1
|
Mauro F, Bruni S, Dupont A, Schey A, Badalini A, Inurrigarro G, Figurelli S, Barchuk S, Vecchia DLD, Deza EG, Rivenson Y, Nava A, Fernandez E, Urtreger A, Russo RC, Mercogliano MF, Schillaci R. Mucin 4 expression is associated with metastasis in triple-negative breast cancer and can be tackled by soluble TNF blockade, improving immunotherapy outcome. Transl Oncol 2025; 54:102325. [PMID: 39987883 PMCID: PMC11904514 DOI: 10.1016/j.tranon.2025.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
PURPOSE Triple-negative breast cancer (TNBC) has the worst prognosis among breast cancers. Immunotherapy is a therapeutic option, but there is no biomarker to guide promising combination treatments. Mucin 4 (MUC4) favors metastasis in preclinical cancer models. This study evaluates the efficacy of soluble TNF (sTNF) neutralization to tackle MUC4 expression preventing metastasis in combination with immunotherapy, and the potential use of MUC4 as a prognostic and predictive biomarker in TNBC patients. EXPERIMENTAL DESIGN To explore TNF modulation of MUC4 expression, a panel of TNBC cell lines was used. To assess the effect of sTNF blockade with a dominant negative molecule in combination with anti-PD-1 antibody on lung metastasis and overall survival (OS), 4T1 and LMM3 tumors were used. MUC4, PD-L1 and Ki-67 expression was evaluated by immunohistochemistry, and tumor infiltrating lymphocytes (TILs) were assessed by H&E staining, in a cohort of 49 early TNBC patients treated with chemotherapy. RESULTS TNF neutralization reduces MUC4 expression in TNBC cell lines. Only the combination of sTNF blockade with anti-PD-1 antibody prevents metastasis and increases mice survival. In early TNBC patients MUC4 expression is inversely associated with TILs presence and PD-L1 and Ki-67 expression. Finally, MUC4 is associated with metastasis and is an independent biomarker of poor OS. CONCLUSIONS We proved the existence of a sTNF/MUC4 axis in TNBC that can be actionable by sTNF neutralization, preventing metastasis. We suggest that MUC4 is a suitable biomarker to guide immunotherapy in TNBC, together with the administration of sTNF blocking drugs to improve outcome.
Collapse
Affiliation(s)
- Florencia Mauro
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina
| | - Sofia Bruni
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina
| | - Agustina Dupont
- Servicio de Patología Sanatorio Mater Dei, Buenos Aires, Argentina; Servicio de Patología, Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Aldana Schey
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Oncología Ángel H. Roffo, Área de Investigación, Buenos Aires, Argentina
| | | | | | - Silvina Figurelli
- Servicio de Patología, Hospital Juan A. Fernández, Buenos Aires, Argentina
| | - Sabrina Barchuk
- Servicio de Ginecología, Hospital Juan A. Fernández, Buenos Aires, Argentina
| | | | | | - Yanina Rivenson
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina
| | - Agustin Nava
- DataLab, Fundación Para el Progreso de la Medicina - CONICET Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN) Universidad Nacional de Córdoba, Argentina
| | - Elmer Fernandez
- DataLab, Fundación Para el Progreso de la Medicina - CONICET Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales (FCEFyN) Universidad Nacional de Córdoba, Argentina
| | - Alejandro Urtreger
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Oncología Ángel H. Roffo, Área de Investigación, Buenos Aires, Argentina
| | - Rosalia Cordo Russo
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina
| | - María Florencia Mercogliano
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratorio de Inmunología Tumoral. Instituto de Biología y Medicina Experimental (IBYME) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Fundación IBYME. Buenos Aires, Argentina.
| |
Collapse
|
2
|
Li F, Gao C, Huang Y, Qiao Y, Xu H, Liu S, Wu H. Unraveling the breast cancer tumor microenvironment: crucial factors influencing natural killer cell function and therapeutic strategies. Int J Biol Sci 2025; 21:2606-2628. [PMID: 40303301 PMCID: PMC12035885 DOI: 10.7150/ijbs.108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/04/2025] [Indexed: 05/02/2025] Open
Abstract
Natural killer (NK) cells have emerged as a novel and effective treatment for breast cancer. Nevertheless, the breast cancer tumor microenvironment (TME) manifests multiple immunosuppressive mechanisms, impeding the proper execution of NK cell functions. This review summarizes recent research on the influence of the TME on the functionality of NK cells in breast cancer. It delves into the effects of the internal environment of the TME on NK cells and elucidates the roles of diverse stromal components, immune cells, and signaling molecules in regulating NK cell activity within the TME. It also summarizes therapeutic strategies based on small-molecule inhibitors, antibody therapies, and natural products, as well as the progress of research in preclinical and clinical trials. By enhancing our understanding of the immunosuppressive TME and formulating strategies to counteract its effects, we could fully harness the therapeutic promise of NK cells in breast cancer treatment.
Collapse
Affiliation(s)
- Feifei Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunfang Gao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Huang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Yu Qiao
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| | - Hongxiao Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai, China
| |
Collapse
|
3
|
Ma H, Li J. Impact of HER2-targeting antibody drug conjugates in treatment strategies for patients with breast cancer. Heliyon 2025; 11:e41590. [PMID: 39916839 PMCID: PMC11799954 DOI: 10.1016/j.heliyon.2024.e41590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/25/2024] [Accepted: 12/30/2024] [Indexed: 02/09/2025] Open
Abstract
Antibody drug conjugates (ADCs) are novel drugs that exert specific cytotoxicity against breast cancer. Although ADCs such as trastuzumab emtansine and trastuzumab deruxtecan have significantly improved survival for patients with breast cancer expressing HER2, there is still controversy over options after ADCs. The radiotherapy and ablation should also be used as an effective strategy for oligoprogressions. Herein, we conducted a review of ADCs, and then discussed several strategies to maximize the potential benefit to patients with HER2 expression breast cancer.
Collapse
Affiliation(s)
- Hanghang Ma
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
- Outpatient Department of the 55th Retired Cadre Rest Center in Haidian District, Beijing, China
| | - Jianbin Li
- Senior Department of Oncology, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Cortesi M, Bravaccini S, Ravaioli S, Petracci E, Angeli D, Tumedei MM, Balzi W, Pirini F, Zanoni M, Possanzini P, Rocca A, Palleschi M, Ulivi P, Martinelli G, Maltoni R. HDAC6 as a Prognostic Factor and Druggable Target in HER2-Positive Breast Cancer. Cancers (Basel) 2024; 16:3752. [PMID: 39594707 PMCID: PMC11591923 DOI: 10.3390/cancers16223752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/27/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Adjuvant trastuzumab is the standard of care for HER2+ breast cancer (BC) patients. However, >50% of patients become resistant. This study aimed at the identification of the molecular factors associated with disease relapse and their further investigation as therapeutically exploitable targets. METHODS Analyses were conducted on formalin-fixed paraffin-embedded tissues of the primary tumors of relapsed (cases) and not relapsed (controls) HER2+ BC patients treated with adjuvant trastuzumab. The nCounter Human Breast Cancer Panel 360 was used. Logistic regression and partitioning around medoids were employed to identify the genes associated with disease recurrence. Cytotoxicity experiments using trastuzumab-resistant cell lines and a network pharmacology approach were carried out to investigate drug efficacy. RESULTS A total of 52 patients (26 relapsed and 26 not relapsed) were analyzed. We found that a higher expression of HDAC6 was significantly associated with an increased risk of recurrence, with an adjusted OR of 3.20 (95% CI 1.38-9.91, p = 0.016). Then, we investigated the cytotoxic activity of the selective HDAC6 inhibitor Nexturastat A (NextA) on HER2+ cell lines, which were both sensitive and trastuzumab-resistant. A sub-cytotoxic concentration of NextA, combined with trastuzumab, showed a synergistic effect on BC cell lines. Finally, using a network pharmacology approach, we identified HSP90AA1 as the putative molecular candidate responsible for the synergism observed in vitro. CONCLUSIONS Our findings encourage the exploration of the role of HDAC6 as a prognostic factor and the combinatorial use of HDAC6 selective inhibitors combined with trastuzumab in HER2+ BC, in particular for those patients experiencing drug resistance.
Collapse
Affiliation(s)
- Michela Cortesi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Sara Ravaioli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Elisabetta Petracci
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Davide Angeli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Maria Maddalena Tumedei
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - William Balzi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Francesca Pirini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Michele Zanoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Paola Possanzini
- Pathology Unit, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy
| | - Andrea Rocca
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Michela Palleschi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Paola Ulivi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| | - Giovanni Martinelli
- Department of Hematology and Sciences Oncology, Institute of Haematology “L. and A. Seràgnoli”, S. Orsola University Hospital, 40138 Bologna, Italy
| | - Roberta Maltoni
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (M.C.); (R.M.)
| |
Collapse
|
5
|
Li F, Shi Y, Ma M, Yang X, Chen X, Xie Y, Liu S. Xianling Lianxia formula improves the efficacy of trastuzumab by enhancing NK cell-mediated ADCC in HER2-positive BC. J Pharm Anal 2024; 14:100977. [PMID: 39493309 PMCID: PMC11531627 DOI: 10.1016/j.jpha.2024.100977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 04/08/2024] [Indexed: 11/05/2024] Open
Abstract
Trastuzumab has improved survival rates in human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC), but drug resistance leads to treatment failure. Natural killer (NK) cell-mediated antibody-dependent cell cytotoxicity (ADCC) represents an essential antitumor immune mechanism of trastuzumab. Traditional Chinese medicine (TCM) has been used for centuries to treat diseases because of its capacity to improve immune responses. Xianling Lianxia formula (XLLXF), based on the principle of "strengthening body and eliminating toxin", exhibits a synergistic effect in the trastuzumab treatment of patients with HER2-positive BC. Notably, this synergistic effect of XLLXF was executed by enhancing NK cells and ADCC, as demonstrated through in vitro co-culture of NK cells and BC cells and in vivo intervention experiments. Mechanistically, the augmented impact of XLLXF on NK cells is linked to a decrease in cytokine inducible Src homology 2 (SH2) containing protein (CISH) expression, which in turn activates the Janus kinase 1 (JAK1)/signal transducer and activator of transcription 5 (STAT5) pathway. Collectively, these findings suggested that XLLXF holds promise for enhancing NK cell function and sensitizing patients with HER2-positive BC to trastuzumab.
Collapse
Affiliation(s)
- Feifei Li
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Youyang Shi
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Mei Ma
- Institute of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaojuan Yang
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Xiaosong Chen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
| | - Ying Xie
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Sheng Liu
- Department of Breast Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
- Institute of Chinese Traditional Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| |
Collapse
|
6
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
7
|
Stoup N, Liberelle M, Lebègue N, Van Seuningen I. Emerging paradigms and recent progress in targeting ErbB in cancers. Trends Pharmacol Sci 2024; 45:552-576. [PMID: 38797570 DOI: 10.1016/j.tips.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/29/2024]
Abstract
The epidermal growth factor receptor (EGFR) family is a class of transmembrane proteins, highly regarded as anticancer targets due to their pivotal role in various malignancies. Standard cancer treatments targeting the ErbB receptors include tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs). Despite their substantial survival benefits, the achievement of curative outcomes is hindered by acquired resistance. Recent advancements in anti-ErbB approaches, such as inhibitory peptides, nanobodies, targeted-protein degradation strategies, and bispecific antibodies (BsAbs), aim to overcome such resistance. More recently, emerging insights into the cell surface interactome of the ErbB family open new avenues for modulating ErbB signaling by targeting specific domains of ErbB partners. Here, we review recent progress in ErbB targeting and elucidate emerging paradigms that underscore the significance of EGF domain-containing proteins (EDCPs) as new ErbB-targeting pathways.
Collapse
Affiliation(s)
- Nicolas Stoup
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Maxime Liberelle
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Nicolas Lebègue
- University of Lille, Inserm, CHU Lille, UMR-S 1172 - LiNC -Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Isabelle Van Seuningen
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277 - CANTHER - Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France.
| |
Collapse
|
8
|
Kundu M, Butti R, Panda VK, Malhotra D, Das S, Mitra T, Kapse P, Gosavi SW, Kundu GC. Modulation of the tumor microenvironment and mechanism of immunotherapy-based drug resistance in breast cancer. Mol Cancer 2024; 23:92. [PMID: 38715072 PMCID: PMC11075356 DOI: 10.1186/s12943-024-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024] Open
Abstract
Breast cancer, the most frequent female malignancy, is often curable when detected at an early stage. The treatment of metastatic breast cancer is more challenging and may be unresponsive to conventional therapy. Immunotherapy is crucial for treating metastatic breast cancer, but its resistance is a major limitation. The tumor microenvironment (TME) is vital in modulating the immunotherapy response. Various tumor microenvironmental components, such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs), are involved in TME modulation to cause immunotherapy resistance. This review highlights the role of stromal cells in modulating the breast tumor microenvironment, including the involvement of CAF-TAM interaction, alteration of tumor metabolism leading to immunotherapy failure, and other latest strategies, including high throughput genomic screening, single-cell and spatial omics techniques for identifying tumor immune genes regulating immunotherapy response. This review emphasizes the therapeutic approach to overcome breast cancer immune resistance through CAF reprogramming, modulation of TAM polarization, tumor metabolism, and genomic alterations.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
- Department of Pharmaceutical Technology, Brainware University, West Bengal, 700125, India
| | - Ramesh Butti
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Venketesh K Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Sumit Das
- National Centre for Cell Sciences, Savitribai Phule Pune University Campus, Pune, 411007, India
| | - Tandrima Mitra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India
| | - Prachi Kapse
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Suresh W Gosavi
- School of Basic Medical Sciences, Savitribai Phule Pune University, Pune, 411007, India
| | - Gopal C Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, 751024, India.
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar, 751024, India.
| |
Collapse
|
9
|
Li T, Zhang W, Niu M, Wu Y, Deng X, Zhou J. STING agonist inflames the cervical cancer immune microenvironment and overcomes anti-PD-1 therapy resistance. Front Immunol 2024; 15:1342647. [PMID: 38550593 PMCID: PMC10972971 DOI: 10.3389/fimmu.2024.1342647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Background Cervical cancer poses a significant global threat to women's health. However, current therapeutic interventions, such as radiotherapy, chemotherapy, surgical resection, and immune checkpoint inhibitors, face limitations in the advanced stages of the disease. Given the immunosuppressive microenvironment in cervical cancer, it is imperative to explore novel perspectives. In this regard, STING agonists have emerged as promising candidates. Methods The expression profiles and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Prognostic analysis of STING downstream genes (CCL5, CXCL9, CXCL10) and immune infiltration analysis were conducted using Kaplan-Meier Plotter, ESTIMATE, and deconvo_CIBERSOR. Single-cell RNA-seq (scRNA-seq) analysis was conducted to evaluate the potential of MSA-2 in cervical cancer treatment employing SingleR, chi-squared test, and Gene Set Enrichment Analysis (GSEA). Cellular interaction analysis utilized the CellChat package to assess the potentiation of cellular interaction following MSA-2 administration. Murine tumor models involving U14 and TC-1, were conducted, and the IF of tissue was subsequently conducted to assess the tumor microenvironment status after treatment. Results Prognosis in cervical cancer correlated with elevated expression of STING downstream genes, indicating prolonged survival and reduced recurrence. These genes positively correlated with immune infiltration, influencing stromal scores, immune scores, and estimate scores. Specific immune cell populations, including CD8+ T cells, M1-type macrophages, NK cells, and T follicular helper cells, were associated with STING downstream genes. scRNA-seq in a classic immune-excluded model revealed that MSA-2 exerts priming and activating functions on vital components within TME, and intensifies their intercellular communications. The in vivo assay ultimately demonstrated that MSA-2, either as a standalone treatment or in combination with anti-PD-1, effectively suppressed the growth of subcutaneous cervical tumors. Moreover, the combination strategy significantly augmented efficacy compared to anti-PD-1 monotherapy by eliciting a robust antitumor immune response. Conclusion This study highlights the pivotal role of the STING pathway and the potential of MSA-2 in reshaping the immune microenvironment in cervical cancer. Combining MSA-2 with immune checkpoint inhibitors presents a transformative approach, holding promise for improved prognosis. Further investigations are warranted to explore the broader immune landscape and potential long-term effects of MSA-2 in cervical cancer treatment.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijiang Zhang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyue Deng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| |
Collapse
|
10
|
Lin Y, Zhang Y, Wang S, Yang Q. Elucidating the relationship between metabolites and breast cancer: A Mendelian randomization study. Toxicol Appl Pharmacol 2024; 484:116855. [PMID: 38341104 DOI: 10.1016/j.taap.2024.116855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The evidence about the causal roles of metabolites in breast cancer is lacking. This study conducted a systematic evaluation of the potential causal relationship between 1091 human blood metabolites, 309 metabolite ratios, and the likelihood of developing breast cancer and its subtype by employing a two-sample bidirectional Mendelian randomization (MR) approach Four metabolites, including tryptophan betaine (Odds Ratio [OR] = 1.07, 95%CI = 1.04-1.10, Bonferroni-corrected P = 0.007), X-21312 (OR = 0.90, 95%CI = 0.86-0.94, Bonferroni-corrected P = 0.02), 3-bromo-5-chloro-2,6-dihydroxybenzoic acid (OR = 0.94, 95%CI = 0.91-0.96, Bonferroni-corrected P = 0.03) and X-18921 (OR = 0.96, 95%CI = 0.94-0.98, Bonferroni-corrected P = 0.04) were significantly associated with overall breast cancer using inverse-variance weighted (IVW) method. Tryptophan betaine was also significantly associated with estrogen receptor (ER)-positive breast cancer (OR = 1.08, 95%CI = 1.04-1.11, Bonferroni-corrected P = 0.03). X-23680 (OR = 1.10, 95%CI = 1.05-1.15, Bonferroni-corrected P = 0.04) and glycine to phosphate ratio (OR = 1.07, 95%CI = 1.04-1.10, Bonferroni-corrected P = 0.04) were associated with ER-negative breast cancer. Reverse MR analysis showed no significant associations between breast cancer and metabolites. This MR study indicated compelling evidence of a causal association between metabolites and the risk of breast cancer and its subtypes, underscoring the potential impact of metabolic interference on breast cancer risk and indicating the drug targets for breast cancer.
Collapse
Affiliation(s)
- Yilong Lin
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yue Zhang
- Department of Hematology, Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Songsong Wang
- School of Medicine, Xiamen University, Xiamen, China
| | - Qingmo Yang
- Department of Breast Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
11
|
Alim LF, Keane C, Souza-Fonseca-Guimaraes F. Molecular mechanisms of tumour necrosis factor signalling via TNF receptor 1 and TNF receptor 2 in the tumour microenvironment. Curr Opin Immunol 2024; 86:102409. [PMID: 38154421 DOI: 10.1016/j.coi.2023.102409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Tumour necrosis factor (TNF) is a primary mediator of inflammatory processes by facilitating cell death, immune cell activation and triggering of inflammation. In the cancer context, research has revealed TNF as a multifaceted cytokine that can be both pro- or anti-tumorigenic depending on what context is observed. We explore the plethora of ways that TNF and its receptors manipulate the functional and phenotypic characteristics in the tumour microenvironment (TME) on both tumour cells and immune cells, promoting either tumour elimination or progression. Here, we discuss the latest cutting-edge TNF-focused biologics currently in clinical translation that modifies the TME to derive greater immune responses and therapeutic outcomes, and further give perspectives on the future of targeting TNF in the context of cancer by emerging technological approaches.
Collapse
Affiliation(s)
- Louisa F Alim
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Colm Keane
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia
| | | |
Collapse
|
12
|
Xiao J, Qiu S, Ma Q, Bai S, Guo X, Wang L. Near-infrared dye IRDye800CW-NHS coupled to Trastuzumab for near-infrared II fluorescence imaging in tumor xenograft models of HER-2-positive breast cancer. J Mater Chem B 2023; 11:10738-10746. [PMID: 37929679 DOI: 10.1039/d3tb01486j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Near-infrared II fluorescent probes targeting tumors for diagnostic purposes have received much attention in recent years. In this study, a fluorescent probe for the NIR-II was constructed by using IRDye800CW-NHS fluorescent dye with Trastuzumab, which was investigated for its ability to target HER-2-positive breast cancer in xenograft mice models. This probe was compared with Trastuzumab-ICG which was synthesized using a similar structure, ICG-NHS. The results demonstrated that the IRDye800CW-NHS had significantly stronger fluorescence in the NIR-I and NIR-II than ICG-NHS in the aqueous phase. And the different metabolic modes of IRDye800CW-NHS and ICG-NHS were revealed in bioimaging experiments. IRDye800CW-NHS was mainly metabolised by the kidneys, while ICG-NHS was mainly metabolised by the liver. After coupling with Trastuzumab, Trastuzumab-800CW (TMR = 5.35 ± 0.39) not only had a stronger tumor targeting ability than Trastuzumab-ICG (TMR = 4.42 ± 0.10) based on the calculated maximum tumor muscle ratio (TMR), but also had a comparatively lower hepatic uptake and faster metabolism. Histopathology analysis proved that both fluorescent probes were non-toxic to various organ tissues. These results reveal the excellent optical properties of IRDye800CW-NHS, and the great potential of coupling with antibodies to develop fluorescent probes that will hopefully be applied to intraoperative breast cancer navigation in humans.
Collapse
Affiliation(s)
- Junhui Xiao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Siqi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Shantou Central Hospital, Shantou 515041, China
- Clinical Research Center, Shantou Central Hospital, Shantou 515041, China
| | - Qiufeng Ma
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Silan Bai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Lishi Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
13
|
Bruni S, Mercogliano MF, Mauro FL, Cordo Russo RI, Schillaci R. Cancer immune exclusion: breaking the barricade for a successful immunotherapy. Front Oncol 2023; 13:1135456. [PMID: 37284199 PMCID: PMC10239871 DOI: 10.3389/fonc.2023.1135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Immunotherapy has changed the course of cancer treatment. The initial steps were made through tumor-specific antibodies that guided the setup of an antitumor immune response. A new and successful generation of antibodies are designed to target immune checkpoint molecules aimed to reinvigorate the antitumor immune response. The cellular counterpart is the adoptive cell therapy, where specific immune cells are expanded or engineered to target cancer cells. In all cases, the key for achieving positive clinical resolutions rests upon the access of immune cells to the tumor. In this review, we focus on how the tumor microenvironment architecture, including stromal cells, immunosuppressive cells and extracellular matrix, protects tumor cells from an immune attack leading to immunotherapy resistance, and on the available strategies to tackle immune evasion.
Collapse
|
14
|
Mercogliano MF, Bruni S, Mauro FL, Schillaci R. Emerging Targeted Therapies for HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15071987. [PMID: 37046648 PMCID: PMC10093019 DOI: 10.3390/cancers15071987] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and the leading cause of death. HER2 overexpression is found in approximately 20% of breast cancers and is associated with a poor prognosis and a shorter overall survival. Tratuzumab, a monoclonal antibody directed against the HER2 receptor, is the standard of care treatment. However, a third of the patients do not respond to therapy. Given the high rate of resistance, other HER2-targeted strategies have been developed, including monoclonal antibodies such as pertuzumab and margetuximab, trastuzumab-based antibody drug conjugates such as trastuzumab-emtansine (T-DM1) and trastuzumab-deruxtecan (T-DXd), and tyrosine kinase inhibitors like lapatinib and tucatinib, among others. Moreover, T-DXd has proven to be of use in the HER2-low subtype, which suggests that other HER2-targeted therapies could be successful in this recently defined new breast cancer subclassification. When patients progress to multiple strategies, there are several HER2-targeted therapies available; however, treatment options are limited, and the potential combination with other drugs, immune checkpoint inhibitors, CAR-T cells, CAR-NK, CAR-M, and vaccines is an interesting and appealing field that is still in development. In this review, we will discuss the highlights and pitfalls of the different HER2-targeted therapies and potential combinations to overcome metastatic disease and resistance to therapy.
Collapse
|