1
|
Slim R. Genetics and Genomics of Gestational Trophoblastic Disease. Hematol Oncol Clin North Am 2024; 38:1219-1232. [PMID: 39322462 DOI: 10.1016/j.hoc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This article focuses on hydatidiform mole (HM), which is the most common form of gestational trophoblastic disease and the most studied at the genomic and genetic levels. We summarize current laboratory methods to diagnose HM, discuss their limitations and advantages, and share the lessons we have learned. We also provide an overview of the history of recurrent HM, their known genetic etiologies, and the mechanisms of their formation.
Collapse
Affiliation(s)
- Rima Slim
- Department of Human Genetics, McGill University Health Centre Research Institute, 1001 Decarie Boulevard, EM0.3210, Montreal, Quebec H4A3J1, Canada.
| |
Collapse
|
2
|
Sati L, Varela L, Horvath TL, McGrath J. Creation of true interspecies hybrids: Rescue of hybrid class with hybrid cytoplasm affecting growth and metabolism. SCIENCE ADVANCES 2024; 10:eadq4339. [PMID: 39441922 PMCID: PMC11498210 DOI: 10.1126/sciadv.adq4339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Interspecies hybrids have nuclear contributions from two species but oocyte cytoplasm from only one. Species discordance may lead to altered nuclear reprogramming of the foreign paternal genome. We reasoned that initial reprogramming in same species cytoplasm plus creation of hybrids with zygote cytoplasm from both species, which we describe here, might enhance nuclear reprogramming and promote hybrid development. We report in Mus species that (i) mammalian nuclear/cytoplasmic hybrids can be created, (ii) they allow development and viability of a previously missing and uncharacterized hybrid class, (iii) different oocyte cytoplasm environments lead to different phenotypes of same nuclear hybrid genotype, and (iv) the novel hybrids exhibit sex ratio distortion with the absence of female progeny and represent a mammalian exception to Haldane's rule. Our results emphasize that interspecies hybrid phenotypes are not only the result of nuclear gene epistatic interactions but also cytonuclear interactions and that the latter have major impacts on fetal and placental growth and development.
Collapse
Affiliation(s)
- Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, 07070 Antalya, Turkey
| | - Luis Varela
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - Tamas L. Horvath
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
- Laboratory of Glia-Neuron Interactions in the Control of Hunger, Achucarro Basque Center for Neuroscience, 48940 Leioa, Vizcaya, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Vizcaya, Spain
| | - James McGrath
- Departments of Comparative Medicine and Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
3
|
Bahutair SNM, Dube R, Kuruba MGB, Salama RAA, Patni MAMF, Kar SS, Kar R. Molecular Basis of Hydatidiform Moles-A Systematic Review. Int J Mol Sci 2024; 25:8739. [PMID: 39201425 PMCID: PMC11354253 DOI: 10.3390/ijms25168739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Gestational trophoblastic diseases (GTDs) encompass a spectrum of conditions characterized by abnormal trophoblastic cell growth, ranging from benign molar pregnancies to malignant trophoblastic neoplasms. This systematic review explores the molecular underpinnings of GTDs, focusing on genetic and epigenetic factors that influence disease progression and clinical outcomes. Based on 71 studies identified through systematic search and selection criteria, key findings include dysregulations in tumor suppressor genes such as p53, aberrant apoptotic pathways involving BCL-2 (B-cell lymphoma), and altered expression of growth factor receptors and microRNAs (micro-ribose nucleic acid). These molecular alterations not only differentiate molar pregnancies from normal placental development but also contribute to their clinical behavior, from benign moles to potentially malignant forms. The review synthesizes insights from immunohistochemical studies and molecular analyses to provide a comprehensive understanding of GTD pathogenesis and implications for personalized care strategies.
Collapse
Affiliation(s)
- Shadha Nasser Mohammed Bahutair
- Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Rajani Dube
- Department of Obstetrics and Gynecology, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Manjunatha Goud Bellary Kuruba
- Department of Biochemistry, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Rasha Aziz Attia Salama
- Department of Community Medicine, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (R.A.A.S.); (M.A.M.F.P.)
- Department of Public Health and Community Medicine, Kasr El Ainy Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| | - Mohamed Anas Mohamed Faruk Patni
- Department of Community Medicine, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates; (R.A.A.S.); (M.A.M.F.P.)
| | - Subhranshu Sekhar Kar
- Department of Pediatrics, RAK College of Medical Sciences, RAK Medical & Health Sciences University, Ras al Khaimah P.O. Box 11172, United Arab Emirates;
| | - Rakhee Kar
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India;
| |
Collapse
|
4
|
Ravn K, Hatt L, Singh R, Schelde P, Hansen ES, Vogel I, Uldbjerg N, Niemann I, Sunde L. Diagnosis of hydatidiform moles using circulating gestational trophoblasts isolated from maternal blood. Placenta 2023; 135:7-15. [PMID: 36889013 DOI: 10.1016/j.placenta.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/27/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
INTRODUCTION Identifying hydatidiform moles (HMs) is crucial due to the risk of gestational trophoblastic neoplasia. When a HM is suspected on clinical findings, surgical termination is recommended. However, in a substantial fraction of the cases, the conceptus is actually a non-molar miscarriage. If distinction between molar and non-molar gestations could be obtained before termination, surgical intervention could be minimized. METHODS Circulating gestational trophoblasts (cGTs) were isolated from blood from 15 consecutive women suspected of molar pregnancies in gestational week 6-13. The trophoblasts were individually sorted using fluorescence activated cell sorting. STR analysis targeting 24 loci was performed on DNA isolated from maternal and paternal leukocytes, chorionic villi, cGTs, and cfDNA. RESULTS With a gestational age above 10 weeks, cGTs were isolated in 87% of the cases. Two androgenetic HMs, three triploid diandric HMs, and six conceptuses with diploid biparental genome were diagnosed using cGTs. The STR profiles in cGTs were identical to the profiles in DNA from chorionic villi. Eight of the 15 women suspected to have a HM prior to termination had a conceptus with a diploid biparental genome, and thus most likely a non-molar miscarriage. DISCUSSION Genetic analysis of cGTs is superior to identify HMs, compared to analysis of cfDNA, as it is not hampered by the presence of maternal DNA. cGTs provide information about the full genome in single cells, facilitating estimation of ploidy. This may be a step towards differentiating HMs from non-HMs before termination.
Collapse
Affiliation(s)
| | - Lotte Hatt
- ARCEDI Biotech, Tabletvej 1, Vejle, Denmark
| | | | | | | | - Ida Vogel
- Center for Fetal Diagnostics, Institute for Clinical Medicine, Aarhus University, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Uldbjerg
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Women's Disease and Birth, Aarhus University Hospital, Aarhus, Denmark
| | - Isa Niemann
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lone Sunde
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Slim R, Fisher R, Milhavet F, Hemida R, Rojas S, Rittore C, Bagga R, Aguinaga M, Touitou I. Biallelic NLRP7 variants in patients with recurrent hydatidiform mole: A review and expert consensus. Hum Mutat 2022; 43:1732-1744. [PMID: 35842788 DOI: 10.1002/humu.24439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Hydatidiform mole (HM) is an abnormal human pregnancy characterized by excessive growth of placental trophoblasts and abnormal early embryonic development. Following a first such abnormal pregnancy, the risk for women of successive molar pregnancies significantly increases. To date variants in seven maternal-effect genes have been shown to cause recurrent HMs (RHM). NLRP7 is the major causative gene for RHM and codes for NOD-like receptor (NLR) family pyrin domain containing 7, which belongs to a family of proteins involved in inflammatory disorders. Since its identification, all NLRP7 variants have been recorded in Infevers, an online registry dedicated to autoinflammatory diseases (https://infevers.umai-montpellier.fr/web/). Here, we reviewed published and unpublished recessive NLRP7 variants associated with RHM, scored their pathogenicity according to the American College of Medical Genetics classification, and recapitulated all functional studies at the level of both the patients and the conceptions. We also provided data on further variant analyses of 32 patients and genotypes of 36 additional molar pregnancies. This comprehensive review integrates published and unpublished data on NLRP7 and aims at guiding geneticists and clinicians in variant interpretation, genetic counseling, and management of patients with this rare condition.
Collapse
Affiliation(s)
- Rima Slim
- Department of Human Genetics, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Department of Obstetrics Gynecology, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Rosemary Fisher
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Florian Milhavet
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Autoinflammatory Diseases Unit CHU Montpellier, Reference Center for Autoinflammatory Diseases and Amyloidosis (Ceremaia), Montpellier, France
| | - Reda Hemida
- Department of Obstetrics and Gynecology, Mansoura University, Mansoura, Egypt
| | - Samantha Rojas
- Department of Human Genetics, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Cécile Rittore
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Autoinflammatory Diseases Unit CHU Montpellier, Reference Center for Autoinflammatory Diseases and Amyloidosis (Ceremaia), Montpellier, France
| | - Rashmi Bagga
- Department of Obstetrics & Gynecology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Monica Aguinaga
- Genetics and Genomics Department, Instituto Nacional de Perinatologia, Ciudad de Mexico, Mexico
| | - Isabelle Touitou
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Autoinflammatory Diseases Unit CHU Montpellier, Reference Center for Autoinflammatory Diseases and Amyloidosis (Ceremaia), Montpellier, France.,Department of Medical Genetics, University of Montpellier (UM), INSERM (IRMB), Montpellier, France
| |
Collapse
|
6
|
Abi Nahed R, Elkhoury Mikhael M, Reynaud D, Collet C, Lemaitre N, Michy T, Hoffmann P, Sergent F, Marquette C, Murthi P, Raia-Barjat T, Alfaidy N, Benharouga M. Role of NLRP7 in Normal and Malignant Trophoblast Cells. Biomedicines 2022; 10:252. [PMID: 35203462 PMCID: PMC8868573 DOI: 10.3390/biomedicines10020252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Gestational choriocarcinoma (CC) is an aggressive cancer that develops upon the occurrence of abnormal pregnancies such as Hydatidiform moles (HMs) or upon non-molar pregnancies. CC cells often metastasize in multiple organs and can cause maternal death. Recent studies have established an association between recurrent HMs and mutations in the Nlrp7 gene. NLRP7 is a member of a new family of proteins that contributes to innate immune processes. Depending on its level of expression, NLRP7 can function in an inflammasome-dependent or independent pathway. To date, the role of NLRP7 in normal and in malignant human placentation remains to be elucidated. We have recently demonstrated that NLRP7 is overexpressed in CC trophoblast cells and may contribute to their acquisition of immune tolerance via the regulation of key immune tolerance-associated factors, namely HLA family, βCG and PD-L1. We have also demonstrated that NLRP7 increases trophoblast proliferation and decreases their differentiation, both in normal and tumor conditions. Actual findings suggest that NLRP7 expression may ensure a strong tolerance of the trophoblast by the maternal immune system during normal pregnancy and may directly affect the behavior and aggressiveness of malignant trophoblast cells. The proposed review summarizes recent advances in the understanding of the significance of NLRP7 overexpression in CC and discusses its multifaceted roles, including its function in an inflammasome-dependent or independent pathways.
Collapse
Affiliation(s)
- Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Maya Elkhoury Mikhael
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
| | - Deborah Reynaud
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Constance Collet
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Thierry Michy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Pascale Hoffmann
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Christel Marquette
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Padma Murthi
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia;
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tiphaine Raia-Barjat
- Department of Gynecology and Obstetrics, University Hospital, 42100 Saint Etienne, France;
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| |
Collapse
|
7
|
Reynaud D, Abi Nahed R, Lemaitre N, Bolze PA, Traboulsi W, Sergent F, Battail C, Filhol O, Sapin V, Boufettal H, Hoffmann P, Aboussaouira T, Murthi P, Slim R, Benharouga M, Alfaidy N. NLRP7 Promotes Choriocarcinoma Growth and Progression through the Establishment of an Immunosuppressive Microenvironment. Cancers (Basel) 2021; 13:2999. [PMID: 34203890 PMCID: PMC8232770 DOI: 10.3390/cancers13122999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022] Open
Abstract
The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.
Collapse
Affiliation(s)
- Deborah Reynaud
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Pierre-Adrien Bolze
- Department of Gynecological Surgery and Oncology, Obstetrics, French Reference Center for Gestational Trophoblastic Diseases, University Hospital Lyon Sud, University of Lyon 1, 69000 Lyon, France;
| | - Wael Traboulsi
- Laboratory for Immuno-Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 2005, USA;
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Christophe Battail
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Vincent Sapin
- Genetics, Reproduction and Development (GReD) Laboratory, CNRS UMR 6293, Inserm U1103, Translational Approach to Epithelial Injury and Repair Team, Clermont Auvergne University, 63000 Clermont-Ferrand, France;
- Medical Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Houssine Boufettal
- Obstetrics and Gynecology Department, Ibn Rochd University Hospital, Hassan 2 University, Faculty of Medicine and Pharmacy, 20360 Casablanca, Morocco; (H.B.); (T.A.)
| | - Pascale Hoffmann
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
- Centre Hospitalo-Universitaire Grenoble Alpes, Service Obstétrique, CS 10217, Université Grenoble Alpes, CEDEX 9, 38043 Grenoble, France
| | - Touria Aboussaouira
- Obstetrics and Gynecology Department, Ibn Rochd University Hospital, Hassan 2 University, Faculty of Medicine and Pharmacy, 20360 Casablanca, Morocco; (H.B.); (T.A.)
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash, Clayton, VIC 3168, Australia;
- Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rima Slim
- Departments of Human Genetics and Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montréal, QC H4A 3J1, Canada;
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| |
Collapse
|
8
|
Fisher RA, Maher GJ. Genetics of gestational trophoblastic disease. Best Pract Res Clin Obstet Gynaecol 2021; 74:29-41. [PMID: 33685819 DOI: 10.1016/j.bpobgyn.2021.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/06/2020] [Accepted: 01/08/2021] [Indexed: 01/26/2023]
Abstract
The abnormal pregnancies complete and partial hydatidiform mole are genetically unusual, being associated with two copies of the paternal genome. Typical complete hydatidiform moles (CHMs) are diploid and androgenetic, while partial hydatidiform moles (PHMs) are diandric triploids. While diagnosis can usually be made on the basis of morphology, ancillary techniques that exploit their unusual genetic origin can be used to facilitate diagnosis. Genotyping and p57 immunostaining are now routinely used in the differential diagnosis of complete and partial hydatidiform moles, for investigating unusual mosaic or chimeric products of conception with a molar component and identifying the rare diploid, biparental HMs associated with an inherited predisposition to molar pregnancies. Genotyping also plays an important role in the differential diagnosis of gestational and non-gestational trophoblastic tumours and identification of the causative pregnancy where tumours are gestational. Recent developments include the use of cell-free DNA for non-invasive diagnosis of these conditions.
Collapse
Affiliation(s)
- Rosemary A Fisher
- Trophoblastic Tumour Screening and Treatment Centre, Faculty of Medicine, Imperial College London, Charing Cross Campus, Fulham Palace Road, London, W6 8RF, UK.
| | - Geoffrey J Maher
- Trophoblastic Tumour Screening and Treatment Centre, Faculty of Medicine, Imperial College London, Charing Cross Campus, Fulham Palace Road, London, W6 8RF, UK
| |
Collapse
|
9
|
Lund H, Vyberg M, Eriksen HH, Grove A, Jensen AØ, Sunde L. Decreasing incidence of registered hydatidiform moles in Denmark 1999-2014. Sci Rep 2020; 10:17041. [PMID: 33046739 PMCID: PMC7552396 DOI: 10.1038/s41598-020-73921-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/21/2020] [Indexed: 01/09/2023] Open
Abstract
Incidences of hydatidiform mole (HM) registered in European countries varies from 0.98/1000 to 2.17/1000 deliveries, while higher incidences have been reported in other parts of the world. We calculated the incidence by selecting data on HMs classified as ”first”, “second” and “third” from 01.01.1999 to 31.12.2014 registered in the Danish Pathology Registry, which we previously showed to be the most complete data source on the number of HMs in Denmark. In the study period, 1976 first HMs were registered; 1080 (55%) were classified as PHMs (partial HMs) and 896 (45%) as NPHMs (HMs not registered as PHMs). The average incidence of HM was 1.98/1000 deliveries. The incidence of PHM was 1.08/1000 deliveries and the incidence of NPHM was 0.90/1000 deliveries. Forty HMs were registered as second HMs; 85% (34/40) were of the same histopathological type as the first HM. The registered incidence of HM decreased from 2.55/1000 deliveries in 1999 to 1.61/1000 deliveries in 2014 (p < 0.005). The decrease in the incidence of HM was identical with a decrease in the incidence of PHM. New medical practices such as medical abortion and only forwarding selected pregnancy products for histopathologic examination may cause a declining number of HMs registered.
Collapse
Affiliation(s)
- Helle Lund
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark. .,Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark.
| | - Mogens Vyberg
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark
| | - Helle Højmark Eriksen
- Unit of Epidemiology and Biostatistics, Aalborg University Hospital, Søndre Skovvej 15, 9000, Aalborg, Denmark
| | - Anni Grove
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark
| | | | - Lone Sunde
- Department of Biomedicine, Aarhus University, C. F. Møllers Allé 6, 8000, Aarhus C, Denmark.,Department of Clinical Genetics, Aalborg University Hospital, Ladegaardsgade 5, 9000, Aalborg, Denmark
| |
Collapse
|
10
|
Amoushahi M, Sunde L, Lykke-Hartmann K. The pivotal roles of the NOD-like receptors with a PYD domain, NLRPs, in oocytes and early embryo development†. Biol Reprod 2020; 101:284-296. [PMID: 31201414 DOI: 10.1093/biolre/ioz098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD), NLRPs, are pattern recognition receptors, well recognized for their important roles in innate immunity and apoptosis. However, several NLRPs have received attention for their new, specialized roles as maternally contributed genes important in reproduction and embryo development. Several NLRPs have been shown to be specifically expressed in oocytes and preimplantation embryos. Interestingly, and in line with divergent functions, NLRP genes reveal a complex evolutionary divergence. The most pronounced difference is the human-specific NLRP7 gene, not identified in rodents. However, mouse models have been extensively used to study maternally contributed NLRPs. The NLRP2 and NLRP5 proteins are components of the subcortical maternal complex (SCMC), which was recently identified as essential for mouse preimplantation development. The SCMC integrates multiple proteins, including KHDC3L, NLRP5, TLE6, OOEP, NLRP2, and PADI6. The NLRP5 (also known as MATER) has been extensively studied. In humans, inactivating variants in specific NLRP genes in the mother are associated with distinct phenotypes in the offspring, such as biparental hydatidiform moles (BiHMs) and preterm birth. Maternal-effect recessive mutations in KHDC3L and NLRP5 (and NLRP7) are associated with reduced reproductive outcomes, BiHM, and broad multilocus imprinting perturbations. The precise mechanisms of NLRPs are unknown, but research strongly indicates their pivotal roles in the establishment of genomic imprints and post-zygotic methylation maintenance, among other processes. Challenges for the future include translations of findings from the mouse model into human contexts and implementation in therapies and clinical fertility management.
Collapse
Affiliation(s)
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Li G, Tian X, Lv D, Zhang L, Zhang Z, Wang J, Yang M, Tao J, Ma T, Wu H, Ji P, Wu Y, Lian Z, Cui W, Liu G. NLRP7 is expressed in the ovine ovary and associated with in vitro pre-implantation embryo development. Reproduction 2020; 158:415-427. [PMID: 31505467 PMCID: PMC6826174 DOI: 10.1530/rep-19-0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
NLRP (NACHT, LRR and PYD domain-containing proteins) family plays pivotal roles in mammalian reproduction. Mutation of NLRP7 is often associated with human recurrent hydatidiform moles. Few studies regarding the functions of NLRP7 have been performed in other mammalian species rather than humans. In the current study, for the first time, the function of NLRP7 has been explored in ovine ovary. NLRP7 protein was mainly located in ovarian follicles and in in vitro pre-implantation embryos. To identify its origin, 763 bp partial CDS of NLRP7 deriving from sheep cumulus oocyte complexes (COCs) was cloned, it showed a great homology with Homo sapiens. The high levels of mRNA and protein of NLRP7 were steadily expressed in oocytes, parthenogenetic embryos or IVF embryos. NLRP7 knockdown by the combination of siRNA and shRNA jeopardized both the parthenogenetic and IVF embryo development. These results strongly suggest that NLRP7 plays an important role in ovine reproduction. The potential mechanisms of NLRP7 will be fully investigated in the future.
Collapse
Affiliation(s)
- Guangdong Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiuzhi Tian
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongying Lv
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lu Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenzhen Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jing Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Minghui Yang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jingli Tao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Teng Ma
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Pengyun Ji
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yingjie Wu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Cui
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Guoshi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Germline NLRP7 mutations: genomic imprinting and hydatidiform mole. Virchows Arch 2020; 477:175-176. [PMID: 32577811 DOI: 10.1007/s00428-020-02802-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 10/24/2022]
|
13
|
Khawajkie Y, Mechtouf N, Nguyen NMP, Rahimi K, Breguet M, Arseneau J, Ronnett BM, Hoffner L, Lazure F, Arnaud M, Peers F, Tan L, Rafea BA, Aguinaga M, Horowitz NS, Ao A, Tan SL, Brown R, Buckett W, Surti U, Hovanes K, Sahoo T, Sauthier P, Slim R. Comprehensive analysis of 204 sporadic hydatidiform moles: revisiting risk factors and their correlations with the molar genotypes. Mod Pathol 2020; 33:880-892. [PMID: 31857680 DOI: 10.1038/s41379-019-0432-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 02/01/2023]
Abstract
Hydatidiform mole (HM) is an aberrant human pregnancy characterized by excessive trophoblastic proliferation and abnormal embryonic development. HM has two morphological types, complete (CHM) and partial (PHM), and non-recurrent ones have three genotypic types, androgenetic monospermic, androgenetic dispermic, and triploid dispermic. Most available studies on risk factors predisposing to different types of HM and their malignant transformation mainly suffer from the lack of comprehensive genotypic analysis of large cohorts of molar tissues combined with accurate postmolar hCG follow-up. Moreover, 10-20% of patients with one HM have at least one non-molar miscarriage, which is higher than the frequency of two pregnancy losses in the general population (2-5%), suggesting a common genetic susceptibility to HM and miscarriages. However, the underlying causes of the miscarriages in these patients are unknown. Here, we comprehensively analyzed 204 HM, mostly from patients referred to the Quebec Registry of Trophoblastic Diseases and for which postmolar hCG monitoring is available, and 30 of their non-molar miscarriages. We revisited the risk of maternal age and neoplastic transformation across the different HM genotypic categories and investigated the presence of chromosomal abnormalities in their non-molar miscarriages. We confirm that androgenetic CHM is more prone to gestational trophoblastic neoplasia (GTN) than triploid dispermic PHM, and androgenetic dispermic CHM is more prone to high-risk GTN and choriocarcinoma (CC) than androgenetic monospermic CHM. We also confirm the association between increased maternal age and androgenetic CHM and their malignancies. Most importantly, we demonstrate for the first time that patients with an HM and miscarriages are at higher risk for aneuploid miscarriages [83.3%, 95% confidence interval (CI): 0.653-0.944] than women with sporadic (51.5%, 95% CI: 50.3-52.7%, p value = 0.0003828) or recurrent miscarriages (43.8%, 95% CI: 40.7-47.0%, p value = 0.00002). Our data suggest common genetic female germline defects predisposing to HM and aneuploid non-molar miscarriages in some patients.
Collapse
Affiliation(s)
- Yassemine Khawajkie
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada.,Departments of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada.,Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, QC, Canada
| | - Nawel Mechtouf
- Departments of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada.,Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, QC, Canada
| | - Ngoc Minh Phuong Nguyen
- Departments of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada.,Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, QC, Canada
| | - Kurosh Rahimi
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Magali Breguet
- Department of Obstetrics and Gynecology, Gynecologic Oncology Division, Centre Hospitalier de l'Université de Montréal, Réseau des Maladies Trophoblastiques du Québec, Montreal, QC, Canada
| | - Jocelyne Arseneau
- Department of Pathology, McGill University Health Centre, Montreal, QC, Canada
| | | | - Lori Hoffner
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Felicia Lazure
- Departments of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Marjolaine Arnaud
- Departments of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Fabrice Peers
- Department of Pathology, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Liane Tan
- The Fertility Clinic, London Health Sciences Centre, London, ON, Canada
| | - Basam Abu Rafea
- The Fertility Clinic, London Health Sciences Centre, London, ON, Canada
| | - Monica Aguinaga
- Genetics and Genomics Department, Instituto Nacional de Perinatologia, Mexico City, Mexico
| | - Neil S Horowitz
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA
| | - Asangla Ao
- Departments of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada.,Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, QC, Canada
| | - Seang Lin Tan
- Originelle Fertility Clinic and Women's Health Centre, Montreal, QC, Canada
| | - Richard Brown
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, QC, Canada
| | - William Buckett
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, QC, Canada
| | - Urvashi Surti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | - Philippe Sauthier
- Department of Obsterics and Gynecology, Gynecology Oncology Division, Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada
| | - Rima Slim
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada. .,Departments of Human Genetics, McGill University Health Centre Research Institute, Montreal, QC, Canada. .,Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
14
|
Allias F, Mechtouf N, Gaillot-Durand L, Hoffner L, Hajri T, Devouassoux-Shisheboran M, Massardier J, Golfier F, Bolze PA, Surti U, Slim R. A novel NLRP7 protein-truncating mutation associated with discordant and divergent p57 immunostaining in diploid biparental and triploid digynic moles. Virchows Arch 2020; 477:309-315. [PMID: 32055942 DOI: 10.1007/s00428-020-02769-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
NLRP7 is a maternal-effect gene that has a primary role in the oocyte. Its biallelic mutations are a major cause for recurrent diploid biparental hydatidiform moles (HMs). Here, we describe the full characterization of four HMs from a patient with a novel homozygous protein-truncating mutation in NLRP7. We found that some HMs have features of both complete and partial moles. Two HMs expressed p57 in the cytotrophoblast and stromal cells and exhibited divergent and discordant immunostaining. Microsatellite DNA-genotyping demonstrated that two HMs are diploid biparental and one is triploid digynic due to the failure of meiosis II. FISH analysis demonstrated triploidy in the cytotrophoblast and stromal cells in all villi. Our data highlight the atypical features of HM from patients with recessive NLRP7 mutations and the important relationship between NLRP7 defects in the oocyte and p57 expression that appear to be the main contributor to the molar phenotype regardless of the zygote genotype.
Collapse
Affiliation(s)
- Fabienne Allias
- Department of Pathology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, 165 chemin du grand Revoyet, 69495, Pierre-Bénite, France. .,French Reference Center for Gestational Trophoblastic Diseases, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France.
| | - Nawel Mechtouf
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, Canada
| | - Lucie Gaillot-Durand
- Department of Pathology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, 165 chemin du grand Revoyet, 69495, Pierre-Bénite, France.,French Reference Center for Gestational Trophoblastic Diseases, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Lori Hoffner
- Department of Pathology, Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Touria Hajri
- French Reference Center for Gestational Trophoblastic Diseases, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Mojgan Devouassoux-Shisheboran
- Department of Pathology, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, 165 chemin du grand Revoyet, 69495, Pierre-Bénite, France.,French Reference Center for Gestational Trophoblastic Diseases, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Jérôme Massardier
- French Reference Center for Gestational Trophoblastic Diseases, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France.,Department of Gynecology and Obstetrics, Hospices Civils de Lyon, Hôpital Femme Mère Enfant, Bron, France
| | - François Golfier
- French Reference Center for Gestational Trophoblastic Diseases, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France.,Department of Gynecology and Obstetrics, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Benite, France
| | - Pierre-Adrien Bolze
- French Reference Center for Gestational Trophoblastic Diseases, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France.,Department of Gynecology and Obstetrics, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Benite, France
| | - Urvashi Surti
- Department of Pathology, Magee-Womens Hospital, Pittsburgh, PA, USA
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre Research Institute, Montreal, Canada
| |
Collapse
|
15
|
Tsai PY, Chen KR, Li YC, Kuo PL. NLRP7 Is Involved in the Differentiation of the Decidual Macrophages. Int J Mol Sci 2019; 20:E5994. [PMID: 31795138 PMCID: PMC6929161 DOI: 10.3390/ijms20235994] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023] Open
Abstract
Macrophage polarization, regulated appropriately, may play important roles in successful pregnancy. In the face of the vital roles of decidua macrophages in pregnancy, it is insufficient to recognize the trigger of macrophage differentiation and polarization. We aimed to explore the link between the NLRP7 gene and macrophage polarization in human deciduas. Here, we enrolled the endometrial tissues from eight pregnant women in the first trimester. We found that NLRP7 was abundant in endometrial tissues and that NLRP7 was expressed in decidual macrophages of the first-trimester pregnancy. NLRP7 was predominately expressed in the decidual M2 macrophages, as compared with the M1 macrophages. Furthermore, our results suggest that NLRP7 is associated with decidual macrophage differentiation. NLRP7 over-expression suppresses the expression of M1 markers and enhances the expression of the M2 markers. Considering that NLRP7 relates to decidualization and macrophage differentiation, we propose that NLRP7 is a primate-specific multitasking gene to maintain endometrial hemostasis and reproductive success. This finding may pave the way for therapies of pathological pregnancies.
Collapse
Affiliation(s)
- Pei-Yin Tsai
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan; (P.-Y.T.); (K.-R.C.)
| | - Kuan-Ru Chen
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan; (P.-Y.T.); (K.-R.C.)
| | - Yueh-Chun Li
- Laboratory of cytogenetic research, Lee Women’s Hospital, Taichung 40652, Taiwan
| | - Pao-Lin Kuo
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70401, Taiwan; (P.-Y.T.); (K.-R.C.)
| |
Collapse
|
16
|
Abi Nahed R, Reynaud D, Borg AJ, Traboulsi W, Wetzel A, Sapin V, Brouillet S, Dieudonné MN, Dakouane-Giudicelli M, Benharouga M, Murthi P, Alfaidy N. NLRP7 is increased in human idiopathic fetal growth restriction and plays a critical role in trophoblast differentiation. J Mol Med (Berl) 2019; 97:355-367. [PMID: 30617930 DOI: 10.1007/s00109-018-01737-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Fetal growth restriction (FGR) the leading cause of perinatal mortality and morbidity is highly related to abnormal placental development, and placentas from FGR pregnancies are often characterized by increased inflammation. However, the mechanisms of FGR-associated inflammation are far from being understood. NLRP7, a member of a family of receptors involved in the innate immune responses, has been shown to be associated with gestational trophoblastic diseases. Here, we characterized the expression and the functional role of NLRP7 in the placenta and investigated its involvement in the pathogenesis of FGR. We used primary trophoblasts and placental explants that were collected during early pregnancy, and established trophoblast-derived cell lines, human placental villi, and serum samples from early pregnancy (n = 38) and from FGR (n = 40) and age-matched controls (n = 32). Our results show that NLRP7 (i) is predominantly expressed in the trophoblasts during the hypoxic period of placental development and its expression is upregulated by hypoxia and (ii) increases trophoblast proliferation ([3H]-thymidine) and controls the precocious differentiation of trophoblasts towards syncytium (syncytin 1 and 2 and β-hCG production and xCELLigence analysis) and towards invasive extravillous trophoblast (2D and 3D cultures). We have also demonstrated that NLRP7 inflammasome activation in trophoblast cells increases IL-1β, but not IL-18 secretion. In relation to the FGR, we demonstrated that major components of NLRP7 inflammasome machinery are increased and that IL-1β but not IL-18 circulating levels are increased in FGR. Altogether, our results identified NLRP7 as a critical placental factor and provided evidence for its deregulation in FGR. NLRP7 inflammasome is abundantly expressed by trophoblast cells. It is regulated by a key parameter of placental development, hypoxia. It controls trophoblast proliferation, migration, and invasion and exhibits anti-apoptotic role. NLRP7 machinery is deregulated in FGR pregnancies. KEY MESSAGES: NLRP7 inflammasome is abundantly expressed by trophoblast cells. It is regulated by a key parameter of placental development, hypoxia. It controls trophoblast proliferation, migration, and invasion and exhibits anti-apoptotic role. NLRP7 machinery is deregulated in FGR pregnancies.
Collapse
Affiliation(s)
- R Abi Nahed
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France
- Université Grenoble-Alpes, 38000, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - D Reynaud
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France
- Université Grenoble-Alpes, 38000, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - A J Borg
- Department of Medicine, School of Clinical Sciences, Monash University and the Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
| | - W Traboulsi
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France
- Université Grenoble-Alpes, 38000, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
| | - A Wetzel
- Université Grenoble-Alpes, 38000, Grenoble, France
- Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation-CECOS, Centre Hospitalier Universitaire de Grenoble, 38700, La Tronche, France
| | - V Sapin
- GReD, UMR CNRS 6293 INSERM 1103 Université Clermont Auvergne, CRBC, UFR de Médecine et des Professions Paramédicales, 63000, Clermont-Ferrand, France
| | - S Brouillet
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France
- Université Grenoble-Alpes, 38000, Grenoble, France
- Hôpital Couple-Enfant, Centre Clinique et Biologique d'Assistance Médicale à la Procréation-CECOS, Centre Hospitalier Universitaire de Grenoble, 38700, La Tronche, France
| | - M N Dieudonné
- GIG - EA 7404 Université de Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, Unité de Formation et de Recherche des Sciences de la Santé Simone Veil, Montigny-le-Bretonneux, France
| | - M Dakouane-Giudicelli
- Institut National de la Santé et de la Recherche Médicale, Unité 1179, Montigny-Le-Bretonneux, France
| | - M Benharouga
- Université Grenoble-Alpes, 38000, Grenoble, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France
- Unité Mixte de Recherche 5249, Laboratoire de Chimie et Biologie des Métaux, Centre National de la Recherche Scientifique, Grenoble, France
| | - P Murthi
- Department of Medicine, School of Clinical Sciences, Monash University and the Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Unité 1036, Grenoble, France.
- Université Grenoble-Alpes, 38000, Grenoble, France.
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, Grenoble, France.
- Unité INSERM U1036, Laboratoire BCI -BIG, CEA Grenoble 17, rue des Martyrs, 38054, Grenoble cedex 9, France.
| |
Collapse
|
17
|
Mu X, Yin R, Wang D, Song L, Ma Y, Zhao X, Li Q. Hepatic toxicity following actinomycin D chemotherapy in treatment of familial gestational trophoblastic neoplasia: A case report. Medicine (Baltimore) 2018; 97:e12424. [PMID: 30235719 PMCID: PMC6160083 DOI: 10.1097/md.0000000000012424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
RATIONALE Familial hydatidiform mole is extremely rare while familial gestational trophoblastic neoplasia (GTN) has never been reported. Inspired by 2 biological sisters with postmolar GTN and liver toxicity, we reviewed susceptible maternal-effect genes and explored the role of possible drug transporter genes in the development of GTN. PATIENT CONCERNS We reported one Chinese family where the two sisters developed postmolar GTN while experiencing fast remission and significant hepatic toxicity from actinomycin D chemotherapy. DIAGNOSES The index pregnancy was diagnosed with curettage. The following GTN was confirmed when there was a rise in beta-hCG for three consecutive weekly measurements over at least a period of 2 weeks. Computed tomography was used to identify lung metastasis. The elder sister was diagnosed with gestational trophoblastic neoplasia (III: 2) while the younger sister was diagnosed as III: 3 according to WHO scoring system. INTERVENTIONS Patients were treated with actinomycin D of 10 μg/kg intravenously for 5 days every 2 weeks. When hepatic toxicity was indicated, polyene phosphatidyl choline and magnesium isoglycyrrhizinate were prescribed. OUTCOMES Both patients responded extremely well to the 5-day actinomycin D regimen. Beta-hCG remained less than 2 mIU/ml after 5 cycles while computed tomography scan showed downsized pulmonary nodules. Both experienced significant rise in ALT and AST levels that could be ameliorated with corresponding medication. Monthly followed-up showed negative beta-hCG levels and normal liver enzyme levels. LESSONS We speculated that the known or unknown NLRP7 and KHDC3L mutations might be correlated with drug disposition in liver while liver drug transporters such as P-glycoprotein family that are also expressed in trophoblasts might be correlated to GTN susceptibility. Future genomic profiles of large samples alike using next generation sequencing are needed to confirm our hypothesis and discover yet unknown genes.
Collapse
Affiliation(s)
- Xiyan Mu
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Rutie Yin
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Danqing Wang
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Liang Song
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Yu Ma
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| | - Qingli Li
- Department of Obstetrics and Gynecology, West China Second Hospital of Sichuan University
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, PR China
| |
Collapse
|
18
|
DNA Genotyping of Nonmolar Donor Egg Pregnancies With Abnormal Villous Morphology: Allele Zygosity Patterns Prevent Misinterpretation as Complete Hydatidiform Mole. Int J Gynecol Pathol 2018; 37:191-197. [PMID: 28463912 DOI: 10.1097/pgp.0000000000000395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
DNA genotyping is the gold standard diagnostic test to distinguish hydatidiform moles from nonmolar but morphologically abnormal products of conception (POC). The test is based on comparison of alleles at 15 short tandem repeat loci in the chorionic villi of the POC to those in the maternal decidual tissue. If alleles in the POC are not present in the decidua, then the most concerning interpretation is that the POC has a paternal uniparental genome diagnostic of a complete hydatidiform mole (CHM). However, a nonmolar pregnancy from a donated egg would also appear the same because the maternal genome of the POC would match that of the maternal donor, not that of the decidua of the individual carrying the pregnancy. Not surprisingly, 2 cases of potential misclassification of the genotype of a donor egg POC as CHM have been reported in the literature. We hypothesize that the ratio of heterozygous loci to homozygous loci (so-called allele zygosity ratio) distinguishes the genotype of a donor egg POC from CHM. We compared the allele zygosity ratio in 11 nonmolar donor egg POC, 5 dispermic (heterozygous) CHM and 31 monospermic (homozygous) CHM, without knowledge of the use of a donor egg, the histologic findings, or results of p57 immunohistochemical staining. In all 47 cases, the alleles from the chorionic villi did not match those in the decidua. The average ratio of heterozygous to homozygous loci was 4:1 in donor egg POC and 1:3 in dispermic CHM (P<0.0001). Monospermic CHM contained 100% homozygous loci. p57 staining was intact in all donor egg POC. We conclude that the allele zygosity ratio is important to evaluate when interpreting the genotype of morphologically abnormal POC that does not match the genotype of the decidua. A high heterozygous:homozygous ratio should raise concern for a nonmolar donor egg pregnancy. Correlation of this variable along with review of the histologic findings and p57 immunohistochemistry may prevent misclassification of the genotype of a donor egg POC with abnormal villous morphology as a dispermic (heterozygous) CHM.
Collapse
|
19
|
The genetics of recurrent hydatidiform moles: new insights and lessons from a comprehensive analysis of 113 patients. Mod Pathol 2018; 31:1116-1130. [PMID: 29463882 DOI: 10.1038/s41379-018-0031-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 11/09/2022]
Abstract
Hydatidiform mole is an aberrant human pregnancy characterized by early embryonic arrest and excessive trophoblastic proliferation. Recurrent hydatidiform moles are defined by the occurrence of at least two hydatidiform moles in the same patient. Fifty to eighty percent of patients with recurrent hydatidiform moles have biallelic pathogenic variants in NLRP7 or KHDC3L. However, in the remaining patients, the genotypic types of the moles are unknown. We characterized 80 new hydatidiform mole tissues, 57 of which were from patients with no mutations in the known genes, and we reviewed the genotypes of a total of 123 molar tissues. We also reviewed mutation analysis in 113 patients with recurrent hydatidiform moles. While all hydatidiform moles from patients with biallelic NLRP7 or KHDC3L mutations are diploid biparental, we demonstrate that those from patients without mutations are highly heterogeneous and only a small minority of them are diploid biparental (8%). The other mechanisms that were found to recur in patients without mutations are diploid androgenetic monospermic (24%) and triploid dispermic (32%); the remaining hydatidiform moles were misdiagnosed as moles due to errors in the analyses and/or their unusual mechanisms. We compared three parameters of genetic susceptibility in patients with and without mutations and show that patients without mutations are mostly from non-familial cases, have fewer reproductive losses, and more live births. Our data demonstrate that patients with recurrent hydatidiform moles and no mutations in the known genes are, in general, different from those with mutations; they have a milder genetic susceptibility and/or a multifactorial etiology underlying their recurrent hydatidiform moles. Categorizing these patients according to the genotypic types of their recurrent hydatidiform moles may facilitate the identification of novel genes for this entity.
Collapse
|
20
|
Desterke C, Slim R, candelier JJ. A bioinformatics transcriptome meta-analysis highlights the importance of trophoblast differentiation in the pathology of hydatidiform moles. Placenta 2018; 65:29-36. [DOI: 10.1016/j.placenta.2018.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/26/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
|
21
|
Biallelic PADI6 variants linking infertility, miscarriages, and hydatidiform moles. Eur J Hum Genet 2018; 26:1007-1013. [PMID: 29693651 DOI: 10.1038/s41431-018-0141-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 01/16/2023] Open
Abstract
Recurrent hydatidiform moles (RHM) are aberrant human pregnancies characterized by absence of, or abnormal, embryonic development, hydropic degeneration of chorionic villi, and hyperproliferation of the trophoblast. Biallelic mutations in two maternal-effect genes, NLRP7 and KHDC3L, underlie the causation of RHM in 60% of patients. We performed exome sequencing on a patient with six pregnancy losses, two miscarriages and four HM, and found no variants that affect the functions of the known genes. We found biallelic missense variants that affect conserved amino acids in PADI6 and segregate with the disease phenotype in the family. PADI6 is another maternal-effect gene and a member of the subcortical maternal complex that has been shown to have recessive variants that affect the gene function in four unrelated women with infertility who also experienced early embryonic arrest during preimplantation development after IVF. We demonstrated that PADI6 co-localizes with NLRP7 in human oocytes and preimplantation embryos and reviewed the morphology and genotypes of four products of conception from our patient. Our data expand the involvement of PADI6 to other forms of reproductive loss and highlight the commonality between infertility, miscarriages, and molar pregnancies, in some cases.
Collapse
|
22
|
Hui P, Buza N, Murphy KM, Ronnett BM. Hydatidiform Moles: Genetic Basis and Precision Diagnosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:449-485. [DOI: 10.1146/annurev-pathol-052016-100237] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pei Hui
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510;
| | - Natalia Buza
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510;
| | | | - Brigitte M. Ronnett
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland 21231
| |
Collapse
|
23
|
The genomic architecture of NLRP7 is Alu rich and predisposes to disease-associated large deletions. Eur J Hum Genet 2016; 24:1445-52. [PMID: 26956250 DOI: 10.1038/ejhg.2016.9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/28/2015] [Accepted: 01/14/2016] [Indexed: 11/08/2022] Open
Abstract
NLRP7 is a major gene responsible for recurrent hydatidiform moles. Here, we report 11 novel NLRP7 protein truncating variants, of which five deletions of more than 1-kb. We analyzed the transcriptional consequences of four variants. We demonstrate that one large homozygous deletion removes NLRP7 transcription start site and results in the complete absence of its transcripts in a patient in good health besides her reproductive problem. This observation strengthens existing data on the requirement of NLRP7 only for female reproduction. We show that two other variants affecting the splice acceptor of exon 6 lead to its in-frame skipping while another variant affecting the splice donor site of exon 9 leads to an in-frame insertion of 54 amino acids. Our characterization of the deletion breakpoints demonstrated that most of the breakpoints occurred within Alu repeats and the deletions were most likely mediated by microhomology events. Our data define a hotspot of Alu instability and deletions in intron 5 with six different breakpoints and rearrangements. Analysis of NLRP7 genomic sequences for repetitive elements demonstrated that Alu repeats represent 48% of its intronic sequences and these repeats seem to have been inserted into the common NLRP2/7 primate ancestor before its duplication into two genes.
Collapse
|
24
|
Live births in women with recurrent hydatidiform mole and two NLRP7 mutations. Reprod Biomed Online 2015; 31:120-4. [DOI: 10.1016/j.rbmo.2015.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/18/2015] [Accepted: 03/18/2015] [Indexed: 11/22/2022]
|
25
|
Singer H, Biswas A, Nuesgen N, Oldenburg J, El-Maarri O. NLRP7, Involved in Hydatidiform Molar Pregnancy (HYDM1), Interacts with the Transcriptional Repressor ZBTB16. PLoS One 2015; 10:e0130416. [PMID: 26121690 PMCID: PMC4488268 DOI: 10.1371/journal.pone.0130416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 05/20/2015] [Indexed: 12/31/2022] Open
Abstract
Mutations in the maternal effect gene NLRP7 cause biparental hydatidiform mole (HYDM1). HYDM1 is characterized by abnormal growth of placenta and lack of proper embryonic development. The molar tissues are characterized by abnormal methylation patterns at differentially methylated regions (DMRs) of imprinted genes. It is not known whether this occurs before or after fertilization, but the high specificity of this defect to the maternal allele indicates a possible maternal germ line-specific effect. To better understand the unknown molecular mechanism leading to HYDM1, we performed a yeast two-hybrid screen against an ovarian library using NLRP7 as bait. We identified the transcriptional repressor ZBTB16 as an interacting protein of NLRP7 and verified this interaction in mammalian cells by immunoprecipitation and confocal microscopy. Native protein analysis detected NLRP7 and ZBTB16 in a 480kD protein complex and both proteins co-localize in the cytoplasm in juxtanuclear aggregates. HYDM1-causing mutations in NLRP7 did not show altered patterns of interaction with ZBTB16. Hence, the biological significance of the NLRP7-ZBTB16 interaction remains to be revealed. However, a clear effect of harvesting ZBTB16 to the cytoplasm when the NLRP7 protein is overexpressed may be linked to the pathology of the molar pregnancy disease.
Collapse
Affiliation(s)
- Heike Singer
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Nicole Nuesgen
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Osman El-Maarri
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|