1
|
Ji F, Yu J, Zhu Y, Lin H, Gao K, Rao M, Shan Y, Liu S, Ding B, Shen Y. B4M3 CAR-T cell enhance antitumor activity and non-tumor toxicity in ovarian cancer. Int Immunopharmacol 2025; 159:114919. [PMID: 40414070 DOI: 10.1016/j.intimp.2025.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/25/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
Chimeric antigen receptor (CAR) T cells have demonstrated promising therapeutic outcomes in hematologic malignancies, but efficacy against most solid tumors, including ovarian cancer (OC). To address CAR-T challenges, we generated CAR-T cells (B4M3 CAR-T) targeting two tumor-associated antigens, B7H3 and MSLN, simultaneously. Immunohistochemistry and proteomics technologies, were employed to analyze the xenograft tumor tissues and key organ tissues at the end of the treatment in vivo assays. B4M3 CAR-T cells demonstrated rapid antitumor effects under in vivo stress conditions, protected against organ damage, and exhibited favorable safety and tolerability. Molecular and signaling studies indicated that B4M3 CAR-T promoted tumor cell death by activating the NF-κB and TNF signaling pathways. Furthermore, B4M3 CAR-T cells enhancing the innate immune response and altering the metabolic profile. Collectively, our study successfully developed B4M3 CAR-T cells, which exhibited significant antitumor effects in ovarian cancer and it provide a novel strategy for the immunotherapy of OC.
Collapse
Affiliation(s)
- Feng Ji
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Jing Yu
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Yuxin Zhu
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Kexing Gao
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Mengchen Rao
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yiyang Shan
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Sicong Liu
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Bo Ding
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Yang Shen
- Department of Obstetrics and Gynaecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
2
|
Gao Y, He J, Wang J, Xu H, Ma L. Chimeric antigen receptor T cell immunotherapy for gynecological malignancies. Crit Rev Oncol Hematol 2025; 209:104680. [PMID: 40024355 DOI: 10.1016/j.critrevonc.2025.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Gynecologic malignancies pose a serious threat to women's health worldwide. Although immunotherapy has significantly revolutionized cancer treatment strategies, effective therapeutic options for recurrent or advanced gynecologic malignancies are still deficient, posing significant challenges to clinical therapy. Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable efficacy in treating hematologic malignancies, marking a significant change in the oncology treatment paradigm. However, despite the gradual increase in CAR T cell therapy used in treating solid tumors in recent years, its efficacy in treating gynecologic malignancies still needs further validation. This review will thoroughly examine CAR-T cell engineering and its mechanism of action on specific antigens associated with gynecologic malignancies, systematically assess the current application of CAR T cell therapy in gynecologic tumors and the advancements in clinical trials, and discuss the significant challenges and corresponding strategies, thereby offering a scientific foundation and guidance for future research in this area.
Collapse
Affiliation(s)
- Yajuan Gao
- Department of Gynecology and Obstetrics, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China.
| | - Jing He
- Department of Emergency, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China
| | - Jing Wang
- Department of Gynecology and Obstetrics, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China
| | - Haiou Xu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang 310006, China
| | - Lin Ma
- Department of Gynecology and Obstetrics, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang 310008, China.
| |
Collapse
|
3
|
Park JH, Palomba ML, Perica K, Devlin SM, Shah G, Dahi PB, Lin RJ, Salles G, Scordo M, Nath K, Valtis YK, Lynch A, Cathcart E, Zhang H, Schoder H, Leithner D, Liotta K, Yu A, Stocker K, Li J, Dey A, Sellner L, Singh R, Sundaresan V, Tong X, Zhao F, Mansilla-Soto J, He C, Meyerson J, Hosszu K, McAvoy D, Wang X, Rivière I, Sadelain M. Results From First-in-Human Phase I Study of a Novel CD19-1XX Chimeric Antigen Receptor With Calibrated Signaling in Large B-Cell Lymphoma. J Clin Oncol 2025:JCO2402424. [PMID: 39883889 DOI: 10.1200/jco-24-02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/12/2024] [Accepted: 12/13/2024] [Indexed: 02/01/2025] Open
Abstract
PURPOSE We designed a CD19-targeted chimeric antigen receptor (CAR) comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3ζ and 4-1BB/CD3ζ CARs. Preclinical data demonstrated that 1XX CARs generated potent effector function without undermining T-cell persistence. We hypothesized that 1XX CAR T cells may be effective at low doses and elicit minimal toxicities. METHODS In this first-in-human, phase I, dose escalation and expansion clinical trial, patients with relapsed or refractory large B-cell lymphoma received 19(T2)28z-1XX CAR T cells at four dose levels (DLs), ranging from 25 to 200 × 106. RESULTS Twenty-eight patients underwent apheresis and received CAR T cells. Sixteen and 12 patients were treated in the dose escalation and expansion cohorts, respectively. The overall response rate (ORR) was 82% and complete response (CR) rate was 71% in the entire cohort. The lowest dose of 25 × 106 was selected for dose expansion. In 16 patients treated at this DL, 88% achieved ORR and 75% CR. With the median follow-up of 24 months, the 1-year event-free survival was 61% (95% CI, 45 to 82) and 14 patients remain in continuous CR beyond 12 months. In all cohorts, grade ≥3 cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome rates were low at 4% and 7%, respectively. 1XX CAR T-cell products contain a higher proportion of CD8 T cells with memory features, and CAR T-cell persistence has been detected beyond 1-2 years in patients with ongoing remission. CONCLUSION The calibrated potency of the 1XX CAR affords excellent efficacy at low cell doses with favorable toxicity profiles and may benefit the treatment of other hematologic malignancies, solid tumors, and autoimmunity.
Collapse
Affiliation(s)
- Jae H Park
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
- Center for Cell Engineering, Sloan Kettering Institute, New York, NY
| | - M Lia Palomba
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karlo Perica
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
- Center for Cell Engineering, Sloan Kettering Institute, New York, NY
| | - Sean M Devlin
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gunjan Shah
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Parastoo B Dahi
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard J Lin
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gilles Salles
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael Scordo
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karthik Nath
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yannis K Valtis
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alec Lynch
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elizabeth Cathcart
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Honglei Zhang
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Heiko Schoder
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Doris Leithner
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kelly Liotta
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Alina Yu
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kelsey Stocker
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jia Li
- Takeda Development Center Americas, Inc, Cambridge, MA
| | - Agnish Dey
- Takeda Development Center Americas, Inc, Cambridge, MA
| | | | - Reshma Singh
- Takeda Development Center Americas, Inc, Cambridge, MA
| | | | - Xin Tong
- Takeda Development Center Americas, Inc, Cambridge, MA
| | - Faye Zhao
- Takeda Development Center Americas, Inc, Cambridge, MA
| | | | | | - Joel Meyerson
- Takeda Development Center Americas, Inc, Cambridge, MA
| | - Kinga Hosszu
- Department of Pediatrics and Immune Discovery and Modeling Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Devin McAvoy
- Department of Pediatrics and Immune Discovery and Modeling Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiuyan Wang
- Center for Cell Engineering, Sloan Kettering Institute, New York, NY
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Isabelle Rivière
- Center for Cell Engineering, Sloan Kettering Institute, New York, NY
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michel Sadelain
- Center for Cell Engineering, Sloan Kettering Institute, New York, NY
| |
Collapse
|
4
|
Zhao Y, Chen J, Tian Y, Huang H, Zhao F, Deng X. Treponema denticola major surface protein (Msp): a key player in periodontal pathogenicity and immune evasion. Arch Microbiol 2025; 207:36. [PMID: 39825920 DOI: 10.1007/s00203-024-04223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/08/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025]
Abstract
Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T. denticola, Msp is associated with adherence, immune response, and pore formation by the microorganism. It also mediates several pathological changes in histocytes, such as cytoskeleton disruption, neutrophil phagocytosis, and phosphoinositide balance interruption. In addition, the Msp of T. denticola is also an ortholog of the Treponema pallidum repeat (Tpr) proteins and Msp or Msp-like proteins that have been detected in other oral treponeme species. This review will discuss the structure, pathogenicity and homologs of Msp produced by T. denticola, illuminate the controversy regarding the structure and membrane topology of native Msp, explore the potential roles of Msp in the mechanism of T. denticola immune escape and provide an overview of the cytotoxicity and adherence ability of Msp. Further understanding of the structure and functions of Msp will offer new insights that will help promote further investigations of the pathogenic mechanisms of T. denticola and other treponemes, leading to more effective prophylactic or therapeutic treatments for relevant diseases.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jiaxin Chen
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yifei Tian
- Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, 421001, People's Republic of China
| | - Hong Huang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Xuan Deng
- Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
5
|
Wan R, Fu B, Fu X, Liu Z, Simayi N, Fu Y, Liang H, Li C, Huang W. SMAD4 Regulates the Expression of LCK Affecting Chimeric Antigen Receptor-T Cells Proliferation Through PI3K/Akt Signaling Pathway. J Cell Physiol 2025; 240:e31520. [PMID: 39763264 PMCID: PMC11704455 DOI: 10.1002/jcp.31520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
The proliferation of CAR-T cells was hindered and cannot play its killing function well in solid tumors. And yet the regulatory mechanism of CAR-T cell proliferation is not fully understood. Here, we showed that recombinant expression of CD19CAR in T cells significantly increased the basal activation level of CAR-T cells and LCK activation. Both LCK and SMAD4 were essential for CAR-T cells proliferation since over-express LCK or SMAD4 significantly promotes CAR-T cells proliferation, while knock-down LCK or SMAD4 expression inhibited the proliferation of CAR-T cells seriously. More cells go into apoptosis when knock-down LCK or SMAD4 expression, and the cell cycle was arrested in G2/M or S phase, respectively. Over-express LCK or SMAD4 significantly promotes phosphorylation of PI3K and Akt, while it was inhibited when cells were treated with PI3K and Akt inhibitors (LY294002 or MK2206). Further mechanism exploration experiments showed that SMAD4 bound on the promoter region of LCK regulating its expression. Taken together, we reported that the transcription factor SMAD4 regulated the expression of LCK and further involved in the PI3K/Akt signaling pathway to affect the proliferation of CAR-T cells.
Collapse
Affiliation(s)
- Rongxue Wan
- Department of Transfusion Medicine, School of BiotechnologySouthern Medical UniversityGuangzhouGuangdongChina
- Guangzhou Blood Center, Institute of Blood Transfusion and HematologyGuangzhou Medical UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Bowen Fu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
- The Third Affiliated HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xiaokang Fu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Zengping Liu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Nafeisha Simayi
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yongshui Fu
- Department of Transfusion Medicine, School of BiotechnologySouthern Medical UniversityGuangzhouGuangdongChina
- Guangzhou Blood Center, Institute of Blood Transfusion and HematologyGuangzhou Medical UniversityGuangzhouGuangdongChina
- Institute of Blood Transfusion and HematologyGuangzhou First People's HospitalGuangzhouGuangdongChina
| | - Huaqin Liang
- Guangzhou Blood Center, Institute of Blood Transfusion and HematologyGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chengyao Li
- Department of Transfusion Medicine, School of BiotechnologySouthern Medical UniversityGuangzhouGuangdongChina
| | - Wenhua Huang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Zhou J, Lei B, Shi F, Luo X, Wu K, Xu Y, Zhang Y, Liu R, Wang H, Zhou J, He X. CAR T-cell therapy for systemic lupus erythematosus: current status and future perspectives. Front Immunol 2024; 15:1476859. [PMID: 39749335 PMCID: PMC11694027 DOI: 10.3389/fimmu.2024.1476859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Systemic lupus erythematosus (SLE) and lupus nephritis (LN) are debilitating autoimmune disorders characterized by pathological autoantibodies production and immune dysfunction, causing chronic inflammation and multi-organ damage. Despite current treatments with antimalarial drugs, glucocorticoids, immunosuppressants, and monoclonal antibodies, a definitive cure remains elusive, highlighting an urgent need for novel therapeutic strategies. Recent studies indicate that chimeric antigen receptor T-cell (CAR-T) therapy has shown promising results in treating B-cell malignancies and may offer a significant breakthrough for non-malignant conditions like SLE. In this paper, we aim to provide an in-depth analysis of the advancements in CAR-T therapy for SLE, focusing on its potential to revolutionize treatment for this complex disease. We explore the fundamental mechanisms of CAR-T cell action, the rationale for its application in SLE, and the immunological underpinnings of the disease. We also summarize clinical data on the safety and efficacy of anti-CD19 and anti-B cell maturation antigen (BCMA) CAR-T cells in targeting B-cells in SLE. We discuss the clinical implications of these findings and the potential for CAR-T therapy to improve outcomes in severe or refractory SLE cases. The integration of CAR-T therapy into the SLE treatment paradigm presents a new horizon in autoimmunity research and clinical practice. This review underscores the need for continued exploration and optimization of CAR-T strategies to address the unmet needs of SLE patients.
Collapse
Affiliation(s)
- Jincai Zhou
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| | | | | | | | | | | | | | | | | | - Joy Zhou
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| | - Xiaowen He
- Innovation & Research Department, OriCell Therapeutics Co. Ltd., Shanghai, China
| |
Collapse
|
7
|
Gu Y, Li C, Yan Y, Ming J, Li Y, Chao X, Wang T. Comprehensive Analysis and Verification of the Prognostic Significance of Cuproptosis-Related Genes in Colon Adenocarcinoma. Int J Mol Sci 2024; 25:11830. [PMID: 39519383 PMCID: PMC11546850 DOI: 10.3390/ijms252111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Colon adenocarcinoma (COAD) is a frequently occurring and lethal cancer. Cuproptosis is an emerging type of cell death, and the underlying pathways involved in this process in COAD remain poorly understood. Transcriptomic and clinical data for COAD patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We investigated alterations in DNA and chromatin of cuproptosis-related genes (CRGs) in COAD. In order to identify predictive differentially expressed genes (DEGs) and various molecular subtypes, we used consensus cluster analysis. Through univariate, multivariate, and Lasso Cox regression analyses, four CRGs were identified. A risk prognostic model for cuproptosis characteristics was constructed based on four CRGs. This study also examined the association between the risk score and the tumor microenvironment (TME), the immune landscape, and drug sensitivity. We distinguished two unique molecular subtypes using consensus clustering analysis. We discovered that the clinical characteristics, prognosis, and TME cell infiltration characteristics of patients with multilayer CRG subtypes were all connected. The internal and external evaluations of the predicted accuracy of the prognostic model built using data derived from a cuproptosis risk score were completed at the same time. A nomogram and a clinical pathological analysis make it more useful in the field of medicine. A significant rise in immunosuppressive cells was observed in the high cuproptosis risk score group, with a correlation identified between the cuproptosis risk score and immune cell infiltration. Despite generally poor prognoses, the patients with a high cuproptosis risk but low tumor mutation burden (TMB), cancer stem cell (CSC) index, or microsatellite instability (MSI) may still benefit from immunotherapy. Furthermore, the cuproptosis risk score positively correlated with immune checkpoint gene expression. Analyzing the potential sensitivity to medications could aid in the development of clinical chemotherapy regimens and decision-making. CRGs are the subject of our in-depth study, which exposed an array of regulatory mechanisms impacting TME. In addition, we performed additional data mining into clinical features, prognosis effectiveness, and possible treatment medications. COAD's molecular pathways will be better understood, leading to more precise treatment options.
Collapse
Affiliation(s)
- Yixiao Gu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Chengze Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Yinan Yan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Jingmei Ming
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 100029, China; (J.M.); (Y.L.)
| | - Yuanhua Li
- School of Chinese Material Medical, Beijing University of Chinese Medicine, Beijing 100029, China; (J.M.); (Y.L.)
| | - Xiang Chao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.G.); (C.L.); (Y.Y.)
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
8
|
Galvagno F, Leuci V, Massa A, Donini C, Rotolo R, Capellero S, Proment A, Vitali L, Lombardi AM, Tuninetti V, D'Ambrosio L, Merlini A, Vigna E, Valabrega G, Primo L, Puliafito A, Sangiolo D. Three-dimensional dynamics of mesothelin-targeted CAR.CIK lymphocytes against ovarian cancer peritoneal carcinomatosis. Cancer Immunol Immunother 2024; 74:6. [PMID: 39487859 PMCID: PMC11531451 DOI: 10.1007/s00262-024-03860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Intraperitoneal cellular immunotherapy with CAR-redirected lymphocytes is an intriguing approach to target peritoneal carcinomatosis (PC) from ovarian cancer (OC), which is currently evaluated in clinical trials. PC displays a composite structure with floating tumor cells within ascites and solid-like masses invading the peritoneum. Therefore, a comprehensive experimental model is crucial to optimize CAR-cell therapies in such a peculiar environment. Here, we explored the activity of cytokine-induced killer lymphocytes (CIK), redirected by CAR against mesothelin (MSLN-CAR.CIK), within reductionistic 3D models resembling the structural complexity of both liquid and solid components of PC. MSLN-CAR.CIK effectively killed and were functionally efficient against OC targets. In a "floating-like" 3D context with floating OC spheroids, both tumor localization and killing by MSLN-CAR.CIK were significantly boosted by fluid flow. In a "solid-like" context, MSLN-CAR.CIK were recruited through the extracellular matrix on embedded tumor aggregates, with variable kinetics depending on the effector-target distance. Furthermore, MSLN-CAR.CIK penetrated the inner levels of OC spheroids exerting effective tumor killing. Our findings provide currently unknown therapeutically relevant information on intraperitoneal approaches with CAR.CIK, supporting further developments and improvements for clinical studies in the context of locoregional cell therapy approaches for patients with PC from OC.
Collapse
Grants
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 2023-2024 Italian Ministry of Health, Ricerca Corrente
- 23211 Fondazione AIRC per la ricerca sul cancro ETS
- 25040 Fondazione AIRC per la ricerca sul cancro ETS
- 20259 Fondazione AIRC per la ricerca sul cancro ETS
- 2019 Ricerca Locale, Università degli Studi di Torino
- 2022 Ricerca Locale, Università degli Studi di Torino
- 2022 Fondazione CRT
- RCR-2019-23669115 CAR-T Grant
- PON 2014-2020, DM 1062/2021 PNR 2021-2027
Collapse
Affiliation(s)
- Federica Galvagno
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Valeria Leuci
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Annamaria Massa
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Chiara Donini
- Department of Oncology, University of Torino, Turin, Italy
| | - Ramona Rotolo
- Department of Oncology, University of Torino, Turin, Italy
| | | | | | - Letizia Vitali
- Department of Oncology, University of Torino, Turin, Italy
| | | | - Valentina Tuninetti
- Department of Oncology, University of Torino, Turin, Italy
- Medical Oncology, Ordine Mauriziano Hospital, Turin, Italy
| | - Lorenzo D'Ambrosio
- Department of Oncology, University of Torino, Turin, Italy
- Medical Oncology, AOU San Luigi Gonzaga, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Torino, Turin, Italy
- Medical Oncology, AOU San Luigi Gonzaga, Orbassano, TO, Italy
| | - Elisa Vigna
- Department of Oncology, University of Torino, Turin, Italy
| | - Giorgio Valabrega
- Department of Oncology, University of Torino, Turin, Italy
- Medical Oncology, Ordine Mauriziano Hospital, Turin, Italy
| | - Luca Primo
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - Alberto Puliafito
- Department of Oncology, University of Torino, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Turin, Italy.
| |
Collapse
|
9
|
Dong M, Lu L, Xu H, Ruan Z. DC-derived CXCL10 promotes CTL activation to suppress ovarian cancer. Transl Res 2024; 272:126-139. [PMID: 38823437 DOI: 10.1016/j.trsl.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
This study investigates the role of dendritic cells (DCs), with a focus on their CXCL10 marker gene, in the activation of cytotoxic T lymphocytes (CTLs) within the ovarian cancer microenvironment and its impact on disease progression. Utilizing scRNA-seq data and immune infiltration analysis, we identified a diminished DC presence in ovarian cancer. Gene analysis pinpointed CXCL10 as a key regulator in OV progression via its influence on DCs and CTLs. Prognostic analysis and in vitro experiments substantiated this role. Our findings reveal that DC-derived CXCL10 significantly affects CTL activation and proliferation. Reduced CXCL10 levels hinder CTL cytotoxicity, promoting ovarian cancer cell migration and invasion. Experimental studies using animal models have provided further evidence that the capacity of CTLs to suppress tumor development is significantly diminished when treated with DCs that have low expression of CXCL10. Dendritic cell-derived CXCL10 emerges as a pivotal factor in restraining ovarian cancer growth and metastasis through the activation of cytotoxic T lymphocytes. This study sheds light on the crucial interplay within the ovarian cancer microenvironment, offering potential therapeutic targets for ovarian cancer treatment.
Collapse
Affiliation(s)
- Ming Dong
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.639, Zhi Zaoju Road, Huangpu District, Shanghai 200011, PR China
| | - Lili Lu
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.639, Zhi Zaoju Road, Huangpu District, Shanghai 200011, PR China
| | - Hui Xu
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.639, Zhi Zaoju Road, Huangpu District, Shanghai 200011, PR China
| | - Zhengyi Ruan
- Department of Obstetrics and Gynecology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, No.639, Zhi Zaoju Road, Huangpu District, Shanghai 200011, PR China.
| |
Collapse
|
10
|
Malla M, Deshmukh SK, Wu S, Samec T, Olevian DC, El Naili R, El-Rayes B, Xiu J, Farrell A, Lenz HJ, Lou E, Goel S, Spetzler D, Goldberg RM, Hazlehurst L. Mesothelin expression correlates with elevated inhibitory immune activity in patients with colorectal cancer. Cancer Gene Ther 2024; 31:1547-1558. [PMID: 39174744 PMCID: PMC11489080 DOI: 10.1038/s41417-024-00816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
The expression of the protein Mesothelin (MSLN) is highly variable in several malignancies, including colorectal cancer (CRC), and high levels are associated with aggressive clinicopathological features and worse patient survival. Colorectal cancer is both a common and deadly cancer; being the third most common in incidence and second most common cause of cancer-related death. While systemic therapy remains the primary therapeutic option for most patients with stage IV (metastatic; m) CRC, their disease eventually becomes treatment refractory, and 85% succumb within 5 years. Microsatellite-stable (MSS) CRC tumors, which constitute more than 90% of patients with mCRC, are generally refractory to immunotherapeutic interventions. In our current work, we characterize MSLN levels in CRC, specifically correlating expression with clinical outcomes in relevant CRC subtypes, and explore how MSLN expression impacts the status of immune activation and suppression in the peritumoral microenvironment. Higher MSLN expression is prevalent in CMS1 and CMS4 CRC subtypes and correlates with higher gene mutation rates across the patient cohorts. Further, MSLN-high patients exhibit increased M1/M2 macrophage infiltration, PD-L1 staining, immune-inhibitory gene expression, enrichment in inflammatory, TGF-β, IL6/JAK/STAT3, IL2/STAT5 signaling pathways, and mutation in KRAS and FBXW7. Together, these results suggest that MSLN protein is a potential target for antigen-specific therapy and supports investigation into its tumorigenic effects to identify possible therapeutic interventions for patients with high MSLN expressing MSS CRC.
Collapse
Affiliation(s)
| | | | - Sharon Wu
- Caris Life Sciences, Phoenix, AZ, USA
| | | | - Dane C Olevian
- West Virginia University Department of Pathology, Morgantown, WV, USA
| | - Reima El Naili
- West Virginia University Department of Pathology, Morgantown, WV, USA
| | | | | | | | - Heinz-Josef Lenz
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emil Lou
- Masonic Cancer Center/University of Minnesota Medical School, Minneapolis, MN, USA
| | - Sanjay Goel
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | | | | | | |
Collapse
|
11
|
Zhang B, Liu J, Mo Y, Zhang K, Huang B, Shang D. CD8 + T cell exhaustion and its regulatory mechanisms in the tumor microenvironment: key to the success of immunotherapy. Front Immunol 2024; 15:1476904. [PMID: 39372416 PMCID: PMC11452849 DOI: 10.3389/fimmu.2024.1476904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
A steady dysfunctional state caused by chronic antigen stimulation in the tumor microenvironment (TME) is known as CD8+ T cell exhaustion. Exhausted-like CD8+ T cells (CD8+ Tex) displayed decreased effector and proliferative capabilities, elevated co-inhibitory receptor generation, decreased cytotoxicity, and changes in metabolism and transcription. TME induces T cell exhaustion through long-term antigen stimulation, upregulation of immune checkpoints, recruitment of immunosuppressive cells, and secretion of immunosuppressive cytokines. CD8+ Tex may be both the reflection of cancer progression and the reason for poor cancer control. The successful outcome of the current cancer immunotherapies, which include immune checkpoint blockade and adoptive cell treatment, depends on CD8+ Tex. In this review, we are interested in the intercellular signaling network of immune cells interacting with CD8+ Tex. These findings provide a unique and detailed perspective, which is helpful in changing this completely unpopular state of hypofunction and intensifying the effect of immunotherapy.
Collapse
Affiliation(s)
- Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Mo
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kexin Zhang
- Central Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bingqian Huang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Westlake University, Hangzhou, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Xia X, Yang Z, Lu Q, Liu Z, Wang L, Du J, Li Y, Yang DH, Wu S. Reshaping the tumor immune microenvironment to improve CAR-T cell-based cancer immunotherapy. Mol Cancer 2024; 23:175. [PMID: 39187850 PMCID: PMC11346058 DOI: 10.1186/s12943-024-02079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/02/2024] [Indexed: 08/28/2024] Open
Abstract
In many hematologic malignancies, the adoptive transfer of chimeric antigen receptor (CAR) T cells has demonstrated notable success; nevertheless, further improvements are necessary to optimize treatment efficacy. Current CAR-T therapies are particularly discouraging for solid tumor treatment. The immunosuppressive microenvironment of tumors affects CAR-T cells, limiting the treatment's effectiveness and safety. Therefore, enhancing CAR-T cell infiltration capacity and resolving the immunosuppressive responses within the tumor microenvironment could boost the anti-tumor effect. Specific strategies include structurally altering CAR-T cells combined with targeted therapy, radiotherapy, or chemotherapy. Overall, monitoring the tumor microenvironment and the status of CAR-T cells is beneficial in further investigating the viability of such strategies and advancing CAR-T cell therapy.
Collapse
Affiliation(s)
- Xueting Xia
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zongxin Yang
- The Second Clinical Medical School, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qisi Lu
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Foresea Life Insurance Guangzhou General Hospital, Guangzhou, 511300, China
| | - Zhenyun Liu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lei Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jinwen Du
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, Mineola, NY, 11501, USA.
| | - Shaojie Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
13
|
Xin Q, Chen Y, Sun X, Li R, Wu Y, Huang X. CAR-T therapy for ovarian cancer: Recent advances and future directions. Biochem Pharmacol 2024; 226:116349. [PMID: 38852648 DOI: 10.1016/j.bcp.2024.116349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Ovarian cancer (OC) is a common gynecological tumor with high mortality, which is difficult to control its progression with conventional treatments and is prone to recurrence. Recent studies have identified OC as an immunogenic tumor that can be recognized by the host immune system. Immunotherapy for OC is being evaluated, but approaches such as immune checkpoint inhibitors have limited efficacy, adoptive cell therapy is an alternative therapy, in which CAR(chimeric antigen receptor)-T therapy has been applied to the clinical treatment of hematological malignancies. In addition, CAR-NK and CAR-macrophage (CAR-M) have also shown great potential in the treatment of solid tumors. Here, we discuss recent advances in preclinical and clinical studies of CAR-T for OC treatment, introduce the efforts made by researchers to modify the structure of CAR in order to achieve effective OC immunotherapy, as well as the research status of CAR-NK and CAR-M, and highlight emerging therapeutic opportunities that can be utilized to improve the survival of patients with OC using CAR-based adoptive cell therapy.
Collapse
Affiliation(s)
- Qianling Xin
- Anhui Women and Children's Medical Center, Hefei Maternal and Child Health Hospital, Hefei, China
| | - Yizhao Chen
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiaojing Sun
- Anhui Women and Children's Medical Center, Hefei Maternal and Child Health Hospital, Hefei, China
| | - Ruilin Li
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei First People's Hospital, Hefei, China.
| | - Yujing Wu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Xuegui Huang
- Anhui Women and Children's Medical Center, Hefei Maternal and Child Health Hospital, Hefei, China.
| |
Collapse
|
14
|
Chen Q, Sun Y, Li H. Application of CAR-T cell therapy targeting mesothelin in solid tumor treatment. Discov Oncol 2024; 15:289. [PMID: 39023820 PMCID: PMC11258118 DOI: 10.1007/s12672-024-01159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy is one of the most effective immunotherapies. CAR-T-cell therapy has achieved great success in the treatment of hematological malignancies. However, due to the characteristics of solid malignant tumors, such as on-target effects, off-tumor toxicity, an immunosuppressive tumor microenvironment (TME), and insufficient trafficking, CAR-T-cell therapy for solid tumors is still in the exploration stage. Mesothelin (MSLN) is a molecule expressed on the surface of various solid malignant tumor cells that is suitable as a target of tumor cells with high MSLN expression for CAR-T-cell therapy. This paper briefly described the development of CAR-T cell therapy and the structural features of MSLN, and especially summarized the strategies of structure optimization of MSLN-targeting CAR-T-cells and the enhancement methods of MSLN-targeting CAR-T cell anti-tumor efficacy by summarizing some preclinical experiment and clinical trials. When considering MSLN-targeting CAR-T-cell therapy as an example, this paper summarizes the efforts made by researchers in CAR-T-cell therapy for solid tumors and summarizes feasible treatment plans by integrating the existing research results.
Collapse
Affiliation(s)
- Qiuhong Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Yang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, People's Republic of China.
| |
Collapse
|
15
|
Park J, Lia Palomba M, Perica K, Devlin S, Shah G, Dahi P, Lin R, Salles G, Scordo M, Nath K, Valtis Y, Lynch A, Cathcart E, Zhang H, Schöder H, Leithner D, Liotta K, Yu A, Stocker K, Li J, Dey A, Sellner L, Singh R, Sundaresan V, Zhao F, Mansilla-Soto J, He C, Meyerson J, Hosszu K, McAvoy D, Wang X, Riviere I, Sadelain M. Calibrated CAR Signaling Enables Low-Dose Therapy in Large B-Cell Lymphoma. RESEARCH SQUARE 2024:rs.3.rs-4619285. [PMID: 39011120 PMCID: PMC11247921 DOI: 10.21203/rs.3.rs-4619285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
We designed a CD19-targeted CAR comprising a calibrated signaling module, termed 1XX, that differs from that of conventional CD28/CD3z and 4-1BB/CD3z CARs. Here we report the first-in-human, phase 1 clinical trial of 19(T2)28z-1XX CAR T cells in relapsed/refractory large B-cell lymphoma. We hypothesized that 1XX CAR T cells may be effective at low doses and investigated 4 doubling dose levels starting from 25×106 CAR T cells. The overall response rate (ORR) was 82% and complete response (CR) rate 71% in the entire cohort (n=28) and 88% ORR and 75% CR in 16 patients treated at 25×106. With the median follow-up of 24 months, the 1-year EFS was 61% (95% CI: 45-82%). Overall, grade ≥3 CRS and ICANS rates were low at 4% and 7%. The calibrated potency of the 1XX CAR affords excellent efficacy at low cell doses and may benefit the treatment of other hematological malignancies, solid tumors and autoimmunity.
Collapse
Affiliation(s)
- Jae Park
- Memorial Sloan Kettering Cancer Center
| | | | | | | | | | | | | | - Gilles Salles
- Memorial Sloan Kettering Cancer Center, New York, USA
| | | | | | | | | | | | | | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | - Alina Yu
- Memorial Sloan Kettering Cancer Center
| | | | - Jia Li
- Takeda Development Center Americas, Inc
| | | | | | | | | | - Faye Zhao
- Takeda Development Center Americas, Inc
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
El-Serafi I, Micallef Nilsson I, Moter A, Duan Z, Mattsson J, Magalhaes I. Impact of fludarabine and treosulfan on ovarian tumor cells and mesothelin chimeric antigen receptor T cells. Cancer Immunol Immunother 2024; 73:163. [PMID: 38954005 PMCID: PMC11219644 DOI: 10.1007/s00262-024-03740-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
In addition to their immunosuppressive effect, cytostatics conditioning prior to adoptive therapy such as chimeric antigen receptor (CAR) T cells may play a role in debulking and remodeling the tumor microenvironment. We investigated in vitro the killing efficacy and impact of treosulfan and fludarabine on ovarian cancer cells expressing mesothelin (MSLN) and effect on MSLN-targeting CAR T cells. Treosulfan and fludarabine had a synergetic effect on killing of SKOV3 and OVCAR4 cells. Sensitivity to the combination of treosulfan and fludarabine was increased when SKOV3 cells expressed MSLN and when OVCAR4 cells were tested in hypoxia, while MSLN cells surface expression by SKOV3 and OVCAR4 cells was not altered after treosulfan or fludarabine exposure. Exposure to treosulfan or fludarabine (10 µM) neither impacted MSLN-CAR T cells degranulation, cytokines production upon challenge with MSLN + OVCAR3 cells, nor induced mitochondrial defects. Combination of treosulfan and fludarabine decreased MSLN-CAR T cells anti-tumor killing in normoxia but not hypoxia. In conclusion, treosulfan and fludarabine killed MSLN + ovarian cancer cells without altering MSLN-CAR T cells functions (at low cytostatics concentration) even in hypoxic conditions, and our data support the use of treosulfan and fludarabine as conditioning drugs prior to MSLN-CAR T cell therapy.
Collapse
Affiliation(s)
- Ibrahim El-Serafi
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman, UAE.
| | | | - Alina Moter
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Zhe Duan
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Princess Margaret Cancer Centre and University of Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
17
|
Chen J, Yang L, Ma Y, Zhang Y. Recent advances in understanding the immune microenvironment in ovarian cancer. Front Immunol 2024; 15:1412328. [PMID: 38903506 PMCID: PMC11188340 DOI: 10.3389/fimmu.2024.1412328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
The occurrence of ovarian cancer (OC) is a major factor in women's mortality rates. Despite progress in medical treatments, like new drugs targeting homologous recombination deficiency, survival rates for OC patients are still not ideal. The tumor microenvironment (TME) includes cancer cells, fibroblasts linked to cancer (CAFs), immune-inflammatory cells, and the substances these cells secrete, along with non-cellular components in the extracellular matrix (ECM). First, the TME mainly plays a role in inhibiting tumor growth and protecting normal cell survival. As tumors progress, the TME gradually becomes a place to promote tumor cell progression. Immune cells in the TME have attracted much attention as targets for immunotherapy. Immune checkpoint inhibitor (ICI) therapy has the potential to regulate the TME, suppressing factors that facilitate tumor advancement, reactivating immune cells, managing tumor growth, and extending the survival of patients with advanced cancer. This review presents an outline of current studies on the distinct cellular elements within the OC TME, detailing their main functions and possible signaling pathways. Additionally, we examine immunotherapy rechallenge in OC, with a specific emphasis on the biological reasons behind resistance to ICIs.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yiming Ma
- Department of Medical Oncology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
- Liaoning Key Laboratory of Gastrointestinal Cancer Translational Research, Shenyang, Liaoning, China
| | - Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
18
|
Nishimura CD, Corrigan D, Zheng XY, Galbo PM, Wang S, Liu Y, Wei Y, Suo L, Cui W, Mercado N, Zheng D, Zhang CC, Zang X. TOP CAR with TMIGD2 as a safe and effective costimulatory domain in CAR cells treating human solid tumors. SCIENCE ADVANCES 2024; 10:eadk1857. [PMID: 38718110 PMCID: PMC11078193 DOI: 10.1126/sciadv.adk1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Chimeric antigen receptor (CAR)-T cell therapy shows impressive efficacy treating hematologic malignancies but requires further optimization in solid tumors. Here, we developed a TMIGD2 optimized potent/persistent (TOP) CAR that incorporated the costimulatory domain of TMIGD2, a T and NK cell costimulator, and monoclonal antibodies targeting the IgV domain of B7-H3, an immune checkpoint expressed on solid tumors and tumor vasculature. Comparing second- and third-generation B7-H3 CARs containing TMIGD2, CD28, and/or 4-1BB costimulatory domains revealed superior antitumor responses in B7-H3.TMIGD2 and B7-H3.CD28.4-1BB CAR-T cells in vitro. Comparing these two constructs using in vivo orthotopic human cancer models demonstrated that B7-H3.TMIGD2 CAR-T cells had equivalent or superior antitumor activity, survival, expansion, and persistence. Mechanistically, B7-H3.TMIGD2 CAR-T cells maintained mitochondrial metabolism; produced less cytokines; and established fewer exhausted cells, more central memory cells, and a larger CD8/CD4 T cell ratio. These studies demonstrate that the TOP CAR with TMIGD2 costimulation offered distinct benefits from CD28.41BB costimulation and is effective against solid tumors.
Collapse
Affiliation(s)
- Christopher D. Nishimura
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Immunotherapy of Cancer, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Devin Corrigan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Immunotherapy of Cancer, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiang Yu Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Phillip M. Galbo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Shan Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yao Liu
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yao Wei
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Linna Suo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Cui
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nadia Mercado
- Department of Biostatistics, Brown University School of Public Health, Providence, RI 02903, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Immunotherapy of Cancer, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
19
|
Niu Z, Wu J, Zhao Q, Zhang J, Zhang P, Yang Y. CAR-based immunotherapy for breast cancer: peculiarities, ongoing investigations, and future strategies. Front Immunol 2024; 15:1385571. [PMID: 38680498 PMCID: PMC11045891 DOI: 10.3389/fimmu.2024.1385571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Surgery, chemotherapy, and endocrine therapy have improved the overall survival and postoperative recurrence rates of Luminal A, Luminal B, and HER2-positive breast cancers but treatment modalities for triple-negative breast cancer (TNBC) with poor prognosis remain limited. The effective application of the rapidly developing chimeric antigen receptor (CAR)-T cell therapy in hematological tumors provides new ideas for the treatment of breast cancer. Choosing suitable and specific targets is crucial for applying CAR-T therapy for breast cancer treatment. In this paper, we summarize CAR-T therapy's effective targets and potential targets in different subtypes based on the existing research progress, especially for TNBC. CAR-based immunotherapy has resulted in advancements in the treatment of breast cancer. CAR-macrophages, CAR-NK cells, and CAR-mesenchymal stem cells (MSCs) may be more effective and safer for treating solid tumors, such as breast cancer. However, the tumor microenvironment (TME) of breast tumors and the side effects of CAR-T therapy pose challenges to CAR-based immunotherapy. CAR-T cells and CAR-NK cells-derived exosomes are advantageous in tumor therapy. Exosomes carrying CAR for breast cancer immunotherapy are of immense research value and may provide a treatment modality with good treatment effects. In this review, we provide an overview of the development and challenges of CAR-based immunotherapy in treating different subtypes of breast cancer and discuss the progress of CAR-expressing exosomes for breast cancer treatment. We elaborate on the development of CAR-T cells in TNBC therapy and the prospects of using CAR-macrophages, CAR-NK cells, and CAR-MSCs for treating breast cancer.
Collapse
Affiliation(s)
- Zhipu Niu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingyuan Wu
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiancheng Zhao
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jinyu Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pengyu Zhang
- Clinical Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yiming Yang
- Department of Cell Biology and Medical Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
20
|
Malla M, Kumar Deshkmukh S, Wu S, Samec T, Olevian D, Naili R, Bassel ER, Xiu J, Farrell A, Lenz HJ, Lou E, Goel S, Spetzler D, Goldberg RM, Hazlehurst L. Mesothelin expression correlates with elevated inhibitory immune activity in patients with colorectal cancer. RESEARCH SQUARE 2023:rs.3.rs-3787873. [PMID: 38234761 PMCID: PMC10793489 DOI: 10.21203/rs.3.rs-3787873/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The expression of the protein Mesothelin (MSLN) is highly variable in several malignancies including colorectal cancer (CRC) and high levels are associated with aggressive clinicopathological features and worse patient survival. CRC is both a common and deadly cancer; being the third most common in incidence and second most common cause of cancer related death. While systemic therapy remains the primary therapeutic option for most patients with stage IV (metastatic; m) CRC, their disease eventually becomes treatment refractory, and 85% succumb within 5 years. Microsatellite-stable (MSS) CRC tumors, which affect more than 90% of patients with mCRC, are generally refractory to immunotherapeutic interventions. In our current work, we characterize MSLN levels in CRC, specifically correlating expression with clinical outcomes in relevant CRC subtypes and explore how MSLN expression impacts the status of immune activation and suppression in the peritumoral microenvironment. High MSLN expression is highly prevalent in CMS1 and CMS4 CRC subtypes as well as in mCRC tissue and correlates with higher gene mutation rates across the patient cohorts. Further, MSLN-high patients exhibit increased M1/M2 macrophage infiltration, PD-L1 staining, immune-inhibitory gene expression, enrichment in inflammatory, TGF-β, IL6/JAK/STAT3, IL2/STAT5 signaling pathways and mutation in KRAS and FBXW7. Together, these results suggest MSLN protein is a potential target for antigen-specific therapy and supports investigation into its tumorigenic effects to identify possible therapeutic interventions for patients with high MSLN expressing MSS CRC.
Collapse
|
21
|
Xue J, Yan X, Ding Q, Li N, Wu M, Song J. Effect of neoadjuvant chemotherapy on the immune microenvironment of gynaecological tumours. Ann Med 2023; 55:2282181. [PMID: 37983527 PMCID: PMC10836282 DOI: 10.1080/07853890.2023.2282181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Purpose: To assess the impact of neoadjuvant chemotherapy (NACT) on the tumor immune microenvironment (TIME) in gynaecological tumors, with a focus on understanding the potential for enhanced combination therapies.Methods: We systematically queried the PubMed, Embase, and Cochrane databases, encompassing reviews, clinical trials, and case studies, to undertake a thorough analysis of the impact of NACT on the TIME of gynaecological tumors.Results: NACT induces diverse immune microenvironment changes in gynaecological tumors. In cervical cancer, NACT boosts immune-promoting cells, enhancing tumor clearance. Ovarian cancer studies yield variable outcomes, influenced by patient-specific factors and treatment regimens. Limited research exists on NACT's impact on endometrial cancer's immune microenvironment, warranting further exploration. In summary, NACT-induced immune microenvironment changes display variability. Clinical trials highlight personalized immunotherapy's positive impact on gynaecological tumor prognosis, suggesting potential avenues for future cancer treatments. However, rigorous investigation is needed to determine the exact efficacy and safety of combining NACT with immunotherapy.Conclusion: This review provides a solid foundation for the development of late-stage immunotherapy and highlights the importance of therapeutic strategies targeting immune cells in TIME in anti-tumor therapy.
Collapse
Affiliation(s)
- Jing Xue
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Xia Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Qin Ding
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Nan Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Menghan Wu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Jianbo Song
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| |
Collapse
|
22
|
Cui Y, Luo M, Gu C, He Y, Yao Y, Li P. CAR designs for solid tumors: overcoming hurdles and paving the way for effective immunotherapy. BIOPHYSICS REPORTS 2023; 9:279-297. [PMID: 38516299 PMCID: PMC10951476 DOI: 10.52601/bpr.2023.230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 03/23/2024] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has revolutionized immunotherapy by modifying patients' immune cells genetically. By expressing CARs, these modified cells can specifically identify and eliminate tumor cells. The success of CAR-T therapy in hematological malignancies, such as leukemia and lymphoma, has been remarkable. Numerous studies have reported improved patient outcomes and increased survival rates. However, the application of CAR-T therapy in treating solid tumors faces significant challenges. Solid tumors possess complex microenvironments containing stromal cells, extracellular matrix components, and blood vessels. These factors can impede the infiltration and persistence of CAR-T cells within the tumor. Additionally, the lack of target antigens exclusively expressed on tumor cells raises concerns about off-target effects and potential toxicity. This review aims to discuss advancements achieved by CAR-T therapy in solid tumors and the clinical outcomes in the realm of solid tumors.
Collapse
Affiliation(s)
- Yuanbin Cui
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Mintao Luo
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Chuanyuan Gu
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yuxian He
- University of California San Diego, La Jolla, CA 92093-0021, USA
| | - Yao Yao
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Peng Li
- China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
23
|
Cai L, Li Y, Tan J, Xu L, Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J Hematol Oncol 2023; 16:101. [PMID: 37670328 PMCID: PMC10478462 DOI: 10.1186/s13045-023-01499-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
In one decade, immunotherapy based on immune checkpoint blockades (ICBs) has become a new pillar of cancer treatment following surgery, radiation, chemotherapy, and targeted therapies. However, not all cancer patients benefit from single or combination therapy with anti-CTLA-4 and anti-PD-1/PD-L1 monoclonal antibodies. Thus, an increasing number of immune checkpoint proteins (ICPs) have been screened and their effectiveness evaluated in preclinical and clinical trials. Lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain-containing-3 (TIM-3), and T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) constitute the second wave of immunotherapy targets that show great promise for use in the treatment of solid tumors and leukemia. To promote the research and clinical application of ICBs directed at these targets, we summarize their discovery, immunotherapy mechanism, preclinical efficiency, and clinical trial results in this review.
Collapse
Affiliation(s)
- Letong Cai
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yuchen Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiaxiong Tan
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Ling Xu
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Yangqiu Li
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| |
Collapse
|
24
|
Zheng Z, Li S, Liu M, Chen C, Zhang L, Zhou D. Fine-Tuning through Generations: Advances in Structure and Production of CAR-T Therapy. Cancers (Basel) 2023; 15:3476. [PMID: 37444586 DOI: 10.3390/cancers15133476] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a promising form of immunotherapy that has seen significant advancements in the past few decades. It involves genetically modifying T cells to target cancer cells expressing specific antigens, providing a novel approach to treating various types of cancer. However, the initial success of first-generation CAR-T cells was limited due to inadequate proliferation and undesirable outcomes. Nonetheless, significant progress has been made in CAR-T cell engineering, leading to the development of the latest fifth-generation CAR-T cells that can target multiple antigens and overcome individual limitations. Despite these advancements, some shortcomings prevent the widespread use of CAR-T therapy, including life-threatening toxicities, T-cell exhaustion, and inadequate infiltration for solid tumors. Researchers have made considerable efforts to address these issues by developing new strategies for improving CAR-T cell function and reducing toxicities. This review provides an overview of the path of CAR-T cell development and highlights some of the prominent advances in its structure and manufacturing process, which include the strategies to improve antigen recognition, enhance T-cell activation and persistence, and overcome immune escape. Finally, the review briefly covers other immune cells for cancer therapy and ends with the discussion on the broad prospects of CAR-T in the treatment of various diseases, not just hematological tumors, and the challenges that need to be addressed for the widespread clinical application of CAR-T cell therapies.
Collapse
Affiliation(s)
- Zhibo Zheng
- Department of International Medical Services, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Siyuan Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mohan Liu
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chuyan Chen
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100730, China
| | - Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
25
|
Yang F, Zhang F, Ji F, Chen J, Li J, Chen Z, Hu Z, Guo Z. Self-delivery of TIGIT-blocking scFv enhances CAR-T immunotherapy in solid tumors. Front Immunol 2023; 14:1175920. [PMID: 37359558 PMCID: PMC10287952 DOI: 10.3389/fimmu.2023.1175920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Chimeric antigen receptor T cell therapy has become an important immunotherapeutic tool for overcoming cancers. However, the efficacy of CAR-T cell therapy in solid tumors is relatively poor due to the complexity of the tumor microenvironment and inhibitory immune checkpoints. TIGIT on the surface of T cells acts as an immune checkpoint by binding to CD155 on the tumor cells' surface, thereby inhibiting tumor cell killing. Blocking TIGIT/CD155 interactions is a promising approach in cancer immunotherapy. In this study, we generated anti-MLSN CAR-T cells in combination with anti-α-TIGIT for solid tumors treatment. The anti-α-TIGIT effectively enhanced the efficacy of anti-MLSN CAR-T cells on the killing of target cells in vitro. In addition, we genetically engineered anti-MSLN CAR-T cells with the capacity to constitutively produce TIGIT-blocking single-chain variable fragments. Our study demonstrated that blocking TIGIT significantly promoted cytokine release to augment the tumor-killing effect of MT CAR-T cells. Moreover, the self-delivery of TIGIT-blocking scFvs enhanced the infiltration and activation of MT CAR-T cells in the tumor microenvironments to achieve better tumor regression in vivo. These results suggest that blocking TIGIT effectively enhances the anti-tumor effect of CAR-T cells and suggest a promising strategy of combining CAR-T with immune checkpoints blockade in the treatment of solid tumors.
Collapse
Affiliation(s)
- Fan Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Feng Ji
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiannan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jun Li
- CAR-T R&D Department, Nanjing Blue Shield Biotechnology Co., Ltd., Nanjing, China
| | - Zhengliang Chen
- CAR-T R&D Department, Nanjing Blue Shield Biotechnology Co., Ltd., Nanjing, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|