1
|
Han JY, Kim TY, Gwack J, Park J. The Aggravation of Neuropsychiatric Symptoms in the Offspring of a Korean Family with Intellectual Disability and Developmental Delay Caused by a Novel ARX p.Lys385Ter Variant. Int J Mol Sci 2024; 25:10327. [PMID: 39408661 PMCID: PMC11476583 DOI: 10.3390/ijms251910327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The ARX mutations encompass a nearly continuous spectrum of neurodevelopmental disorders (NDDs), ranging from lissencephaly to Proud syndrome, as well as infantile spasms without brain malformations, and including both syndromic and non-syndromic intellectual disabilities (IDs). We describe worsening neuropsychiatric symptoms in the offspring of a Korean family with ID/developmental delay (DD) caused by a novel ARX p.Lys385Ter variant. Sequential genetic testing was performed to investigate the ID, DD, agenesis of the corpus callosum (ACC), and developmental epileptic encephalopathy (DEE) observed in the proband. A comprehensive trio clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Given the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous ARX variant, c.1153A>T/p.Lys385Ter (Reference transcript ID: NM_139058.3), as the most likely cause of ID, DD, ACC, and DEE in the proband. Sanger sequencing confirmed the segregation of the ARX variant, c.1153A>T/p.Lys385Ter, with the phenotype and established the maternally inherited dominant status of the heterozygous variant in the patient, as well as in her grandmother, mother, and aunt. Our case report adds to the understanding of the female phenotype in ARX-related disorders caused by loss-of-function variants in the ARX gene. Genetic counseling for ARX families should proceed with caution, as female carriers can exhibit a wide range of phenotypes, from normal cognitive development to ID/DD, ACC, and DEE.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Tae Yun Kim
- Department of Thoracic and Cardiovascular Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
| | - Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
2
|
Xie Y, Luo J, Zhong J, Lan D. Clinical Diagnosis and Genetic Analysis of Children With Muscular Dystrophies. Clin Pediatr (Phila) 2024:99228241272029. [PMID: 39198981 DOI: 10.1177/00099228241272029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
More than 90% suspected muscular dystrophy (MD) can be confirmed with multiplex ligation-dependent probe amplification (MLPA) combined with targeted panel, although there are a few that cannot be identified. A total of 312 suspected MD patients were enrolled into the study. The MLPA combined with a targeted myopathy panel were performed. Patients with negative results were subjected to whole exome sequencing (WES), whole genome sequencing (WGS), and/or RNA sequencing (RNA-seq). A total of 275 cases were diagnosed as Duchenne/Becker muscular dystrophy (DMD/BMD) and 20 cases were other types of myopathy or nonmuscular diseases. Six female DMD/BMD patients suffered from varying degrees of typical DMD-like symptoms and 2 others were suspected to be gonadal mosaicism. The systematic application of WES, WGS, and/or RNA-seq highlighted the need for the detection of variants missed by the current standard diagnostic procedures. The identification of female patients and mosaic carriers was crucial to predict the risk of recurrence and allow for optimal genetic counseling.
Collapse
Affiliation(s)
- Yanshu Xie
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, The Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingzi Zhong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dan Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
3
|
Ziegler BM, Abelleyro MM, Marchione VD, Lazarte N, Ledesma MM, Elhelou L, Neme D, Rossetti LC, Medina-Acosta E, Giliberto F, De Brasi C, Radic CP. Comprehensive genomic filtering algorithm to expose the cause of skewed X chromosome inactivation. The proof of concept in female haemophilia expression. J Med Genet 2024; 61:769-776. [PMID: 38719348 DOI: 10.1136/jmg-2024-109902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/22/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Exploring the expression of X linked disorders like haemophilia A (HA) in females involves understanding the balance achieved through X chromosome inactivation (XCI). Skewed XCI (SXCI) may be involved in symptomatic HA carriers. We aimed to develop an approach for dissecting the specific cause of SXCI and verify its value in HA. METHODS A family involving three females (two symptomatic with severe/moderate HA: I.2, the mother, and II.1, the daughter; one asymptomatic: II.2) and two related affected males (I.1, the father and I.3, the maternal uncle) was studied. The genetic analysis included F8 mutational screening, multiplex ligation-dependent probe amplification, SNP microarray, whole exome sequencing (WES) and Sanger sequencing. XCI patterns were assessed in ectoderm/endoderm and mesoderm-derived tissues using AR-based and RP2-based systems. RESULTS The comprehensive family analysis identifies I.2 female patient as a heterozygous carrier of F8:p.(Ser1414Ter) excluding copy number variations. A consistent XCI pattern of 99.5% across various tissues was observed. A comprehensive filtering algorithm for WES data was designed, developed and applied to I.2. A Gly58Arg missense variant in VMA21 was revealed as the cause for SXCI.Each step of the variant filtering system takes advantage of publicly available genomic databases, non-SXCI controls and case-specific molecular data, and aligns with established concepts in the theoretical background of SXCI. CONCLUSION This study acts as a proof of concept for our genomic filtering algorithm's clinical utility in analysing X linked disorders. Our findings clarify the molecular aspects of SXCI and improve genetic diagnostics and counselling for families with X linked diseases like HA.
Collapse
Affiliation(s)
- Betiana Michelle Ziegler
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Miguel Martin Abelleyro
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Vanina Daniela Marchione
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Nicolás Lazarte
- Unidad de Bioinformática, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Martín Manuel Ledesma
- Unidad de Bioinformática, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ludmila Elhelou
- Hematology, Fundación de la Hemofilia, Buenos Aires, Argentina
| | - Daniela Neme
- Hematology, Fundación de la Hemofilia, Buenos Aires, Argentina
| | - Liliana Carmen Rossetti
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Enrique Medina-Acosta
- Center for Biosciences and Biotechnology, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Florencia Giliberto
- Laboratorio de Distrofinopatías, Facultad de Farmacia y Bioquímica, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), CONICET-UBA, Buenos Aires, Argentina
| | - Carlos De Brasi
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Claudia Pamela Radic
- Laboratorio de Genética Molecular de la Hemofilia, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
4
|
Gras M, Heide S, Keren B, Valence S, Garel C, Whalen S, Jansen AC, Keymolen K, Stouffs K, Jennesson M, Poirsier C, Lesca G, Depienne C, Nava C, Rastetter A, Curie A, Cuisset L, Des Portes V, Milh M, Charles P, Mignot C, Héron D. Further characterisation of ARX-related disorders in females due to inherited or de novo variants. J Med Genet 2024; 61:103-108. [PMID: 37879892 DOI: 10.1136/jmg-2023-109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.
Collapse
Affiliation(s)
- Mathilde Gras
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Solveig Heide
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
- Doctoral College, Sorbonne University, Paris, France
| | - Boris Keren
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Stéphanie Valence
- Unit of Pediatric Neurology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilites of rare causes » Déficiences Intellectuelles de Causes Rares, Armand-Trousseau Hospital, Paris, France
| | - Catherine Garel
- Unit of Pediatric Radiology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Sandra Whalen
- Department of Clinical Genetics and Reference Center for Rare Diseases « Developmental disorders and syndromes », APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kathelijn Keymolen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katrien Stouffs
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mélanie Jennesson
- Pediatrics Unit, University Hospital of Reims, American Memorial Hospital, Reims, France
| | - Céline Poirsier
- UF génétique clinique, Pôle Femme-Parents-Enfants, CHU Reims, Reims, France
| | - Gaetan Lesca
- Department of Genetics, Referral Center for Developmental Anomalies and Malformative Syndromes, Centre-est HCL, Hospices Civils de Lyon, Lyon, France
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Aurore Curie
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Laurence Cuisset
- APHP Centre Université Paris Cité, Service de Médecine Génomique des Maladies de Système et d'Organe, Cochin Hospital, Paris, France
| | - Vincent Des Portes
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Mathieu Milh
- Department of Neurology Pediatrics, AP-HM, Hôpital de la Timone, Marseille, France
| | - Perrine Charles
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Delphine Héron
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| |
Collapse
|
5
|
Usman M, Jüschke C, Song F, Kastrati D, Owczarek-Lipska M, Eilers J, Pauleikhoff L, Lange C, Neidhardt J. Skewed X-inactivation is associated with retinal dystrophy in female carriers of RPGR mutations. Life Sci Alliance 2023; 6:e202201814. [PMID: 37541846 PMCID: PMC10403639 DOI: 10.26508/lsa.202201814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Progressive degeneration of rod and cone photoreceptors frequently is caused by mutations in the X-chromosomal gene Retinitis Pigmentosa GTPase Regulator (RPGR). Males hemizygous for a RPGR mutation often are affected by Retinitis Pigmentosa (RP), whereas female mutation carriers only occasionally present with severe RP phenotypes. The underlying pathomechanism leading to RP in female carriers is not well understood. Here, we analyzed a three-generation family in which two of three female carriers of a nonsense RPGR mutation presented with RP. Among two cell lines derived from the same female family members, differences were detected in RPGR transcript expression, in localization of RPGR along cilia, as well as in primary cilium length. Significantly, these differences correlated with alterations in X-chromosomal inactivation patterns found in the patient-derived cell lines from females. In summary, our data suggest that skewed X-chromosomal inactivation is an important factor that determines the disease manifestation of RP among female carriers of pathogenic sequence alterations in the RPGR gene.
Collapse
Affiliation(s)
- Muhammad Usman
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christoph Jüschke
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Fei Song
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Dennis Kastrati
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Junior Research Group, Genetics of Childhood Brain Malformations, School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Jannis Eilers
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Laurenz Pauleikhoff
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Clemens Lange
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Ophtha-Lab, Department of Ophthalmology at St. Franziskus Hospital, Muenster, Germany
| | - John Neidhardt
- Human Genetics, Medical Faculty, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
6
|
Juchniewicz P, Kloska A, Portalska K, Jakóbkiewicz-Banecka J, Węgrzyn G, Liss J, Głodek P, Tukaj S, Piotrowska E. X-chromosome inactivation patterns depend on age and tissue but not conception method in humans. Chromosome Res 2023; 31:4. [PMID: 36695960 PMCID: PMC9877087 DOI: 10.1007/s10577-023-09717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 01/26/2023]
Abstract
Female somatic X-chromosome inactivation (XCI) balances the X-linked transcriptional dosages between the sexes, randomly silencing the maternal or paternal X chromosome in each cell of 46,XX females. Skewed XCI toward one parental X has been observed in association with ageing and in some female carriers of X-linked diseases. To address the problem of non-random XCI, we quantified the XCI skew in different biological samples of naturally conceived females of different age groups and girls conceived after in vitro fertilization (IVF). Generally, XCI skew differed between saliva, blood, and buccal swabs, while saliva and blood had the most similar XCI patterns in individual females. XCI skew increased with age in saliva, but not in other tissues. We showed no significant differences in the XCI patterns in tissues of naturally conceived and IVF females. The gene expression profile of the placenta and umbilical cord blood was determined depending on the XCI pattern. The increased XCI skewing in the placental tissue was associated with the differential expression of several genes out of 40 considered herein. Notably, skewed XCI patterns (> 80:20) were identified with significantly increased expression levels of four genes: CD44, KDM6A, PHLDA2, and ZRSR2. The differences in gene expression patterns between samples with random and non-random XCI may shed new light on factors contributing to the XCI pattern outcome and indicate new paths in future research on the phenomenon of XCI skewing.
Collapse
Affiliation(s)
- Patrycja Juchniewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Karolina Portalska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Joanna Liss
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland ,Research and Development Center, INVICTA, Sopot, Poland
| | - Piotr Głodek
- Research and Development Center, INVICTA, Sopot, Poland
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
7
|
Werner JM, Ballouz S, Hover J, Gillis J. Variability of cross-tissue X-chromosome inactivation characterizes timing of human embryonic lineage specification events. Dev Cell 2022; 57:1995-2008.e5. [PMID: 35914524 PMCID: PMC9398941 DOI: 10.1016/j.devcel.2022.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
X-chromosome inactivation (XCI) is a random, permanent, and developmentally early epigenetic event that occurs during mammalian embryogenesis. We harness these features to investigate characteristics of early lineage specification events during human development. We initially assess the consistency of X-inactivation and establish a robust set of XCI-escape genes. By analyzing variance in XCI ratios across tissues and individuals, we find that XCI is shared across all tissues, suggesting that XCI is completed in the epiblast (in at least 6-16 cells) prior to specification of the germ layers. Additionally, we exploit tissue-specific variability to characterize the number of cells present during tissue-lineage commitment, ranging from approximately 20 cells in liver and whole blood tissues to 80 cells in brain tissues. By investigating the variability of XCI ratios using adult tissue, we characterize embryonic features of human XCI and lineage specification that are otherwise difficult to ascertain experimentally.
Collapse
Affiliation(s)
- Jonathan M Werner
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sara Ballouz
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW Australia
| | - John Hover
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse Gillis
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Řeboun M, Sikora J, Magner M, Wiederlechnerová H, Černá A, Poupětová H, Štorkánova G, Mušálková D, Dostálová G, Goláň L, Linhart A, Dvořáková L. Pitfalls of X-chromosome inactivation testing in females with Fabry disease. Am J Med Genet A 2022; 188:1979-1989. [PMID: 35338595 DOI: 10.1002/ajmg.a.62728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 11/07/2022]
Abstract
Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the GLA gene encoding alpha-galactosidase A (AGAL). The impact of X-chromosome inactivation (XCI) on the phenotype of female FD patients remains unclear. In this study we aimed to determine pitfalls of XCI testing in a cohort of 35 female FD patients. XCI was assessed by two methylation-based and two allele-specific expression assays. The results correlated, although some variance among the four assays was observed. GLA transcript analyses identified crossing-over in three patients and detected mRNA instability in three out of four analyzed null alleles. AGAL activity correlated with XCI pattern and was not influenced by the mutation type or by reduced mRNA stability. Therefore, AGAL activity may help to detect crossing-over in patients with unstable GLA alleles. Tissue-specific XCI patterns in six patients, and age-related changes in two patients were observed. To avoid misinterpretation of XCI results in female FD patients we show that (i) a combination of several XCI assays generates more reliable results and minimizes possible biases; (ii) correlating XCI to GLA expression and AGAL activity facilitates identification of cross-over events; (iii) age- and tissue-related XCI specificities of XCI patterning should be considered.
Collapse
Affiliation(s)
- Martin Řeboun
- Diagnostic laboratories of IMD, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jakub Sikora
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Magner
- Diagnostic laboratories of IMD, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Department of Pediatrics, Thomayer University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Helena Wiederlechnerová
- Diagnostic laboratories of IMD, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Alena Černá
- Diagnostic laboratories of IMD, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Helena Poupětová
- Diagnostic laboratories of IMD, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Gabriela Štorkánova
- Diagnostic laboratories of IMD, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Gabriela Dostálová
- Second Department of Internal Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lubor Goláň
- Second Department of Internal Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Aleš Linhart
- Second Department of Internal Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Lenka Dvořáková
- Diagnostic laboratories of IMD, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
9
|
Juchniewicz P, Piotrowska E, Kloska A, Podlacha M, Mantej J, Węgrzyn G, Tukaj S, Jakóbkiewicz-Banecka J. Dosage Compensation in Females with X-Linked Metabolic Disorders. Int J Mol Sci 2021; 22:ijms22094514. [PMID: 33925963 PMCID: PMC8123450 DOI: 10.3390/ijms22094514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/19/2023] Open
Abstract
Through the use of new genomic and metabolomic technologies, our comprehension of the molecular and biochemical etiologies of genetic disorders is rapidly expanding, and so are insights into their varying phenotypes. Dosage compensation (lyonization) is an epigenetic mechanism that balances the expression of genes on heteromorphic sex chromosomes. Many studies in the literature have suggested a profound influence of this phenomenon on the manifestation of X-linked disorders in females. In this review, we summarize the clinical and genetic findings in female heterozygotic carriers of a pathogenic variant in one of ten selected X-linked genes whose defects result in metabolic disorders.
Collapse
Affiliation(s)
- Patrycja Juchniewicz
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| | - Ewa Piotrowska
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
- Correspondence: ; Tel.: +48-58-523-6040
| | - Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Jagoda Mantej
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Stefan Tukaj
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (M.P.); (J.M.); (G.W.); (S.T.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (P.J.); (A.K.); (J.J.-B.)
| |
Collapse
|
10
|
Pascual-Alonso A, Blasco L, Vidal S, Gean E, Rubio P, O'Callaghan M, Martínez-Monseny AF, Castells AA, Xiol C, Català V, Brandi N, Pacheco P, Ros C, Del Campo M, Guillén E, Ibañez S, Sánchez MJ, Lapunzina P, Nevado J, Santos F, Lloveras E, Ortigoza-Escobar JD, Tejada MI, Maortua H, Martínez F, Orellana C, Roselló M, Mesas MA, Obón M, Plaja A, Fernández-Ramos JA, Tizzano E, Marín R, Peña-Segura JL, Alcántara S, Armstrong J. Molecular characterization of Spanish patients with MECP2 duplication syndrome. Clin Genet 2020; 97:610-620. [PMID: 32043567 DOI: 10.1111/cge.13718] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
Abstract
MECP2 duplication syndrome (MDS) is an X-linked neurodevelopmental disorder characterized by a severe to profound intellectual disability, early onset hypotonia and diverse psycho-motor and behavioural features. To date, fewer than 200 cases have been published. We report the clinical and molecular characterization of a Spanish MDS cohort that included 19 boys and 2 girls. Clinical suspicions were confirmed by array comparative genomic hybridization and multiplex ligation-dependent probe amplification (MLPA). Using, a custom in-house MLPA assay, we performed a thorough study of the minimal duplicated region, from which we concluded a complete duplication of both MECP2 and IRAK1 was necessary for a correct MDS diagnosis, as patients with partial MECP2 duplications lacked some typical clinical traits present in other MDS patients. In addition, the duplication location may be related to phenotypic severity. This observation may provide a new approach for genotype-phenotype correlations, and thus more personalized genetic counselling.
Collapse
Affiliation(s)
- Ainhoa Pascual-Alonso
- Fundación San Juan de Dios, Servicio de Medicina Genética y Molecular, Barcelona, Spain
| | - Laura Blasco
- Fundación San Juan de Dios, Servicio de Medicina Genética y Molecular, Barcelona, Spain
| | - Silvia Vidal
- Fundación San Juan de Dios, Servicio de Medicina Genética y Molecular, Barcelona, Spain
| | - Esther Gean
- Departamento de Medicina Genética y Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Patricia Rubio
- Departamento de Medicina Genética y Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Mar O'Callaghan
- Departamento de Neurología Pediátrica, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Antonio F Martínez-Monseny
- Departamento de Medicina Genética y Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Alba Aina Castells
- Fundación San Juan de Dios, Servicio de Medicina Genética y Molecular, Barcelona, Spain.,Neural Development Lab, Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Clara Xiol
- Fundación San Juan de Dios, Servicio de Medicina Genética y Molecular, Barcelona, Spain
| | - Vicenç Català
- Unitad de Biología Celular y Genética Médica, Departament of BCFyI, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Nuria Brandi
- Servicio de Medicina Genètica i Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Paola Pacheco
- Servicio de Medicina Genètica i Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Carlota Ros
- Servicio de Medicina Genètica i Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - Miguel Del Campo
- Pediatrics, Genetic Epidemiology, Hospital Valle Hebrón, Barcelona, Spain
| | - Encarna Guillén
- Unidad de Genética, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Salva Ibañez
- Unidad de Genética, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - María J Sánchez
- Unidad de Genética, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular, Hospital Universitario La Paz, Madrid, Spain.,CIBERER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular, Hospital Universitario La Paz, Madrid, Spain.,CIBERER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Santos
- Instituto de Genética Médica y Molecular, Hospital Universitario La Paz, Madrid, Spain
| | | | - Juan D Ortigoza-Escobar
- Departamento de Neurología Pediátrica, Hospital Universitario San Juan de Dios, Barcelona, Spain
| | - María I Tejada
- CIBERER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain.,Laboratorio de Genética Molecular, Servicio de Genética, Instituto de Investigación Sanitaria Biocruces, Hospital Universitario de Cruces, Barakaldo, Spain
| | - Hiart Maortua
- CIBERER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain.,Laboratorio de Genética Molecular, Servicio de Genética, Instituto de Investigación Sanitaria Biocruces, Hospital Universitario de Cruces, Barakaldo, Spain
| | - Francisco Martínez
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Carmen Orellana
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Mónica Roselló
- Unidad de Genética, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - María Obón
- Area de Genètica Clínica i Consell Genètic, Laboratoris ICS, Girona, Spain
| | - Alberto Plaja
- Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Eduardo Tizzano
- Area Genética Clínica y Molecular, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rosario Marín
- Hospital Universitario Puerta del Mar Unidad de Genética, Cádiz, Spain
| | - José L Peña-Segura
- Unidad de Neuropediatría, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Soledad Alcántara
- Neural Development Lab, Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | - Judith Armstrong
- Servicio de Medicina Genètica i Molecular, Hospital Universitario San Juan de Dios, Barcelona, Spain.,CIBERER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
11
|
Heritability of skewed X-inactivation in female twins is tissue-specific and associated with age. Nat Commun 2019; 10:5339. [PMID: 31767861 PMCID: PMC6877649 DOI: 10.1038/s41467-019-13340-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Female somatic X-chromosome inactivation (XCI) balances the X-linked transcriptional dosages between the sexes. Skewed XCI toward one parental X has been observed in several complex human traits, but the extent to which genetics and environment influence skewed XCI is largely unexplored. To address this, we quantify XCI-skew in multiple tissues and immune cell types in a twin cohort. Within an individual, XCI-skew differs between blood, fat and skin tissue, but is shared across immune cell types. XCI skew increases with age in blood, but not other tissues, and is associated with smoking. XCI-skew is increased in twins with Rheumatoid Arthritis compared to unaffected identical co-twins. XCI-skew is heritable in blood of females >55 years old (h2 = 0.34), but not in younger individuals or other tissues. This results in a Gene x Age interaction that shifts the functional dosage of all X-linked heterozygous loci in a tissue-restricted manner. Skewing of X chromosome inactivation (XCI) occurs when the silencing of one parental X chromosome is non-random. Here, Zito et al. report XCI patterns in lymphoblastoid cell lines, blood, subcutaneous adipose tissue samples and skin samples of monozygotic and dizygotic twins and find XCI skew to associate with tissue and age.
Collapse
|
12
|
Xiol C, Vidal S, Pascual-Alonso A, Blasco L, Brandi N, Pacheco P, Gerotina E, O'Callaghan M, Pineda M, Armstrong J. X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients. Sci Rep 2019; 9:11983. [PMID: 31427717 PMCID: PMC6700087 DOI: 10.1038/s41598-019-48385-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern.
Collapse
Affiliation(s)
- Clara Xiol
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Silvia Vidal
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ainhoa Pascual-Alonso
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Laura Blasco
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Núria Brandi
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Paola Pacheco
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Edgar Gerotina
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mar O'Callaghan
- Neurology Service, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mercè Pineda
- Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Judith Armstrong
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain. .,Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain. .,CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
13
|
Vidal S, Pascual-Alonso A, Rabaza-Gairí M, Gerotina E, Brandi N, Pacheco P, Xiol C, Pineda M, Armstrong J. Characterization of large deletions of the MECP2 gene in Rett syndrome patients by gene dosage analysis. Mol Genet Genomic Med 2019; 7:e793. [PMID: 31206249 PMCID: PMC6687651 DOI: 10.1002/mgg3.793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/24/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background Rett syndrome (RTT) is a developmental disorder with an early onset and X‐linked dominant inheritance pattern. It is first recognized in infancy and is seen almost always in girls, but it may be seen in boys on rare occasions. Typical RTT is caused by de novo mutations of the gene MECP2 (OMIM*300005), and atypical forms of RTT can be caused by mutations of the CDKL5 (OMIM*300203) and FOXG1 (OMIM*164874) genes. Methods Approximately 5% of the mutations detected in MECP2 are large rearrangements that range from exons to the entire gene. Here, we have characterized the deletions detected by multiplex ligation‐dependent probe amplification (MLPA) in the gene MECP2 of 21 RTT patients. Breakpoints were delineated by DNA‐qPCR until the amplification of the deleted allele by long‐PCR was possible. Results This methodology enabled us to characterize deletions ranging from 1,235 bp to 85 kb, confirming the partial or total deletion of the MECP2 gene in all these patients. Additionally, our cases support the evidence claiming that most of these breakpoints occur in some restricted regions of the MECP2 gene. Conclusion These molecular data together with the clinical information enable us to propose a genotype–phenotype correlation, which is essential for providing genetic counseling.
Collapse
Affiliation(s)
- Silvia Vidal
- Sant Joan de Déu Research Foundation, Barcelona, Spain.,Sant Joan de Déu Research Institute (IRSJD), Hospital Sant Joan de Déu, Esplugues de Lobregat (Barcelona), Spain
| | - Ainhoa Pascual-Alonso
- Sant Joan de Déu Research Foundation, Barcelona, Spain.,Sant Joan de Déu Research Institute (IRSJD), Hospital Sant Joan de Déu, Esplugues de Lobregat (Barcelona), Spain
| | - Marc Rabaza-Gairí
- Sant Joan de Déu Research Foundation, Barcelona, Spain.,Sant Joan de Déu Research Institute (IRSJD), Hospital Sant Joan de Déu, Esplugues de Lobregat (Barcelona), Spain
| | - Edgar Gerotina
- Sant Joan de Déu Research Foundation, Barcelona, Spain.,Sant Joan de Déu Research Institute (IRSJD), Hospital Sant Joan de Déu, Esplugues de Lobregat (Barcelona), Spain
| | - Nuria Brandi
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Paola Pacheco
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Clara Xiol
- Sant Joan de Déu Research Foundation, Barcelona, Spain.,Sant Joan de Déu Research Institute (IRSJD), Hospital Sant Joan de Déu, Esplugues de Lobregat (Barcelona), Spain
| | - Mercè Pineda
- Sant Joan de Déu Research Foundation, Barcelona, Spain
| | | | - Judith Armstrong
- Sant Joan de Déu Research Institute (IRSJD), Hospital Sant Joan de Déu, Esplugues de Lobregat (Barcelona), Spain.,Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain.,CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Alexandrou A, Papaevripidou I, Alexandrou IM, Theodosiou A, Evangelidou P, Kousoulidou L, Tanteles G, Christophidou‐Anastasiadou V, Sismani C. De novo mosaic MECP2 mutation in a female with Rett syndrome. Clin Case Rep 2019; 7:366-370. [PMID: 30847208 PMCID: PMC6389470 DOI: 10.1002/ccr3.1985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
We describe a female with Rett syndrome carrying a rare de novo mosaic nonsense mutation on MECP2 gene, with random X-chromosome inactivation. Rett syndrome severity in females depends on mosaicism level and tissue specificity, X-chromosome inactivation, epigenetics and environment. Rett syndrome should be considered in both males and females.
Collapse
Affiliation(s)
- Angelos Alexandrou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Ioannis Papaevripidou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Ioanna Maria Alexandrou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Athina Theodosiou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Paola Evangelidou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Ludmila Kousoulidou
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - George Tanteles
- Department of Clinical GeneticsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Violetta Christophidou‐Anastasiadou
- Department of Clinical GeneticsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
- Archbishop Makarios III Medical CentreNicosiaCyprus
| | - Carolina Sismani
- Department of Cytogenetics and GenomicsThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
- The Cyprus School of Molecular MedicineNicosiaCyprus
| |
Collapse
|
15
|
Kousoulidou L, Alexandrou A, Papaevripidou I, Evangelidou P, Tanteles G, Anastasiadou VC, Sismani C. Two unrelated individuals carrying rare mosaic deletions in TCF4 gene. Am J Med Genet A 2018; 179:134-138. [PMID: 30450687 PMCID: PMC6587998 DOI: 10.1002/ajmg.a.60692] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Ludmila Kousoulidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Angelos Alexandrou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioannis Papaevripidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Paola Evangelidou
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George Tanteles
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Violetta C Anastasiadou
- Department of Clinical Genetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Department of Clinical Genetics, Archbishop Makarios III Medical Centre, Nicosia, Cyprus
| | - Carolina Sismani
- Department of Cytogenetics and Genomics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
16
|
de Hoon B, Splinter E, Eussen B, Douben JCW, Rentmeester E, van de Heijning M, Laven JSE, de Klein JEMM, Liebelt J, Gribnau J. X chromosome inactivation in a female carrier of a 1.28 Mb deletion encompassing the human X inactivation centre. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0359. [PMID: 28947658 PMCID: PMC5627161 DOI: 10.1098/rstb.2016.0359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2017] [Indexed: 11/12/2022] Open
Abstract
X chromosome inactivation (XCI) is a mechanism specifically initiated in female cells to silence one X chromosome, thereby equalizing the dose of X-linked gene products between male and female cells. XCI is regulated by a locus on the X chromosome termed the X-inactivation centre (XIC). Located within the XIC is XIST, which acts as a master regulator of XCI. During XCI, XIST is upregulated on the inactive X chromosome and chromosome-wide cis spreading of XIST leads to inactivation. In mouse, the Xic comprises Xist and all cis-regulatory elements and genes involved in Xist regulation. The activity of the XIC is regulated by trans-acting factors located elsewhere in the genome: X-encoded XCI activators positively regulating XCI, and autosomally encoded XCI inhibitors providing the threshold for XCI initiation. Whether human XCI is regulated through a similar mechanism, involving trans-regulatory factors acting on the XIC has remained elusive so far. Here, we describe a female individual with ovarian dysgenesis and a small X chromosomal deletion of the XIC. SNP-array and targeted locus amplification (TLA) analysis defined the deletion to a 1.28 megabase region, including XIST and all elements and genes that perform cis-regulatory functions in mouse XCI. Cells carrying this deletion still initiate XCI on the unaffected X chromosome, indicating that XCI can be initiated in the presence of only one XIC. Our results indicate that the trans-acting factors required for XCI initiation are located outside the deletion, providing evidence that the regulatory mechanisms of XCI are conserved between mouse and human. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.
Collapse
Affiliation(s)
- B de Hoon
- Department of Developmental Biology, Rotterdam, The Netherlands
| | | | - B Eussen
- Department of Clinical Genetics, Rotterdam, The Netherlands
| | - J C W Douben
- Department of Clinical Genetics, Rotterdam, The Netherlands
| | - E Rentmeester
- Department of Developmental Biology, Rotterdam, The Netherlands
| | | | - J S E Laven
- Department of Obstetrics and Gynaecology, Erasmus MC, Rotterdam, The Netherlands
| | | | - J Liebelt
- Division of Genetics and Molecular Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - J Gribnau
- Department of Developmental Biology, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Variable X-chromosome inactivation and enlargement of pericentral glutamine synthetase zones in the liver of heterozygous females with OTC deficiency. Virchows Arch 2018; 472:1029-1039. [PMID: 29623395 DOI: 10.1007/s00428-018-2345-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/27/2018] [Accepted: 03/23/2018] [Indexed: 01/28/2023]
Abstract
Ornithine transcarbamylase (OTC) deficiency is an X-linked disorder that causes recurrent and life-threatening episodes of hyperammonemia. The clinical picture in heterozygous females is highly diverse and derives from the genotype and the degree of inactivation of the mutated X chromosome in hepatocytes. Here, we describe molecular genetic, biochemical, and histopathological findings in the livers explanted from two female patients with late-onset OTC deficiency. Analysis of X-inactivation ratios by DNA methylation-based assays showed remarkable intra-organ variation ranging from 46:54 to 82:18 (average 70:30, n = 37), in favor of the active X chromosome carrying the mutation c.583G>C (p.G195R), in the first patient and from 75:25 to 90:10 (average 82:18, n = 20) in favor of the active X chromosome carrying the splicing mutation c.663+1G>A in the second patient. The X-inactivation ratios in liver samples correlated highly with the proportions of OTC-positive hepatocytes calculated from high-resolution image analyses of the immunohistochemically detected OTC in frozen sections that was performed on total area > 5 cm2. X-inactivation ratios in blood in both female patients corresponded to the lower limit of the liver values. Our data indicate that the proportion of about 20-30% of hepatocytes expressing the functional OTC protein is not sufficient to maintain metabolic stability. X-inactivation ratios assessed in liver biopsies taken from heterozygous females with X-linked disorders should not be considered representative of the whole liver.
Collapse
|
18
|
Sheikh TI, Harripaul R, Ayub M, Vincent JB. MeCP2 AT-Hook1 mutations in patients with intellectual disability and/or schizophrenia disrupt DNA binding and chromatin compaction in vitro. Hum Mutat 2018; 39:717-728. [DOI: 10.1002/humu.23409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 02/07/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Taimoor I. Sheikh
- Molecular Neuropsychiatry & Development (MiND) Lab; Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Institute of Medical Science; University of Toronto; Toronto Ontario Canada
| | - Ricardo Harripaul
- Molecular Neuropsychiatry & Development (MiND) Lab; Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Institute of Medical Science; University of Toronto; Toronto Ontario Canada
| | - Muhammad Ayub
- Lahore Institute of Research & Development; Lahore Pakistan
- Department of Psychiatry; Queen's University; Kingston Ontario Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab; Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Institute of Medical Science; University of Toronto; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
19
|
Development of ultra-deep targeted RNA sequencing for analyzing X-chromosome inactivation in female Dent disease. J Hum Genet 2018; 63:589-595. [DOI: 10.1038/s10038-018-0415-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 11/08/2022]
|
20
|
Boers R, Boers J, de Hoon B, Kockx C, Ozgur Z, Molijn A, van IJcken W, Laven J, Gribnau J. Genome-wide DNA methylation profiling using the methylation-dependent restriction enzyme LpnPI. Genome Res 2017; 28:88-99. [PMID: 29222086 PMCID: PMC5749185 DOI: 10.1101/gr.222885.117] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/27/2017] [Indexed: 02/03/2023]
Abstract
DNA methylation is a well-known epigenetic modification that plays a crucial role in gene regulation, but genome-wide analysis of DNA methylation remains technically challenging and costly. DNA methylation-dependent restriction enzymes can be used to restrict CpG methylation analysis to methylated regions of the genome only, which significantly reduces the required sequencing depth and simplifies subsequent bioinformatics analysis. Unfortunately, this approach has been hampered by complete digestion of DNA in CpG methylation-dense regions, resulting in fragments that are too small for accurate mapping. Here, we show that the activity of DNA methylation-dependent enzyme, LpnPI, is blocked by a fragment size smaller than 32 bp. This unique property prevents complete digestion of methylation-dense DNA and allows accurate genome-wide analysis of CpG methylation at single-nucleotide resolution. Methylated DNA sequencing (MeD-seq) of LpnPI digested fragments revealed highly reproducible genome-wide CpG methylation profiles for >50% of all potentially methylated CpGs, at a sequencing depth less than one-tenth required for whole-genome bisulfite sequencing (WGBS). MeD-seq identified a high number of patient and tissue-specific differential methylated regions (DMRs) and revealed that patient-specific DMRs observed in both blood and buccal samples predict DNA methylation in other tissues and organs. We also observed highly variable DNA methylation at gene promoters on the inactive X Chromosome, indicating tissue-specific and interpatient-specific escape of X Chromosome inactivation. These findings highlight the potential of MeD-seq for high-throughput epigenetic profiling.
Collapse
Affiliation(s)
- Ruben Boers
- Department of Developmental Biology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,Department of Obstetrics and Gynaecology, Erasmus MC, 3015 CE Rotterdam, the Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,Delft Diagnostic Laboratories, 2288 ER, Rijswijk, the Netherlands
| | - Bas de Hoon
- Department of Developmental Biology, Erasmus MC, 3015 CN Rotterdam, the Netherlands.,Department of Obstetrics and Gynaecology, Erasmus MC, 3015 CE Rotterdam, the Netherlands
| | - Christel Kockx
- Centre for Biomics, Erasmus MC, 3015 CE Rotterdam, the Netherlands
| | - Zeliha Ozgur
- Centre for Biomics, Erasmus MC, 3015 CE Rotterdam, the Netherlands
| | - Anco Molijn
- Delft Diagnostic Laboratories, 2288 ER, Rijswijk, the Netherlands
| | | | - Joop Laven
- Department of Obstetrics and Gynaecology, Erasmus MC, 3015 CE Rotterdam, the Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, 3015 CN Rotterdam, the Netherlands
| |
Collapse
|
21
|
Krijt J, Sokolová J, Ješina P, Dvořáková L, Řeboun M, Brennerová K, Mistrík M, Zeman J, Honzík T, Kožich V. Activity of the liver enzyme ornithine carbamoyltransferase (OTC) in blood: LC-MS/MS assay for non-invasive diagnosis of ornithine carbamoyltransferase deficiency. ACTA ACUST UNITED AC 2017; 55:1168-1177. [DOI: 10.1515/cclm-2016-0715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/30/2016] [Indexed: 02/07/2023]
Abstract
Abstract
Background:
Liver enzymes are released from hepatocytes into circulation and their activity can be measured in the blood. We examined whether the plasma activity of the liver enzyme ornithine carbamoyltransferase, determined by a novel liquid chromatography-mass spectrometry (LC-MS/MS) assay, could be utilized for the detection of OTC deficiency (OTCD), an X-linked inborn error of the urea cycle.
Methods:
The plasma ornithine carbamoyltransferase (OTC) activity was assayed in the reverse reaction using isotopically labeled citrulline-d4 as a substrate and by determination of the product, ornithine-d4, by LC-MS/MS analysis.
Results:
The plasma OTC activity in the controls was in the range of 111–658 pkat/L (n=49, median 272 pkat/L), and the activity increased linearly with serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in patients with hepatopathy. The OTC activity was subsequently determined in 32 individuals carrying mutations in the OTC gene, and OTC/ALT and OTC/AST ratios were calculated to account for the degree of hepatopathy, which is a common finding in OTCD. The OTC/ALT ratio enabled clear differentiation of OTCD hemizygotes (n=11, range 0–69×10−6) from controls (504–3440×10−6). This ratio also enabled the detection of 11 of 12 symptomatic heterozygotes (range 38–794×10−6), while this marker did not allow for reliable differentiation of asymptomatic heterozygotes (n=9) from controls.
Conclusions:
LC-MS/MS assay of plasma OTC activity enabled the detection of all hemizygous and the majority of symptomatic heterozygous OTCD patients in the tested cohort. This study demonstrates that non-invasive assay of enzymes expressed predominantly in the liver could be used as an alternative approach for diagnosing inborn errors of metabolism.
Collapse
|
22
|
Have humans lost control: The elusive X-controlling element. Semin Cell Dev Biol 2016; 56:71-77. [DOI: 10.1016/j.semcdb.2016.01.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 02/01/2023]
|
23
|
Payer B. Developmental regulation of X-chromosome inactivation. Semin Cell Dev Biol 2016; 56:88-99. [PMID: 27112543 DOI: 10.1016/j.semcdb.2016.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 12/01/2022]
Abstract
With the emergence of sex-determination by sex chromosomes, which differ in composition and number between males and females, appeared the need to equalize X-chromosomal gene dosage between the sexes. Mammals have devised the strategy of X-chromosome inactivation (XCI), in which one of the two X-chromosomes is rendered transcriptionally silent in females. In the mouse, the best-studied model organism with respect to XCI, this inactivation process occurs in different forms, imprinted and random, interspersed by periods of X-chromosome reactivation (XCR), which is needed to switch between the different modes of XCI. In this review, I describe the recent advances with respect to the developmental control of XCI and XCR and in particular their link to differentiation and pluripotency. Furthermore, I review the mechanisms, which influence the timing and choice, with which one of the two X-chromosomes is chosen for inactivation during random XCI. This has an impact on how females are mosaics with regard to which X-chromosome is active in different cells, which has implications on the severity of diseases caused by X-linked mutations.
Collapse
Affiliation(s)
- Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology and Universitat Pompeu Fabra (UPF), Dr. Aiguader, 88, Barcelona 08003, Spain.
| |
Collapse
|