1
|
El Saftawy E, Aboulhoda BE, Alghamdi MA, Abd Elkhalek MA, AlHariry NS. Heterogeneity of modulatory immune microenvironment in bladder cancer. Tissue Cell 2025; 93:102679. [PMID: 39700733 DOI: 10.1016/j.tice.2024.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. The intra-tumor heterogeneity of the UBC microenvironment explains the variances in response to therapy among patients. Tumor immune microenvironment (TIME) is based on the balance between anti-tumor and pro-tumorigenic immunity that eventually determines the tumor fate. This review addresses the recent insights of the cytokines, immune checkpoints, receptors, enzymes, proteins, RNAs, cancer stem cells (CSCs), tissue-resident cells, growth factors, epithelial-mesenchymal transition, microbiological cofactor, and paracrine action of cancer cells that mutually cross-talk within the TIME. In-depth balance and alteration of these factors influence the TIME and the overall tumor progression. This, in turn, highlights the prospects of the new era of manipulating these co-factors for improving the diagnosis, prognosis, and treatment of UBC. CONCLUSION: The heterogenic architecture of the TIME orchestrates the fate of the tumor. Nevertheless, recognizing the mutual cross-talk between these key players seems useful in prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt.
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Centre for Medical and Heath Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry& Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt; Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
2
|
Yang T, Luo W, Yu J, Zhang H, Hu M, Tian J. Bladder cancer immune-related markers: diagnosis, surveillance, and prognosis. Front Immunol 2024; 15:1481296. [PMID: 39559360 PMCID: PMC11570592 DOI: 10.3389/fimmu.2024.1481296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
As an immune-related tumor type, bladder cancer has been attracting much attention in the study of its markers. In recent years, researchers have made rapid progress in the study of immune-related markers for bladder cancer. Studies have shown that immune-related markers play an important role in the diagnosis, prognosis assessment and treatment of bladder cancer. In addition, the detection of immune-related markers can also be used to evaluate the efficacy of immunotherapy and predict the treatment response of patients. Therefore, in depth study of the expression of immune-related markers in bladder cancer and their application in the clinic is of great significance and is expected to provide new breakthroughs for individualized treatment of bladder cancer. Future studies will focus more on how to detect immune-related markers with low cost and high accuracy, as well as develop new immunotherapeutic strategies to bring better therapeutic outcomes to bladder cancer patients.
Collapse
Affiliation(s)
- Tiantian Yang
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wanru Luo
- College of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jie Yu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Huiping Zhang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meichun Hu
- Key Laboratory of Environmental Related Diseases and One Health, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jun Tian
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| |
Collapse
|
3
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Zhou X, Liu Y, Lv Z, Shen C, Yang S, Zhang Z, Tan M, Hu H. Construction and verification of an innovative immune-related and hallmark gene sets prognostic model for bladder cancer. Transl Cancer Res 2024; 13:4639-4653. [PMID: 39430822 PMCID: PMC11483368 DOI: 10.21037/tcr-24-327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/01/2024] [Indexed: 10/22/2024]
Abstract
Background Bladder cancer (BC) is a life-threatening malignancy with high mortality rates. Current prognostic models are insufficient in accurately predicting clinical outcomes, impeding personalized treatment strategies. This study aimed to identify BC subtypes and prognostic gene sets by analyzing changes in immune and hallmark gene sets activity in tumor and adjacent non-tumor tissues to enhance patient outcomes. Methods Utilizing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), gene set variation analysis (GSVA) was applied to C7 immune-related and hallmark gene sets from the Molecular Signatures Database (MSigDB). The CancerSubtype R package was utilized for clustering these gene sets into three categories, from which 109 candidate sets were identified using Venn diagrams. A refined subset of seven gene sets was selected through least absolute shrinkage and selection operator (LASSO) regression for the construction of a risk model. Model validity was confirmed with receiver operating characteristic (ROC) and calibration curves, and a nomogram was constructed to integrate risk scores with clinical parameters. Finally, genes from the gene sets of the model were acquired and analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interactions (PPI) via plugin Molecular Complex Detection (MCODE) and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) in Cytoscape in both tumor and non-tumor tissues. Results Three BC subtypes were characterized by immunologic and hallmark gene sets, with subtype 1 patients showing worse survival. The prognostic model, based on seven gene sets, effectively stratified risk, with high-risk patients having significantly shorter survival. GO, KEGG, and PPI analyses indicated distinct influences of non-tumor and tumor tissues on the prognosis of BC patients. Conclusions We constructed and validated a novel prognostic model for risk stratification in BC based on immunologic and hallmark genes sets, which presents a novel perspective on rational treatment approaches and accurate prognostic evaluations for BC by considering both tumor and adjacent non-tumor tissues. This highlights the importance of focusing on alterations in both tumor and adjacent non-tumor tissues, rather than solely on the tumor itself.
Collapse
Affiliation(s)
- Xiaoliang Zhou
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| | - Yuejiao Liu
- Department of Pharmacy, Zhu Xianyi Memorial Hospital of Tianjin Medical University, Tianjin, China
| | - Zhihong Lv
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| | - Chong Shen
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| | - Shaobo Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| | - Zhe Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| | - Ming Tan
- Department of Urology, Tianjin Wuqing District Second People’s Hospital, Tianjin, China
| | - Hailong Hu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Urology, Tianjin Institute of Urology, Tianjin, China
| |
Collapse
|
5
|
Yoshida T, Nakamoto T, Atsumi N, Ohe C, Sano T, Yasukochi Y, Tsuta K, Kinoshita H. Impact of LAG-3/FGL1 pathway on immune evasive contexture and clinical outcomes in advanced urothelial carcinoma. J Immunother Cancer 2024; 12:e009358. [PMID: 39043605 PMCID: PMC11268076 DOI: 10.1136/jitc-2024-009358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Anti-programmed death-1 (PD-1)/anti-PD-ligand-1 (PD-L1) pathway inhibition is a standard regimen for advanced urothelial carcinoma (UC); however, its limited efficacy has been reflected in reported medium response rates. This study explored the role of next-generation coinhibitory receptors (IRs; lymphocyte activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain 3 (TIM-3), and T-cell immunoreceptor with Ig and ITIM domains (TIGIT)) and their ligands (LGs) in the response to PD-(L)1 blockade therapy and the oncological outcomes in patients with UC. METHODS We investigated metastatic UC cases who underwent PD-(L)1 therapy (cohort 1: n=348, cohort 2: n=89, and cohort 4: n=29) or advanced UC cases involving surgery (cohort 3: n=293 and cohort 5: n=90). We assessed the mRNA expression profiles and corresponding clinical information regarding IRs and LGs using cohorts 1, 2, and 3. Additionally, we elucidated the spatial features of these targeted markers using multiplex immunohistochemistry (mIHC) on formalin-fixed paraffin-embedded samples from cohorts 4 and 5. Survival, differential expressed gene, and Gene Set Enrichment analyses were performed. For mIHC, quantitative analyses were also performed to correlate immune and tumor cell densities with patient survival. RESULTS LAG-3 expression was strongly associated with the responsiveness of PD-(L)1 blockade compared with the expression of TIM-3 and TIGIT. In tumors with high LAG-3 levels, the increased expression of fibrinogen-like protein 1 (FGL1) had a significantly negative effect on the response to PD-(L)1 blockade and overall survival. Moreover, high FGL1 levels were associated with elevated CD4+ regulatory T-cell gene signatures and the upregulation of CD39 and neuropilin-1, with both indicating CD8+ T-cell exhaustion. mIHC analyses revealed that patients with stromal CD8+LAG-3+cellshigh-tumor FGL1+cellshigh exhibited a significant negative correlation with survival rates compared with those with stromal CD8+LAG-3+cellshigh-tumor FGL1+cellslow. CONCLUSIONS LAG-3 expression and high FGL1 coexpression are important predictive factors of adverse oncological outcomes related to the presence of immunosuppressive contextures. These findings are hypothesis-generating, warranting further mechanistic and clinical studies aimed to evaluate LAG-3/FGL1 blockade in UC.
Collapse
Affiliation(s)
- Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
- Graduate School of Engineering, Tottori University, Tottori, Japan
- Department of Urology, Osaka Saiseikai-Noe Hospital, Osaka, Japan
- Corporate Sponsored Research Programs for Multicellular Interactions in Cancer, Kansai Medical University, Osaka, Japan
| | - Takahiro Nakamoto
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
- Department of Pathology, Kansai Medical University, Osaka, Japan
| | - Naho Atsumi
- Corporate Sponsored Research Programs for Multicellular Interactions in Cancer, Kansai Medical University, Osaka, Japan
- Department of Pathology, Kansai Medical University, Osaka, Japan
| | - Chisato Ohe
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
- Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Takeshi Sano
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | - Yoshiki Yasukochi
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Koji Tsuta
- Corporate Sponsored Research Programs for Multicellular Interactions in Cancer, Kansai Medical University, Osaka, Japan
- Department of Pathology, Kansai Medical University, Osaka, Japan
| | - Hidefumi Kinoshita
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| |
Collapse
|
6
|
Wu Y, Xu Z, Fu G, Chen X, Tian J, Cai H, Jiang P, Jin B. Identification of a cisplatin resistant-based prognostic immune related gene signature in MIBC. Transl Oncol 2024; 44:101942. [PMID: 38555741 PMCID: PMC10990904 DOI: 10.1016/j.tranon.2024.101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Cisplatin resistance plays a significant role in the dismal prognosis and progression of muscle-invasive bladder cancer (MIBC). However, the strategies to predict prognosis and cisplatin resistance are inefficient, and it remains unclear whether cisplatin resistance is associated with tumor immunity. In this study, we integrated the transcriptional data from cisplatin-resistant cell lines and a TCGA-MIBC cohort to establish cisplatin-resistance-related cluster classification and a cisplatin-resistance-related gene risk score (CRRGRS). Kaplan-Meier survival curves showed that compared with those in low CRRGRS group, MIBC patients belonging to high CRRGRS group had worse prognosis in TCGA-MIBC cohort and external GEO cohorts. Meanwhile, CRRGRS was able to help forecast chemotherapy and immunotherapy response of MIBC patients in the TGCA cohort and IMvigor210 cohort. Moreover, compared with the low CRRGRS group, the high CRRGS group possessed a relatively immunosuppressive "cold tumor" phenotype with a higher tumor immune dysfunction and exclusion (TIDE) score, ESTIMATE score, stromal score and immune score and a lower immunophenoscore (IPS) score. The upregulated expression levels of immune checkpoint genes, including PD-1, PD-L1 and CTLA4, in the high CRRGRS group also further indicated that a relative immunosuppressive tumor microenvironment may exist in MIBC patients belonging to high CRRGRS group. In addition, we integrated CRRGRS and clinical characteristics with prognostic value to develop a nomogram, which could help forecast overall survival of MIBC patients. Furthermore, DIAPH3 was identified as a regulator of proliferation and cisplatin resistance in MIBC. The expression of DIAPH3 was increased in cisplatin-resistant cell lines and chemotherapy-unsensitive people. Further mechanism exploration revealed that DIAPH3 facilitated tumor proliferation and cisplatin resistance by regulating the NF-kB and epithelial-mesenchymal transition (EMT) pathways. In conclusion, the comprehensive investigations of CRRGRS increased the understanding of cisplatin resistance and provided promising insights to restrain tumor growth and overcome chemoresistance by targeting DIAPH3.
Collapse
Affiliation(s)
- Yunfei Wu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou, 310024, China
| | - Zhijie Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou, 310024, China
| | - Guanghou Fu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou, 310024, China
| | - Xiaoyi Chen
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou, 310024, China
| | - Junjie Tian
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou, 310024, China
| | - Hairong Cai
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou, 310024, China
| | - Peng Jiang
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou, 310024, China.
| | - Baiye Jin
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China; Zhejiang Engineering Research Center for Urinary Bladder Carcinoma Innovation Diagnosis and Treatment, Hangzhou, 310024, China.
| |
Collapse
|
7
|
Xi Y, Zheng K, Deng F, Liu Y, Sun H, Zheng Y, Tong HHY, Ji Y, Zhang Y, Chen W, Zhang Y, Zou X, Hao J. Themis: advancing precision oncology through comprehensive molecular subtyping and optimization. Brief Bioinform 2024; 25:bbae261. [PMID: 38833322 PMCID: PMC11149663 DOI: 10.1093/bib/bbae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
Recent advances in tumor molecular subtyping have revolutionized precision oncology, offering novel avenues for patient-specific treatment strategies. However, a comprehensive and independent comparison of these subtyping methodologies remains unexplored. This study introduces 'Themis' (Tumor HEterogeneity analysis on Molecular subtypIng System), an evaluation platform that encapsulates a few representative tumor molecular subtyping methods, including Stemness, Anoikis, Metabolism, and pathway-based classifications, utilizing 38 test datasets curated from The Cancer Genome Atlas (TCGA) and significant studies. Our self-designed quantitative analysis uncovers the relative strengths, limitations, and applicability of each method in different clinical contexts. Crucially, Themis serves as a vital tool in identifying the most appropriate subtyping methods for specific clinical scenarios. It also guides fine-tuning existing subtyping methods to achieve more accurate phenotype-associated results. To demonstrate the practical utility, we apply Themis to a breast cancer dataset, showcasing its efficacy in selecting the most suitable subtyping methods for personalized medicine in various clinical scenarios. This study bridges a crucial gap in cancer research and lays a foundation for future advancements in individualized cancer therapy and patient management.
Collapse
Affiliation(s)
- Yue Xi
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250013, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Zheng
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Fulan Deng
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yujun Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Hourong Sun
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yingxia Zheng
- Department of Laboratory Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Henry H Y Tong
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao SAR, China
| | - Yuan Ji
- Molecular Pathology center, Dept. Pathology, Zhongshan Hospital, Fudan University
| | - Yingchun Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250013, China
| | - Wantao Chen
- Ninth People's Hospital, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yiming Zhang
- Department of Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250013, China
| | - Xin Zou
- National Engineering Center for Biochip at Shanghai, China
| | - Jie Hao
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Ibrahim OM, Kalinski P. Breaking Barriers: Modulation of Tumor Microenvironment to Enhance Bacillus Calmette-Guérin Immunotherapy of Bladder Cancer. Cells 2024; 13:699. [PMID: 38667314 PMCID: PMC11049012 DOI: 10.3390/cells13080699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The clinical management of bladder cancer continues to present significant challenges. Bacillus Calmette-Guérin (BCG) immunotherapy remains the gold standard of treatment for non-muscle invasive bladder cancer (NMIBC), but many patients develop recurrence and progression to muscle-invasive disease (MIBC), which is resistant to BCG. This review focuses on the immune mechanisms mobilized by BCG in bladder cancer tumor microenvironments (TME), mechanisms of BCG resistance, the dual role of the BCG-triggered NFkB/TNFα/PGE2 axis in the regulation of anti-tumor and tumor-promoting aspects of inflammation, and emerging strategies to modulate their balance. A better understanding of BCG resistance will help develop new treatments and predictive biomarkers, paving the way for improved clinical outcomes in bladder cancer patients.
Collapse
Affiliation(s)
- Omar M. Ibrahim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Pawel Kalinski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
9
|
Wang T, Ding G, Wang X, Cui Y, Ma X, Ma J, Wu J. Expression of EPB41L2 in Cancer-Associated Fibroblasts: Prognostic Implications for Bladder Cancer and Response to Immunotherapy. Arch Med Res 2024; 55:102927. [PMID: 38154234 DOI: 10.1016/j.arcmed.2023.102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/25/2023] [Accepted: 11/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Immunotherapy response in patients with bladder cancer (BLCA) treated with immune checkpoint inhibitors (ICIs) is variable. The accurate evaluation of immunotherapy efficacy may be facilitated by the tumor microenvironment (TME). Erythrocyte membrane protein band 4.1 like 2 (EPB41L2), a cytoskeletal protein with a regulatory role in the TME was intensively investigated to determine its biological characterization, clinical relevance, and predictive value for immunotherapy in BLCA. METHODS Comprehensive bioinformatics and statistical analyses were conducted to examine gene expression profile, TME components, immune contexture, molecular features, and prediction of immunotherapy response. Immunohistochemistry (IHC) validated the results of the bioinformatics analysis. Association between immune checkpoint genes (ICGs) and EPB41L2-based risk stratification was validated in the IMvigor210 cohort, and their association with ICI response was assessed. RESULTS EPB41L2 mRNA levels were decreased in BLCA compared to normal tissue. IHC showed reduced EPB41L2 staining intensity in early BLCA tissue. Nevertheless, elevated EPB41L2 expression was observed in cancer-associated fibroblasts (CAFs) with higher histological grade and pathological stage. High EPB41L2 expression served as a poor prognostic factor for BLCA. Single-cell RNA-seq and further analyses revealed that EPB41L2 was mainly expressed in CAFs and promoted TME remodeling. EPB41L2low/ICGshigh patients showed greater benefit from immunotherapy. Gene mutation analysis revealed a close relationship between EPB41L2 and the frequency of oncogenic mutations, including TP53 and FGFR3. CONCLUSION Comprehensive analysis and IHC confirmed the upregulation of EPB41L2 in BLCA CAFs and its association with TME remodeling. EPB41L2 and ICG expression were identified as combinatorial biomarkers to predict the response to immunotherapy.
Collapse
Affiliation(s)
- Tianqi Wang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Guixin Ding
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaoyu Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuanshan Cui
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaohong Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jian Ma
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
10
|
Cheng X, Shen J, Xu J, Zhu J, Xu P, Wang Y, Gao M. In vivo clinical molecular imaging of T cell activity. Trends Immunol 2023; 44:1031-1045. [PMID: 37932176 DOI: 10.1016/j.it.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
Tumor immunotherapy is refashioning traditional treatments in the clinic for certain tumors, especially by relying on the activation of T cells. However, the safety and effectiveness of many antitumor immunotherapeutic agents are suboptimal due to difficulties encountered in assessing T cell responses and adjusting treatment regimens accordingly. Here, we review advances in the clinical visualization of T cell activity in vivo, and focus particularly on molecular imaging probes and biomarkers of T cell activation. Current challenges and prospects are also discussed that aim to achieve a better strategy for real-time monitoring of T cell activity, predicting prognoses and responses to tumor immunotherapy, and assessing disease management.
Collapse
Affiliation(s)
- Xiaju Cheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jiahao Shen
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Jingwei Xu
- Department of Cardiothoracic Surgery, Suzhou Municipal Hospital Institution, Suzhou 215000, PR China.
| | - Jinfeng Zhu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Pei Xu
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China
| | - Yong Wang
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.
| | - Mingyuan Gao
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
11
|
APOBEC3B and CD274 as Combined Biomarkers for Predicting Response to Immunotherapy in Urothelial Carcinoma of the Bladder. JOURNAL OF ONCOLOGY 2022; 2022:6042334. [PMID: 36245972 PMCID: PMC9557251 DOI: 10.1155/2022/6042334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Immunotherapy has become a promising form of treatment for cancers. There is a need to predict response to immunotherapy accurately. In the UCSC Xena, pan-cancer analysis revealed a positive relationship between APOBEC3B (A3B) and tumor mutational burden (R = 0.28, P < 0.001) and microsatellite instability (R = 0.12, P < 0.05). Naturally, the A3B high expression group had higher tumor mutational burden and microsatellite instability than the low expression group. The bladder cancer (BLCA) cohort in The Cancer Genome Atlas (TCGA) revealed tumor mutational signatures of A3B high and low expression groups. Compared to the low expression group, the high expression group had a higher number of SNPs and mutations. Subsequently, A3B was profiled for immune cell infiltration and immune checkpoints in bladder cancer. The results showed that A3B was positively correlated with most immune cells. Compared with the A3B low expression group, the A3B high expression group had higher expression of immune checkpoints. A3B was positively correlated with CD274 (R = 0.12, P = 0.016). This indicated that the high expression of A3B may have a better response to immunotherapy. Furthermore, data from the IMvigor210 immunotherapy clinical trial was used to confirm the findings of this study. The combined survival analysis of A3B and CD274 showed that the group of patients with high expression of CD274 and A3B was found to have a significantly higher survival rate than the rest of the patient group (P < 0.047). The results demonstrated that A3B has a significant role in immunotherapy. Moreover, the combined biomarkers of A3B and CD274 were more effective in predicting response to immunotherapy in bladder urothelial carcinoma. The findings of this study provide valuable insights for precision medicine.
Collapse
|