
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Wenbin Qian
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
| |
Collapse
|
35
|
Lv J, Zhang W, Deng R, Chen Y, Liu M, Zhang Z, Wang Q, He Y, Liu Y, Wang F, Lv Z, Zhou H, Li C, Zhang T, Fu Y, Zhao X, Bao Q, Miao Y, Wang L, Huang M, Zhang C. Efficacy, safety and prognostic factors of camrelizumab plus carboplatin and pemetrexed chemotherapy in advanced lung adenocarcinoma patients. J Clin Pharm Ther 2022; 47:1257-1263. [PMID: 35397125 DOI: 10.1111/jcpt.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Camrelizumab is a recently developed PD-1 inhibitor in China applied in treating different cancers including lung cancer. This study is designed to evaluate the efficacy, safety and prognostic factors for camrelizumab plus carboplatin and pemetrexed (CP) chemotherapy in treating patients with advanced lung adenocarcinoma. METHODS Of 51 advanced lung adenocarcinoma patients with negative driver genes who received camrelizumab plus CP chemotherapy were recruited. These patients received four cycles of camrelizumab plus CP chemotherapy in a 21-day cycle. Then, camrelizumab, pemetrexed or camrelizumab plus pemetrexed was administered as maintenance therapy. RESULTS AND DISCUSSION The rates of complete response, partial response, stable disease and progressive disease were 2.0%, 56.8%, 19.6% and 5.9%, respectively; while treatment response of 15.7% of patients was missing or not evaluable. The objective response and disease control rates were 58.8% and 78.4%, respectively. With a median follow-up period of 14.9 months (the follow-up duration ranged from 3.9 months to 24.3 months), 41 (83.4%) cases of disease progression and 22 (43.1%) cases of death were recorded. The median progression-free survival (PFS) was 10.5 months (95% confidence interval (CI): 8.4-12.6 months) with a 1-year PFS rate of 36.3% and a 2-year PFS rate of 7.5%. In addition, the median overall survival (OS) was 18.7 months (95% CI: 16.4-21.0 months) with a 1-year OS rate of 79.1% and a 2-year OS rate of 30.4%. In consideration of safety, the most frequent adverse events were peripheral neuropathy (37.3%), neutropenia (37.3%), alopecia (35.3%), etc. and most of them were grade 1-2 and could be controlled. WHAT IS NEW AND CONCLUSION Camrelizumab plus CP chemotherapy achieves favourable efficacy and tolerable adverse events in advanced lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Jialing Lv
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Wen Zhang
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Ruoyu Deng
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Yanqiong Chen
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Meiyan Liu
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Zhijun Zhang
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Qing Wang
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Yongmei He
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Yaling Liu
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Fengting Wang
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Zengbo Lv
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Huahua Zhou
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Chongxin Li
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Tengfei Zhang
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Yanyan Fu
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Xingqiang Zhao
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Qiuping Bao
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Yi Miao
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Lin Wang
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Meifang Huang
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| | - Chao Zhang
- Department of Oncology, Qujing No.1 Hospital, Qujing, China
| |
Collapse
|
36
|
Liu J, Li JN, Wu H, Liu P. The Status and Prospects of Epigenetics in the Treatment of Lymphoma. Front Oncol 2022; 12:874645. [PMID: 35463343 PMCID: PMC9033274 DOI: 10.3389/fonc.2022.874645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
The regulation of gene transcription by epigenetic modifications is closely related to many important life processes and is a hot research topic in the post-genomic era. Since the emergence of international epigenetic research in the 1990s, scientists have identified a variety of chromatin-modifying enzymes and recognition factors, and have systematically investigated their three-dimensional structures, substrate specificity, and mechanisms of enzyme activity regulation. Studies of the human tumor genome have revealed the close association of epigenetic factors with various malignancies, and we have focused more on mutations in epigenetically related regulatory enzymes and regulatory recognition factors in lymphomas. A number of studies have shown that epigenetic alterations are indeed widespread in the development and progression of lymphoma and understanding these mechanisms can help guide clinical efforts. In contrast to chemotherapy which induces cytotoxicity, epigenetic therapy has the potential to affect multiple cellular processes simultaneously, by reprogramming cells to achieve a therapeutic effect in lymphoma. Epigenetic monotherapy has shown promising results in previous clinical trials, and several epigenetic agents have been approved for use in the treatment of lymphoma. In addition, epigenetic therapies in combination with chemotherapy and/or immunotherapy have been used in various clinical trials. In this review, we present several important epigenetic modalities of regulation associated with lymphoma, summarize the corresponding epigenetic drugs in lymphoma, and look at the future of epigenetic therapies in lymphoma.
Collapse
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jia-Nan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hongyu Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
37
|
Nanamori H, Sawada Y. Epigenetic Modification of PD-1/PD-L1-Mediated Cancer Immunotherapy against Melanoma. Int J Mol Sci 2022; 23:ijms23031119. [PMID: 35163049 PMCID: PMC8835029 DOI: 10.3390/ijms23031119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma is one of the representative skin cancers with unfavorable clinical behavior. Immunotherapy is currently used for the treatment, and it dramatically improves clinical outcomes in patients with advanced malignant melanoma. On the other hand, not all these patients can obtain therapeutic efficacy. To overcome this limitation of current immunotherapy, epigenetic modification is a highlighted issue for clinicians. Epigenetic modification is involved in various physiological and pathological conditions in the skin. Recent studies identified that skin cancer, especially malignant melanoma, has advantages in tumor development, indicating that epigenetic manipulation for regulation of gene expression in the tumor can be expected to result in additional therapeutic efficacy during immunotherapy. In this review, we focus on the detailed molecular mechanism of epigenetic modification in immunotherapy, especially anti-PD-1/PD-L1 antibody treatment for malignant melanoma.
Collapse
|
38
|
Driessen J, Tonino SH, Moskowitz AJ, Kersten MJ. How to choose first salvage therapy in Hodgkin lymphoma: traditional chemotherapy vs novel agents. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:240-246. [PMID: 34889399 PMCID: PMC8791111 DOI: 10.1182/hematology.2021000311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Approximately 10% to 30% of patients with classical Hodgkin lymphoma (cHL) develop relapsed or refractory (R/R) disease. Of those patients, 50% to 60% show long-term progression-free survival after standard salvage chemotherapy followed by high-dose chemotherapy (HDCT) and autologous stem cell transplant (ASCT). In the past decade, novel therapies have been developed, such as the CD30-directed antibody-drug conjugate brentuximab vedotin and immune checkpoint inhibitors, which have greatly extended the treatment possibilities for patients with R/R cHL. Several phase 1/2 clinical trials have shown promising results of these new drugs as monotherapy or in combination with chemotherapy, but unfortunately, very few randomized phase 3 trials have been performed in this setting, making it difficult to give evidence-based recommendations for optimal treatment sequencing. Two important goals for the improvement in the treatment of R/R cHL can be identified: (1) increasing long-term progression-free and overall survival by optimizing risk-adapted treatment and (2) decreasing toxicity in patients with a low risk of relapse of disease by evaluating the need for HDCT/ASCT in these patients. In this review, we discuss treatment options for patients with R/R cHL in different settings: patients with a first relapse, primary refractory disease, and in patients who are ineligible or unfit for ASCT. Results of clinical trials investigating novel therapies or strategies published over the past 5 years are summarized.
Collapse
Affiliation(s)
- Julia Driessen
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sanne H Tonino
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alison J Moskowitz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marie José Kersten
- Department of Hematology, Amsterdam UMC, University of Amsterdam, LYMMCARE, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Yang P, Zhou X, Yang X, Wang Y, Sun T, Feng S, Ma X. Neoadjuvant camrelizumab plus chemotherapy in treating locally advanced esophageal squamous cell carcinoma patients: a pilot study. World J Surg Oncol 2021; 19:333. [PMID: 34809658 PMCID: PMC8609728 DOI: 10.1186/s12957-021-02446-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
Background Camrelizumab (a PD-1 inhibitor) has been used as a potential therapy in unresectable advanced esophageal squamous cell carcinoma (ESCC) along with adjuvant treatment in locally advanced ESCC, exhibiting an acceptable efficacy and safety profile. This pilot study was designed to further investigate the clinical value and tolerance of neoadjuvant camrelizumab plus chemotherapy in locally advanced ESCC. Methods A total of 16 patients with locally advanced ESCC were recruited. Patients received 2 cycles of neoadjuvant therapy including 2 doses of camrelizumab concurrent with 2 cycles of paclitaxel plus carboplatin followed by surgery 4 weeks afterward. Then, the treatment response after neoadjuvant therapy, R0 resection rate, tumor regression grade (TRG), and pathological complete remission (pCR) rate were measured. Besides, adverse events were documented. At last, progression-free survival (PFS) and overall survival (OS) were assessed. Results Generally, objective remission rate (ORR) was 81.3% whereas disease control rate (DCR) was 100% after neoadjuvant therapy. Concerning TRG grade, 31.3, 37.5, 18.8, and 12.5% patients reached TRG0, TRG1, TRG2, and TRG3, respectively. Then, pCR rate and R0 resection rate were 31.3 and 93.8%, respectively. Besides, mean PFS and OS were 18.3 months (95%CI: (16.2–20.5) months) and 19.2 months (95%CI: (17.7–20.7) months), respectively, with a 1-year PFS of 83% and OS of 90.9%. Adverse events included white blood cell decrease (37.5%), neutrophil decrease (31.3%), reactive cutaneous capillary endothelial proliferation (37.5%), and nausea or vomiting (25.0%), which were relatively mild and manageable. Conclusion Neoadjuvant camrelizumab plus chemotherapy exhibits good efficacy and acceptable tolerance in patients with locally advanced ESCC.
Collapse
Affiliation(s)
- Peng Yang
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Xiao Zhou
- Department of Oncology, Daqing Oilfield General Hospital, No. 9 Zhongkang Street, Saertu District, Daqing, 163000, Heilongjiang, China.
| | - Xuefeng Yang
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Yuefeng Wang
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Tao Sun
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Shiying Feng
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| | - Xianyou Ma
- Department of Cardiothoracic Surgery, Daqing Oilfield General Hospital, Daqing, 163000, Heilongjiang, China
| |
Collapse
|
40
|
Hradska K, Hajek R, Jelinek T. Toxicity of Immune-Checkpoint Inhibitors in Hematological Malignancies. Front Pharmacol 2021; 12:733890. [PMID: 34483944 PMCID: PMC8414817 DOI: 10.3389/fphar.2021.733890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), especially those targeting the programmed-death 1 (PD-1) receptor and its ligands, have become indispensable agents in solid tumor anti-cancer therapy. Concerning hematological malignancies, only nivolumab and pembrolizumab have been approved for the treatment of relapsed and refractory classical Hodgkin lymphoma and primary mediastinal large B cell lymphoma to date. Nevertheless, clinical research in this field is very active. The mechanism of action of ICIs is based on unblocking the hindered immune system to recognize and eliminate cancer cells, but that also has its costs in the form of ICI-specific immune related adverse events (irAEs), which can affect any organ system and can even be lethal. In this article, we have reviewed all prospective blood cancer clinical trials investigating ICIs (both monotherapy and combination therapy) with available toxicity data with the purpose of determining the incidence of irAEs in this specific setting and to offer a brief insight into their management, as the use of immune checkpoint blockade is not so frequent in hemato-oncology.
Collapse
Affiliation(s)
- Katarina Hradska
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czechia
| | - Roman Hajek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Tomas Jelinek
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czechia.,Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| |
Collapse
|
41
|
Yang C, Xu C, Li X, Zhang Y, Zhang S, Zhang T, Zhang Y. Could Camrelizumab Plus Chemotherapy Improve Clinical Outcomes in Advanced Malignancy? A Systematic Review and Network Meta-Analysis. Front Oncol 2021; 11:700165. [PMID: 34485135 PMCID: PMC8415159 DOI: 10.3389/fonc.2021.700165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Camrelizumab is a novel programmed cell death 1 (PD-1) inhibitor. To determine the efficacy and safety of the combination treatment of camrelizumab+chemotherapy and camrelizumab monotherapy, and determine which is the most suitable malignancy type to be treated with camrelizumab, we performed a systematic review and network meta-analysis. Methods We searched PubMed, Embase, and the Cochrane Library for published clinical trials from database inception until April 2021. Studies that compared camrelizumab+chemotherapy and camrelizumab monotherapy in patients with advanced malignancy were included. We estimated odds ratios (ORs) with credible intervals (CIs) using network meta-analysis with random effects. Results We included four clinical trials with 946 advanced malignancy patients. In terms of the efficacy evaluation of the objective response rate and progression-free survival, camrelizumab treatment for Hodgkin lymphoma (HL), camrelizumab treatment for esophageal squamous cell carcinoma (OSCC), and camrelizumab+chemo treatment for HL always ranked first. In terms of safety evaluation from leukocytopenia, hypothyroidism, and asthenia, camrelizumab treatment for OSCC and chemo always ranked first. This study was registered with PROSPERO, number CRD42021249193. Conclusions Patients with advanced OSCC should be treated with camrelizumab. Patients with severely relapsed/refractory HL could use camrelizuma+chemo for combination treatment when they can tolerate adverse reactions. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=249193, PROSPERO (identifier, CRD42021249193).
Collapse
Affiliation(s)
- Chao Yang
- Department of Ethnic Culture and Vocational Education, Liaoning National Normal College, Shenyang, China
| | - Chang Xu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiang Li
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yaowen Zhang
- The Chemical Laboratory, Liaoning Institute for Drug Control, Shenyang, China
| | - Simeng Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tongyu Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingshi Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|