1
|
Ren X, Yang N, Wu N, Xu X, Chen W, Zhang L, Li Y, Du RQ, Dong S, Zhao S, Chen S, Jiang LP, Wang L, Zhang J, Wu Z, Jin L, Qiu G, Lupski JR, Shi J, Zhang F, Liu P. Increased TBX6 gene dosages induce congenital cervical vertebral malformations in humans and mice. J Med Genet 2020; 57:371-379. [PMID: 31888956 PMCID: PMC9179029 DOI: 10.1136/jmedgenet-2019-106333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Congenital vertebral malformations (CVMs) manifest with abnormal vertebral morphology. Genetic factors have been implicated in CVM pathogenesis, but the underlying pathogenic mechanisms remain unclear in most subjects. We previously reported that the human 16p11.2 BP4-BP5 deletion and its associated TBX6 dosage reduction caused CVMs. We aim to investigate the reciprocal 16p11.2 BP4-BP5 duplication and its potential genetic contributions to CVMs. METHODS AND RESULTS Patients who were found to carry the 16p11.2 BP4-BP5 duplication by chromosomal microarray analysis were retrospectively analysed for their vertebral phenotypes. The spinal assessments in seven duplication carriers showed that four (57%) presented characteristics of CVMs, supporting the contention that increased TBX6 dosage could induce CVMs. For further in vivo functional investigation in a model organism, we conducted genome editing of the upstream regulatory region of mouse Tbx6 using CRISPR-Cas9 and obtained three mouse mutant alleles (Tbx6up1 to Tbx6up3 ) with elevated expression levels of Tbx6. Luciferase reporter assays showed that the Tbx6up3 allele presented with the 160% expression level of that observed in the reference (+) allele. Therefore, the homozygous Tbx6up3/up3 mice could functionally mimic the TBX6 dosage of heterozygous carriers of 16p11.2 BP4-BP5 duplication (approximately 150%, ie, 3/2 gene dosage of the normal level). Remarkably, 60% of the Tbx6up3/up3 mice manifested with CVMs. Consistent with our observations in humans, the CVMs induced by increased Tbx6 dosage in mice mainly affected the cervical vertebrae. CONCLUSION Our findings in humans and mice consistently support that an increased TBX6 dosage contributes to the risk of developing cervical CVMs.
Collapse
Affiliation(s)
- Xiaojun Ren
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Nan Yang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ximing Xu
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Weisheng Chen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingping Li
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Ren-Qian Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Shuangshuang Dong
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuxia Chen
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Li-Ping Jiang
- State key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Li Jin
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Jiangang Shi
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, NHC Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), State Key Laboratory of Genetic Engineering at School of Life Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| |
Collapse
|
2
|
50 Years Ago in TheJournalofPediatrics: "CatEye Syndrome" and the Unraveling of the 22q.11.2 Genomic Region. J Pediatr 2020; 219:88. [PMID: 32204809 DOI: 10.1016/j.jpeds.2019.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Gambin T, Yuan B, Bi W, Liu P, Rosenfeld JA, Coban-Akdemir Z, Pursley AN, Nagamani SCS, Marom R, Golla S, Dengle L, Petrie HG, Matalon R, Emrick L, Proud MB, Treadwell-Deering D, Chao HT, Koillinen H, Brown C, Urraca N, Mostafavi R, Bernes S, Roeder ER, Nugent KM, Bader PI, Bellus G, Cummings M, Northrup H, Ashfaq M, Westman R, Wildin R, Beck AE, Immken L, Elton L, Varghese S, Buchanan E, Faivre L, Lefebvre M, Schaaf CP, Walkiewicz M, Yang Y, Kang SHL, Lalani SR, Bacino CA, Beaudet AL, Breman AM, Smith JL, Cheung SW, Lupski JR, Patel A, Shaw CA, Stankiewicz P. Identification of novel candidate disease genes from de novo exonic copy number variants. Genome Med 2017; 9:83. [PMID: 28934986 PMCID: PMC5607840 DOI: 10.1186/s13073-017-0472-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Exon-targeted microarrays can detect small (<1000 bp) intragenic copy number variants (CNVs), including those that affect only a single exon. This genome-wide high-sensitivity approach increases the molecular diagnosis for conditions with known disease-associated genes, enables better genotype-phenotype correlations, and facilitates variant allele detection allowing novel disease gene discovery. METHODS We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from 2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the genes involved were evaluated for a potential disease association. RESULTS In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males, and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 single-gene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO, PSMD12, TANGO2, and TRIP12), novel candidate disease genes (ARGLU1 and STK3), and further confirmation of disease association for two recently proposed disease genes (MEIS2 and PTCHD1). Notably, exon-targeted CMA detected several pathogenic single-exon CNVs missed by clinical WES analyses. CONCLUSIONS Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease genes by genome-wide assay.
Collapse
Affiliation(s)
- Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, 00-665, Poland.,Department of Medical Genetics, Institute of Mother and Child, Warsaw, 01-211, Poland
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Amber N Pursley
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Sailaja Golla
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lauren Dengle
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Reuben Matalon
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lisa Emrick
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Monica B Proud
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diane Treadwell-Deering
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent Psychiatry Division, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hsiao-Tuan Chao
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Hannele Koillinen
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, 00029, Finland
| | - Chester Brown
- Genetics Division, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38105, USA.,Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | - Nora Urraca
- Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | | | | | - Elizabeth R Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Kimberly M Nugent
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Patricia I Bader
- Northeast Indiana Genetic Counseling Center, Wayne, IN, 46804, USA
| | - Gary Bellus
- Section of Clinical Genetics & Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Michael Cummings
- Department of Psychiatry Erie County Medical Center, Buffalo, NY, 14215, USA
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Myla Ashfaq
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Robert Wildin
- St. Luke's Children's Hospital, Boise, ID, 83702, USA.,The National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Anita E Beck
- Seattle Children's Hospital, Seattle, WA, 98105, USA.,Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, 98195, USA
| | | | - Lindsay Elton
- Child Neurology Consultants of Austin, Austin, TX, 78731, USA
| | - Shaun Varghese
- THINK Neurology for Kids/Children's Memorial Hermann Hospital, The Woodlands, TX, 77380, USA
| | - Edward Buchanan
- Division of Plastic Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Mathilde Lefebvre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Sung-Hae L Kang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Janice L Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA. .,Baylor Genetics, Houston, TX, 77021, USA.
| |
Collapse
|
4
|
Roa BB, Pulliam J, Eng CM, Cheung SW. Evolution of prenatal genetics: from point mutation testing to chromosomal microarray analysis. Expert Rev Mol Diagn 2014; 5:883-92. [PMID: 16255630 DOI: 10.1586/14737159.5.6.883] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Molecular genetic testing involves DNA analysis using various methods for the purpose of diagnosing genetic disorders. In the prenatal DNA diagnostic setting, fetal DNA is usually tested for a specific single-gene disorder for which the fetal risk is 25% or more. In contrast, cytogenetic testing is often used to detect fetal chromosomal abnormalities in cases that involve a wider range of indications. Classic cytogenetic and DNA-based testing methods provide a range of aberrations detected with different levels of genomic resolution. More recently developed molecular cytogenetic methods provide powerful tools to bridge the technical divide between these related areas. One such hybrid method is microarray-based comparative genomic hybridization. Chromosomal microarray analysis has been applied to clinical testing for unbalanced gains or losses of genomic regions associated with genetic disorders. This technology is poised to have a substantial impact on clinical genetics, including prenatal genetic testing.
Collapse
Affiliation(s)
- Benjamin B Roa
- Department of Molecular & Human Genetics, Baylor College of Medicine, NAB2015, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
5
|
Functional performance of aCGH design for clinical cytogenetics. Comput Biol Med 2013; 43:775-85. [PMID: 23668354 DOI: 10.1016/j.compbiomed.2013.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/03/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022]
Abstract
Array-comparative genomic hybridization (aCGH) technology enables rapid, high-resolution analysis of genomic rearrangements. With the use of it, genome copy number changes and rearrangement breakpoints can be detected and analyzed at resolutions down to a few kilobases. An exon array CGH approach proposed recently accurately measures copy-number changes of individual exons in the human genome. The crucial and highly non-trivial starting task is the design of an array, i.e. the choice of appropriate (multi)set of oligos. The success of the whole high-level analysis depends on the quality of the design. Also, the comparison of several alternative designs of array CGH constitutes an important step in development of new diagnostic chip. In this paper, we deal with these two often neglected issues. We propose a new approach to measure the quality of array CGH designs. Our measures reflect the robustness of rearrangements detection to the noise (mostly experimental measurement error). The method is parametrized by the segmentation algorithm used to identify aberrations. We implemented the efficient Monte Carlo method for testing noise robustness within DNAcopy procedure. Developed framework has been applied to evaluation of functional quality of several optimized array designs.
Collapse
|
6
|
Incidental copy-number variants identified by routine genome testing in a clinical population. Genet Med 2012; 15:45-54. [PMID: 22878507 DOI: 10.1038/gim.2012.95] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Mutational load of susceptibility variants has not been studied on a genomic scale in a clinical population, nor has the potential to identify these mutations as incidental findings during clinical testing been systematically ascertained. METHODS Array comparative genomic hybridization, a method for genome-wide detection of DNA copy-number variants, was performed clinically on DNA from 9,005 individuals. Copy-number variants encompassing or disrupting single genes were identified and analyzed for their potential to confer predisposition to dominant, adult-onset disease. Multigene copy-number variants affecting dominant, adult-onset cancer syndrome genes were also assessed. RESULTS In our cohort, 83 single-gene copy-number variants affected 40 unique genes associated with dominant, adult-onset disorders and unrelated to the patients' referring diagnoses (i.e., incidental) were found. Fourteen of these copy-number variants are likely disease-predisposing, 25 are likely benign, and 44 are of unknown clinical consequence. When incidental copy-number variants spanning up to 20 genes were considered, 27 copy-number variants affected 17 unique genes associated with dominant, adult-onset cancer predisposition. CONCLUSION Copy-number variants potentially conferring susceptibility to adult-onset disease can be identified as incidental findings during routine genome-wide testing. Some of these mutations may be medically actionable, enabling disease surveillance or prevention; however, most incidentally observed single-gene copy-number variants are currently of unclear significance to the patient.
Collapse
|
7
|
Stewart LR, Hall AL, Kang SHL, Shaw CA, Beaudet AL. High frequency of known copy number abnormalities and maternal duplication 15q11-q13 in patients with combined schizophrenia and epilepsy. BMC MEDICAL GENETICS 2011; 12:154. [PMID: 22118685 PMCID: PMC3239290 DOI: 10.1186/1471-2350-12-154] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 11/25/2011] [Indexed: 03/01/2023]
Abstract
Background Many copy number variants (CNVs) are documented to be associated with neuropsychiatric disorders, including intellectual disability, autism, epilepsy, schizophrenia, and bipolar disorder. Chromosomal deletions of 1q21.1, 3q29, 15q13.3, 22q11.2, and NRXN1 and duplications of 15q11-q13 (maternal), 16p11, and 16p13.3 have the strongest association with schizophrenia. We hypothesized that cases with both schizophrenia and epilepsy would have a higher frequency of disease-associated CNVs and would represent an enriched sample for detection of other mutations associated with schizophrenia. Methods We used array comparative genomic hybridization (CGH) to analyze 235 individuals with both schizophrenia and epilepsy, 80 with bipolar disorder and epilepsy, and 191 controls. Results We detected 10 schizophrenia plus epilepsy cases in 235 (4.3%) with the above mentioned CNVs compared to 0 in 191 controls (p = 0.003). Other likely pathological findings in schizophrenia plus epilepsy cases included 1 deletion 16p13 and 1 duplication 7q11.23 for a total of 12/235 (5.1%) while a possibly pathogenic duplication of 22q11.2 was found in one control for a total of 1 in 191 (0.5%) controls (p = 0.008). The rate of abnormality in the schizophrenia plus epilepsy of 10/235 for the more definite CNVs compares to a rate of 75/7336 for these same CNVs in a series of unselected schizophrenia cases (p = 0.0004). Conclusion We found a statistically significant increase in the frequency of CNVs known or likely to be associated with schizophrenia in individuals with both schizophrenia and epilepsy compared to controls. We found an overall 5.1% detection rate of likely pathological findings which is the highest frequency of such findings in a series of schizophrenia patients to date. This evidence suggests that the frequency of disease-associated CNVs in patients with both schizophrenia and epilepsy is significantly higher than for unselected schizophrenia.
Collapse
Affiliation(s)
- Larissa R Stewart
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030 USA.
| | | | | | | | | |
Collapse
|
8
|
Liu P, Lacaria M, Zhang F, Withers M, Hastings P, Lupski J. Frequency of nonallelic homologous recombination is correlated with length of homology: evidence that ectopic synapsis precedes ectopic crossing-over. Am J Hum Genet 2011; 89:580-8. [PMID: 21981782 DOI: 10.1016/j.ajhg.2011.09.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/14/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022] Open
Abstract
Genomic disorders constitute a class of diseases that are associated with DNA rearrangements resulting from region-specific genome instability, that is, genome architecture incites genome instability. Nonallelic homologous recombination (NAHR) or crossing-over in meiosis between sequences that are not in allelic positions (i.e., paralogous sequences) can result in recurrent deletions or duplications causing genomic disorders. Previous studies of NAHR have focused on description of the phenomenon, but it remains unclear how NAHR occurs during meiosis and what factors determine its frequency. Here we assembled two patient cohorts with reciprocal genomic disorders; deletion associated Smith-Magenis syndrome and duplication associated Potocki-Lupski syndrome. By assessing the full spectrum of rearrangement types from the two cohorts, we find that complex rearrangements (those with more than one breakpoint) are more prevalent in copy-number gains (17.7%) than in copy-number losses (2.3%); an observation that supports a role for replicative mechanisms in complex rearrangement formation. Interestingly, for NAHR-mediated recurrent rearrangements, we show that crossover frequency is positively associated with the flanking low-copy repeat (LCR) length and inversely influenced by the inter-LCR distance. To explain this, we propose that the probability of ectopic chromosome synapsis increases with increased LCR length, and that ectopic synapsis is a necessary precursor to ectopic crossing-over.
Collapse
|
9
|
Erickson RP, Yatsenko SA, Larson K, Cheung SW. A Case of Agonadism, Skeletal Malformations, Bicuspid Aortic Valve, and Delayed Development with a 16p13.3 Duplication Including GNG13 and SOX8 Upstream Enhancers: Are Either, Both or Neither Involved in the Phenotype? Mol Syndromol 2010; 1:185-191. [PMID: 21373258 DOI: 10.1159/000321957] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2010] [Indexed: 12/20/2022] Open
Abstract
We report a female patient with delayed growth and development, skeletal and cardiac defects, and a male XY sex chromosome complement with early failure of gonad development. SRY sequencing was normal. Array comparative genome hybridization (CGH) analysis revealed a gain in copy number in the subtelomeric region of the short arm of chromosome 16, encompassing a region of approximately 560 kb in size including GNG13 which may be involved in ovarian development. The proximal breakpoint of the duplication maps about 18 kb upstream of SOX8 and involves evolutionary conserved regulatory elements. SOX8, like SOX9, is a transcription factor expressed in many tissues, including neural crest, nervous system, muscle, cartilage, adrenal gland, kidney, and testis. There was no increase in GNG13 or SOX8 expression in the patient's lymphoblastoid line. It is possible that an alteration of SOX8 or/and GNG13 expression is responsible for the multiple congenital anomalies and sex reversal in our patient.
Collapse
Affiliation(s)
- R P Erickson
- Department of Pediatrics, University of Arizona, Tucson, Ariz., USA
| | | | | | | |
Collapse
|
10
|
Boone PM, Bacino CA, Shaw CA, Eng PA, Hixson PM, Pursley AN, Kang SHL, Yang Y, Wiszniewska J, Nowakowska BA, del Gaudio D, Xia Z, Simpson-Patel G, Immken LL, Gibson JB, Tsai ACH, Bowers JA, Reimschisel TE, Schaaf CP, Potocki L, Scaglia F, Gambin T, Sykulski M, Bartnik M, Derwinska K, Wisniowiecka-Kowalnik B, Lalani SR, Probst FJ, Bi W, Beaudet AL, Patel A, Lupski JR, Cheung SW, Stankiewicz P. Detection of clinically relevant exonic copy-number changes by array CGH. Hum Mutat 2010; 31:1326-42. [PMID: 20848651 DOI: 10.1002/humu.21360] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/02/2010] [Indexed: 12/22/2022]
Abstract
Array comparative genomic hybridization (aCGH) is a powerful tool for the molecular elucidation and diagnosis of disorders resulting from genomic copy-number variation (CNV). However, intragenic deletions or duplications--those including genomic intervals of a size smaller than a gene--have remained beyond the detection limit of most clinical aCGH analyses. Increasing array probe number improves genomic resolution, although higher cost may limit implementation, and enhanced detection of benign CNV can confound clinical interpretation. We designed an array with exonic coverage of selected disease and candidate genes and used it clinically to identify losses or gains throughout the genome involving at least one exon and as small as several hundred base pairs in size. In some patients, the detected copy-number change occurs within a gene known to be causative of the observed clinical phenotype, demonstrating the ability of this array to detect clinically relevant CNVs with subkilobase resolution. In summary, we demonstrate the utility of a custom-designed, exon-targeted oligonucleotide array to detect intragenic copy-number changes in patients with various clinical phenotypes.
Collapse
Affiliation(s)
- Philip M Boone
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Komoike Y, Shimojima K, Liang JS, Fujii H, Maegaki Y, Osawa M, Fujii S, Higashinakagawa T, Yamamoto T. A functional analysis of GABARAP on 17p13.1 by knockdown zebrafish. J Hum Genet 2010; 55:155-62. [PMID: 20111057 DOI: 10.1038/jhg.2010.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Array-based comparative genomic hybridization identified a 2.3-Mb microdeletion of 17p13.2p13.1 in a boy presenting with moderate mental retardation, intractable epilepsy and dysmorphic features. This deletion region was overlapped with the previously proposed shortest region overlapped for microdeletion of 17p13.1 in patients with mental retardation, microcephaly, microretrognathia and abnormal magnetic resonance imaging (MRI) findings of cerebral white matter, in which at least 17 known genes are included. Among them, DLG4/PSD95, GPS2, GABARAP and KCTD11 have a function in neuronal development. Because of the functional importance, we paid attention to DLG4/PSD95 and GABARAP, and analyzed zebrafish in which the zebrafish homolog of human DLG4/PSD95 and GABARAP was knocked down and found that gabarap knockdown resulted in small head and hypoplastic mandible. This finding would be similar to the common findings of the patients with 17p13.1 deletions. Although there were no pathogenic mutations in DLG4/PSD95 or GABARAP in a cohort study with 142 patients with idiopathic developmental delay with/without epilepsy, further studies would be required for genes included in this region.
Collapse
Affiliation(s)
- Yuta Komoike
- International Research and Educational Institute for Integrated Medical Sciences (IREIIMS), Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Gambardella S, Ciabattoni E, Motta F, Stoico G, Gullotta F, Biancolella M, Nardone AM, Novelli A, Brunetti E, Bernardini L, Novelli G. Design, Construction and Validation of Targeted BAC Array-Based CGH Test for Detecting the Most Commons Chromosomal Abnormalities. GENOMICS INSIGHTS 2010; 3:9-21. [PMID: 26279624 PMCID: PMC4510597 DOI: 10.4137/gei.s3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We designed a targeted-array called GOLD (Gain or Loss Detection) Chip consisting of 900 FISH-mapped non-overlapping BAC clones spanning the whole genome to enhance the coverage of 66 unique human genomic regions involved in well known microdeletion/microduplication syndromes. The array has a 10 Mb backbone to guarantee the detection of the aneuploidies, and has an implemented resolution for telomeres, and for regions involved in common genomic diseases. In order to evaluate clinical diagnostic applicability of GOLDChip, analytical validity was carried-out via retrospective analysis of DNA isolated from a series of cytogenetically normal amniocytes and cytogenetically abnormal DNA obtained from cultured amniocytes, peripheral blood and/or cell lines. We recruited 47 DNA samples corresponding to pathologies with significant frequencies (Cri du Chat syndrome, Williams syndrome, Prader Willi/Angelman syndromes, Smith-Magenis syndrome, DiGeorge syndrome, Miller-Dieker syndrome, chromosomes 13, 18 and 21 trisomies). We set up an experimental protocol that allowed to identify chromosomal rearrangements in all the DNA samples analyzed. Our results provide evidence that our targeted BAC array can be used for the identification of the most common microdeletion syndromes and common aneuploidies.
Collapse
Affiliation(s)
- Stefano Gambardella
- Department of Biopathology, Tor Vergata University, Rome, Italy. ; Fondazione Livio Patrizi, Rome, Italy
| | | | | | - Giusy Stoico
- Technogenetics srl, Sesto San Giovanni, Milan, Italy
| | | | - Michela Biancolella
- Department of Biopathology, Tor Vergata University, Rome, Italy. ; Department of Preventive Medicine, Harlyne Norris Research Tower, University of Southern California, Los Angeles, CA
| | | | | | | | | | - Giuseppe Novelli
- Department of Biopathology, Tor Vergata University, Rome, Italy. ; Azienda Ospedaliera Universitaria Policlinico Tor Vergata, Rome, Italy. ; Fondazione Livio Patrizi, Rome, Italy
| |
Collapse
|
13
|
Van den Veyver IB, Patel A, Shaw CA, Pursley AN, Kang SHL, Simovich MJ, Ward PA, Darilek S, Johnson A, Neill SE, Bi W, White LD, Eng CM, Lupski JR, Cheung SW, Beaudet AL. Clinical use of array comparative genomic hybridization (aCGH) for prenatal diagnosis in 300 cases. Prenat Diagn 2009; 29:29-39. [PMID: 19012303 DOI: 10.1002/pd.2127] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To evaluate the use of array comparative genomic hybridization (aCGH) for prenatal diagnosis, including assessment of variants of uncertain significance, and the ability to detect abnormalities not detected by karyotype, and vice versa. METHODS Women undergoing amniocentesis or chorionic villus sampling (CVS) for karyotype were offered aCGH analysis using a targeted microarray. Parental samples were obtained concurrently to exclude maternal cell contamination and determine if copy number variants (CNVs) were de novo, or inherited prior to issuing a report. RESULTS We analyzed 300 samples, most were amniotic fluid (82%) and CVS (17%). The most common indications were advanced maternal age (N=123) and abnormal ultrasound findings (N=84). We detected 58 CNVs (19.3%). Of these, 40 (13.3%) were interpreted as likely benign, 15 (5.0%) were of defined pathological significance, while 3 (1.0%) were of uncertain clinical significance. For seven (approximately 2.3% or 1/43), aCGH contributed important new information. For two of these (1% or approximately 1/150), the abnormality would not have been detected without aCGH analysis. CONCLUSION Although aCGH-detected benign inherited variants in 13.3% of cases, these did not present major counseling difficulties, and the procedure is an improved diagnostic tool for prenatal detection of chromosomal abnormalities.
Collapse
|
14
|
Yatsenko SA, Shaw CA, Ou Z, Pursley AN, Patel A, Bi W, Cheung SW, Lupski JR, Chinault AC, Beaudet AL. Microarray-based comparative genomic hybridization using sex-matched reference DNA provides greater sensitivity for detection of sex chromosome imbalances than array-comparative genomic hybridization with sex-mismatched reference DNA. J Mol Diagn 2009; 11:226-37. [PMID: 19324990 DOI: 10.2353/jmoldx.2009.080064] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In array-comparative genomic hybridization (array-CGH) experiments, the measurement of DNA copy number of sex chromosomal regions depends on the sex of the patient and the reference DNAs used. We evaluated the ability of bacterial artificial chromosomes/P1-derived artificial and oligonucleotide array-CGH analyses to detect constitutional sex chromosome imbalances using sex-mismatched reference DNAs. Twenty-two samples with imbalances involving either the X or Y chromosome, including deletions, duplications, triplications, derivative or isodicentric chromosomes, and aneuploidy, were analyzed. Although concordant results were obtained for approximately one-half of the samples when using sex-mismatched and sex-matched reference DNAs, array-CGH analyses with sex-mismatched reference DNAs did not detect genomic imbalances that were detected using sex-matched reference DNAs in 6 of 22 patients. Small duplications and deletions of the X chromosome were most difficult to detect in female and male patients, respectively, when sex-mismatched reference DNAs were used. Sex-matched reference DNAs in array-CGH analyses provides optimal sensitivity and enables an automated statistical evaluation for the detection of sex chromosome imbalances when compared with an experimental design using sex-mismatched reference DNAs. Using sex-mismatched reference DNAs in array-CGH analyses may generate false-negative, false-positive, and ambiguous results for sex chromosome-specific probes, thus masking potential pathogenic genomic imbalances. Therefore, to optimize both detection of clinically relevant sex chromosome imbalances and ensure proper experimental performance, we suggest that alternative internal controls be developed and used instead of using sex-mismatched reference DNAs.
Collapse
Affiliation(s)
- Svetlana A Yatsenko
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gambin T, Walczak K. A new classification method using array Comparative Genome Hybridization data, based on the concept of Limited Jumping Emerging Patterns. BMC Bioinformatics 2009; 10 Suppl 1:S64. [PMID: 19208168 PMCID: PMC2648754 DOI: 10.1186/1471-2105-10-s1-s64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Classification using aCGH data is an important and insufficiently investigated problem in bioinformatics. In this paper we propose a new classification method of DNA copy number data based on the concept of limited Jumping Emerging Patterns. We present the comparison of our limJEPClassifier to SVM which is considered the most successful classifier in the case of high-throughput data. Results Our results revealed that the classification performance using limJEPClassifier is significantly higher than other methods. Furthermore, we show that application of the limited JEP's can significantly improve classification, when strongly unbalanced data are given. Conclusion Nowadays, aCGH has become a very important tool, used in research of cancer or genomic disorders. Therefore, improving classification of aCGH data can have a great impact on many medical issues such as the process of diagnosis and finding disease-related genes. The performed experiment shows that the application of Jumping Emerging Patterns can be effective in the classification of high-dimensional data, including these from aCGH experiments.
Collapse
Affiliation(s)
- Tomasz Gambin
- Faculty of Electronics and Information Technology of Warsaw University of Technology, Institute of Computer Science, Nowowiejska 15/19, Warsaw, 00-665, Poland.
| | | |
Collapse
|
16
|
Ou Z, Martin DM, Bedoyan JK, Cooper ML, Chinault AC, Stankiewicz P, Cheung SW. Branchiootorenal syndrome and oculoauriculovertebral spectrum features associated with duplication ofSIX1,SIX6, andOTX2resulting from a complex chromosomal rearrangement. Am J Med Genet A 2008; 146A:2480-9. [DOI: 10.1002/ajmg.a.32398] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Nowakowska B, Stankiewicz P, Obersztyn E, Ou Z, Li J, Chinault AC, Smyk M, Borg K, Mazurczak T, Cheung SW, Bocian E. Application of metaphase HR-CGH and targeted Chromosomal Microarray Analyses to genomic characterization of 116 patients with mental retardation and dysmorphic features. Am J Med Genet A 2008; 146A:2361-9. [PMID: 18698622 DOI: 10.1002/ajmg.a.32475] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in molecular cytogenetics enable identification of small chromosomal aberrations that are undetectable by routine chromosome banding in 5-20% of patients with mental retardation/developmental delay (MR/DD) and dysmorphism. The aim of this study was to compare the clinical usefulness of two molecular cytogenetic techniques, metaphase high-resolution comparative genomic hybridization (HR-CGH) and targeted array CGH, also known as Chromosomal Microarray Analysis (CMA). A total of 116 patients with unexplained mild to severe MR and other features suggestive of a chromosomal abnormality with apparently normal or balanced karyotypes were analyzed using HR-CGH (43 patients) and/or CMA (91 patients). Metaphase HR-CGH detected seven interstitial deletions (16.3%). Rare deletions of chromosomes 16 (16p11.2p12.1) and 8 (8q21.11q21.2) were identified. Targeted CMA revealed copy-number changes in 19 of 91 patients (20.8%), among which 11 (11.8%) were clinically relevant, 6 (6.5%) were interpreted as polymorphic variants and 2 (2.1%) were of uncertain significance. The changes varied in size from 0.5 to 12.9 Mb. In summary, our results show that metaphase HR-CGH and array CGH techniques have become important components in cytogenetic diagnostics, particularly for detecting cryptic constitutional chromosome imbalances in patients with MR, in whom the underlying genetic defect is unknown. Additionally, application of both methods together increased the detection rates of genomic imbalances in the tested groups.
Collapse
Affiliation(s)
- B Nowakowska
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Simovich MJ, Bland SD, Peiffer DA, Gunderson KL, Cheung SW, Yatsenko SA, Shinawi M. Delineation of the proximal 3q microdeletion syndrome. Am J Med Genet A 2008; 146A:1729-35. [PMID: 18536049 DOI: 10.1002/ajmg.a.32292] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Interstitial deletions of the proximal long arm of chromosome 3 are very rare and a defined clinical phenotype is not established yet. We report on the clinical, cytogenetic and molecular findings of a 20-month-old Hispanic male with a 2.5 Mb de novo deletion on q13.11q13.12. Up to now, this is the smallest deletion reported among patients with the proximal 3q microdeletion syndrome. The patient has distinct facial features including brachycephaly, broad and prominent forehead, flat nasal bridge, prominent ears, anteverted nose, tetralogy of Fallot, bilateral cryptorchidism, and peripheral skeletal abnormalities. To further delineate the proximal 3q deletion syndrome, the phenotype of our patient was compared with 10 other patients previously described. We found that ALCAM and CBLB are the only genes deleted in our patient and based on previously published data, we propose that the CBLB gene is responsible for the craniofacial phenotype in patients with deletions of proximal 3q region.
Collapse
Affiliation(s)
- Marcia J Simovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ou Z, Kang SHL, Shaw CA, Carmack CE, White LD, Patel A, Beaudet AL, Cheung SW, Chinault AC. Bacterial artificial chromosome-emulation oligonucleotide arrays for targeted clinical array-comparative genomic hybridization analyses. Genet Med 2008; 10:278-89. [PMID: 18414211 DOI: 10.1097/gim.0b013e31816b4420] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The goal of this work was to test the ability of oligonucleotide-based arrays to reproduce the results of focused bacterial artificial chromosome (BAC)-based arrays used clinically in comparative genomic hybridization experiments to detect constitutional copy number changes in genomic DNA. METHODS Custom oligonucleotide (oligo) arrays were designed using the Agilent Technologies platform to give high-resolution coverage of regions within the genome sequence coordinates of BAC/P1 artificial chromosome (PAC) clones that had already been validated for use in previous versions of clone arrays used in clinical practice. Standard array-comparative genomic hybridization experiments, including a simultaneous blind analysis of a set of clinical samples, were conducted on both array platforms to identify copy number differences between patient samples and normal reference controls. RESULTS Initial experiments successfully demonstrated the capacity of oligo arrays to emulate BAC data without the need for dye-reversal comparisons. Empirical data and computational analyses of oligo response and distribution from a pilot array were used to design an optimized array of 44,000 oligos (44K). This custom 44K oligo array consists of probes localized to the genomic positions of >1400 fluorescence in situ hybridization-verified BAC/PAC clones covering more than 140 regions implicated in genetic diseases, as well as all clinically relevant subtelomeric and pericentromeric regions. CONCLUSIONS Our data demonstrate that oligo-based arrays offer a valid alternative for focused BAC arrays. Furthermore, they have significant advantages, including better design flexibility, avoidance of repetitive sequences, manufacturing processes amenable to good manufacturing practice standards in the future, increased robustness because of an enhanced dynamic range (signal to background), and increased resolution that allows for detection of smaller regions of change.
Collapse
Affiliation(s)
- Zhishuo Ou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Powis Z, Kang SHL, Cooper ML, Patel A, Peiffer DA, Hawkins A, Heidenreich R, Gunderson KL, Cheung SW, Erickson RP. Mosaic tetrasomy 12p with triplication of 12p detected by array-based comparative genomic hybridization of peripheral blood DNA. Am J Med Genet A 2008; 143A:2910-5. [PMID: 18000900 DOI: 10.1002/ajmg.a.31959] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A patient whose dysmorphism at birth was not diagnostic for Pallister-Killian syndrome (PKS) was found to have mosaic tetrasomy 12p by an array-based comparative genomic hybridization of peripheral blood DNA. He was determined to be mosaic for 46,XY,trp(12)(p11.2 --> p13) in cultured skin fibroblasts. His appearance was typical for PKS at 4 months of age.
Collapse
Affiliation(s)
- Zöe Powis
- Section of Medical and Molecular Genetics, Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shinawi M, Shao L, Jeng LJB, Shaw CA, Patel A, Bacino C, Sutton VR, Belmont J, Cheung SW. Low-level mosaicism of trisomy 14: Phenotypic and molecular characterization. Am J Med Genet A 2008; 146A:1395-405. [DOI: 10.1002/ajmg.a.32287] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Gene dosage change of TPTE and BAGE2 and breakpoint analysis in Robertsonian Down syndrome. J Hum Genet 2007; 53:136-143. [DOI: 10.1007/s10038-007-0229-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 11/13/2007] [Indexed: 10/22/2022]
|
23
|
Simovich MJ, Yatsenko SA, Kang SHL, Cheung SW, Dudek ME, Pursley A, Ward PA, Patel A, Lupski JR. Prenatal diagnosis of a 9q34.3 microdeletion by array-CGH in a fetus with an apparently balanced translocation. Prenat Diagn 2007; 27:1112-7. [PMID: 17849500 DOI: 10.1002/pd.1841] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Use high-resolution genome analysis to clarify the genomic integrity in a fetus with a cytogenetically balanced translocation t(2;9)(q11.2;q34.3). METHODS High resolution molecular cytogenetic analyses including G-banded chromosome analysis, fluorescence in situ hybridization (FISH), and array-comparative genomic hybridization (CGH) were performed on cultured cells, and DNA extracted from chorionic villus sample (CVS), amniotic fluid cells and fetal tissue. In addition, a custom fosmid-based tiling path 9q34.3 microarray with a resolution of 35-40 kb was used for array-CGH. RESULTS GTG-banding analysis showed an apparently balanced de novo translocation between the long arms of chromosomes 2 and 9; t(2;9)(q11.2;q34.3). Array-CGH using a targeted chromosomal microarray analysis (CMA) uncovered a submicroscopic deletion of the subtelomeric region of 9q34.3 revealing the unbalanced nature of the rearrangement. These results were confirmed independently by FISH. The deletion was delimited to 2.7 Mb in size using the 9q34.3 fosmid-based tiling path array-CGH. CONCLUSION Array-CGH is a powerful tool for rapid detection of genomic imbalances associated with microdeletion/duplication syndromes and for the evaluation of de novo apparently balanced translocation to enable high-resolution genomic analysis at the breakpoints. Prenatal diagnosis of chromosomal rearrangements involving dosage-sensitive genomic regions is an important adjuvant to prenatal care and provides more accurate information for counseling and informed decision making.
Collapse
Affiliation(s)
- Marcia J Simovich
- Departments of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kang SHL, Scheffer A, Ou Z, Li J, Scaglia F, Belmont J, Lalani SR, Roeder E, Enciso V, Braddock S, Buchholz J, Vacha S, Chinault AC, Cheung SW, Bacino CA. Identification of proximal 1p36 deletions using array-CGH: a possible new syndrome. Clin Genet 2007; 72:329-38. [PMID: 17850629 DOI: 10.1111/j.1399-0004.2007.00876.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Monosomy 1p36 is the most common terminal deletion syndrome with an estimated occurrence of 1:5000 live births. Typically, the deletions span <10 Mb of 1pter-1p36.23 and result in mental retardation, developmental delay, sensorineural hearing loss, seizures, cardiomyopathy and cardiovascular malformations, and distinct facies including large anterior fontanel, deep-set eyes, straight eyebrows, flat nasal bridge, asymmetric ears, and pointed chin. We report five patients with 'atypical' proximal interstitial deletions from 1p36.23-1p36.11 using array-comparative genomic hybridization. Four patients carry large overlapping deletions of approximately 9.38-14.69 Mb in size, and one patient carries a small 2.97 Mb deletion. Interestingly, these patients manifest many clinical characteristics that are different from those seen in 'classical' monosomy 1p36 syndrome. The clinical presentation in our patients included: pre- and post-natal growth deficiency (mostly post-natal), feeding difficulties, seizures, developmental delay, cardiovascular malformations, microcephaly, limb anomalies, and dysmorphic features including frontal and parietal bossing, abnormally shaped and posteriorly rotated ears, hypertelorism, arched eyebrows, and prominent and broad nose. Most children also displayed hirsutism. Based on the analysis of the clinical and molecular data from our patients and those reported in the literature, we suggest that this chromosomal abnormality may constitute yet another deletion syndrome distinct from the classical distal 1p36 deletion syndrome.
Collapse
Affiliation(s)
- S-H L Kang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Clinical Care Center, 6701 Fannin Street, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lee JA, Cheung SW, Ward PA, Inoue K, Lupski JR. Prenatal diagnosis of PLP1 copy number by array comparative genomic hybridization. Prenat Diagn 2007; 25:1188-91. [PMID: 16353282 DOI: 10.1002/pd.1308] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES To report a family with a history of Pelizaeus-Merzbacher disease (PMD) for which prenatal diagnosis of PLP1 gene duplication status was attempted by the use of custom array comparative genomic hybridization (aCGH). METHODS A 28-year-old woman was referred for genetic counseling for her then current pregnancy because her existing 3-year-old son was diagnosed with a classic form of PMD. At 11 and 3/7 weeks gestation, chorionic villus sampling (CVS) was performed. Custom aCGH and fluorescence in situ hybridization (FISH) analyses were also performed on the DNA from family members. Fetal karyotyping revealed 46,XY. RESULTS Analysis by aCGH revealed that the male fetus was not duplicated for the PLP1 gene, but confirmed a duplicated PLP1 gene in the 3-year-old son, and that the mother was a duplication carrier. These results were independently confirmed by FISH analysis. aCGH and FISH analyses on DNA and cells derived from cord blood confirmed PLP1 nonduplication in the newborn. CONCLUSION aCGH is a reliable alternative method for detection of PLP1 copy number for prenatal diagnosis of Pelizaeus-Merzbacher disease.
Collapse
Affiliation(s)
- Jennifer A Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
26
|
Potocki L, Bi W, Treadwell-Deering D, Carvalho CMB, Eifert A, Friedman EM, Glaze D, Krull K, Lee JA, Lewis RA, Mendoza-Londono R, Robbins-Furman P, Shaw C, Shi X, Weissenberger G, Withers M, Yatsenko SA, Zackai EH, Stankiewicz P, Lupski JR. Characterization of Potocki-Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am J Hum Genet 2007; 80:633-49. [PMID: 17357070 PMCID: PMC1852712 DOI: 10.1086/512864] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/17/2007] [Indexed: 12/26/2022] Open
Abstract
The duplication 17p11.2 syndrome, associated with dup(17)(p11.2p11.2), is a recently recognized syndrome of multiple congenital anomalies and mental retardation and is the first predicted reciprocal microduplication syndrome described--the homologous recombination reciprocal of the Smith-Magenis syndrome (SMS) microdeletion (del(17)(p11.2p11.2)). We previously described seven subjects with dup(17)(p11.2p11.2) and noted their relatively mild phenotype compared with that of individuals with SMS. Here, we molecularly analyzed 28 additional patients, using multiple independent assays, and also report the phenotypic characteristics obtained from extensive multidisciplinary clinical study of a subset of these patients. Whereas the majority of subjects (22 of 35) harbor the homologous recombination reciprocal product of the common SMS microdeletion (~3.7 Mb), 13 subjects (~37%) have nonrecurrent duplications ranging in size from 1.3 to 15.2 Mb. Molecular studies suggest potential mechanistic differences between nonrecurrent duplications and nonrecurrent genomic deletions. Clinical features observed in patients with the common dup(17)(p11.2p11.2) are distinct from those seen with SMS and include infantile hypotonia, failure to thrive, mental retardation, autistic features, sleep apnea, and structural cardiovascular anomalies. We narrow the critical region to a 1.3-Mb genomic interval that contains the dosage-sensitive RAI1 gene. Our results refine the critical region for Potocki-Lupski syndrome, provide information to assist in clinical diagnosis and management, and lend further support for the concept that genomic architecture incites genomic instability.
Collapse
Affiliation(s)
- Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lu X, Shaw CA, Patel A, Li J, Cooper ML, Wells WR, Sullivan CM, Sahoo T, Yatsenko SA, Bacino CA, Stankiewicz P, Ou Z, Chinault AC, Beaudet AL, Lupski JR, Cheung SW, Ward PA. Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One 2007; 2:e327. [PMID: 17389918 PMCID: PMC1828620 DOI: 10.1371/journal.pone.0000327] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 03/05/2007] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Array Comparative Genomic Hybridization (a-CGH) is a powerful molecular cytogenetic tool to detect genomic imbalances and study disease mechanism and pathogenesis. We report our experience with the clinical implementation of this high resolution human genome analysis, referred to as Chromosomal Microarray Analysis (CMA). METHODS AND FINDINGS CMA was performed clinically on 2513 postnatal samples from patients referred with a variety of clinical phenotypes. The initial 775 samples were studied using CMA array version 4 and the remaining 1738 samples were analyzed with CMA version 5 containing expanded genomic coverage. Overall, CMA identified clinically relevant genomic imbalances in 8.5% of patients: 7.6% using V4 and 8.9% using V5. Among 117 cases referred for additional investigation of a known cytogenetically detectable rearrangement, CMA identified the majority (92.5%) of the genomic imbalances. Importantly, abnormal CMA findings were observed in 5.2% of patients (98/1872) with normal karyotypes/FISH results, and V5, with expanded genomic coverage, enabled a higher detection rate in this category than V4. For cases without cytogenetic results available, 8.0% (42/524) abnormal CMA results were detected; again, V5 demonstrated an increased ability to detect abnormality. Improved diagnostic potential of CMA is illustrated by 90 cases identified with 51 cryptic microdeletions and 39 predicted apparent reciprocal microduplications in 13 specific chromosomal regions associated with 11 known genomic disorders. In addition, CMA identified copy number variations (CNVs) of uncertain significance in 262 probands; however, parental studies usually facilitated clinical interpretation. Of these, 217 were interpreted as familial variants and 11 were determined to be de novo; the remaining 34 await parental studies to resolve the clinical significance. CONCLUSIONS This large set of clinical results demonstrates the significantly improved sensitivity of CMA for the detection of clinically relevant genomic imbalances and highlights the need for comprehensive genetic counseling to facilitate accurate clinical correlation and interpretation.
Collapse
Affiliation(s)
- Xinyan Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jiangzhen Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - M. Lance Cooper
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - William R. Wells
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cathy M. Sullivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Trilochan Sahoo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Svetlana A. Yatsenko
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Carlos A. Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zhishu Ou
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - A. Craig Chinault
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sau W. Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Patricia A. Ward
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
28
|
Béri-Dexheimer M, Bonnet C, Chambon P, Brochet K, Grégoire MJ, Jonveaux P. L'hybridation génomique comparative sur microréseau d'ADN (puces à ADN) en pathologie chromosomique constitutionnelle. ACTA ACUST UNITED AC 2007; 55:13-8. [PMID: 16697120 DOI: 10.1016/j.patbio.2006.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 04/04/2006] [Indexed: 01/28/2023]
Abstract
Chromosomal aberrations are the first cause of mental impairment and dysmorphism. Rearrangements involving large chromosomal segments can be detected by standard chromosome analysis using GTG-banding, but this technique is not suited for the detection of small chromosome abnormalities. Array comparative genomic hybridisation (array-CGH) is a method used to detect segmental DNA copy number alterations. Recently, advances in this technology have enabled high-resolution examination for identifying genetic alterations and copy number variations on a genome-wide scale. This review describes the current genomic array platforms and CGH methodologies and highlights their applications for studying constitutional disease.
Collapse
Affiliation(s)
- M Béri-Dexheimer
- Laboratoire de Génétique EA 4002-IFR111, CHU de Nancy-Brabois, rue du Morvan, 54511 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | |
Collapse
|
29
|
Bejjani BA, Shaffer LG. Application of array-based comparative genomic hybridization to clinical diagnostics. J Mol Diagn 2007; 8:528-33. [PMID: 17065418 PMCID: PMC1876176 DOI: 10.2353/jmoldx.2006.060029] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microarray-based comparative genomic hybridization (array CGH) is a revolutionary platform that was recently adopted in the clinical laboratory. This technology was first developed as a research tool for the investigation of genomic alterations in cancer. It allows for a high-resolution evaluation of DNA copy number alterations associated with chromosome abnormalities. Array CGH is based on the use of differentially labeled test and reference genomic DNA samples that are simultaneously hybridized to DNA targets arrayed on a glass slide or other solid platform. In this review, we examine the technology and its transformation from a research tool into a maturing diagnostic instrument. We also evaluate the various approaches that have shaped the current platforms that are used for clinical applications. Finally, we discuss the advantages and shortcomings of "whole-genome" arrays and compare their diagnostic use to "targeted" arrays. Depending on their design, microarrays provide distinct advantages over conventional cytogenetic analysis because they have the potential to detect the majority of microscopic and submicroscopic chromosomal abnormalities. This new platform is poised to revolutionize modern cytogenetic diagnostics and to provide clinicians with a powerful tool to use in their increasingly sophisticated diagnostic capabilities.
Collapse
Affiliation(s)
- Bassem A Bejjani
- Signature Genomic Laboratories, LLC, 44 W. 6th Ave., Suite 202, Spokane, WA 99204, USA.
| | | |
Collapse
|
30
|
Morales C, Soler A, Margarit E, Madrigal I, Sánchez A. Trisomy of 19.4 Mb region of chromosome 22 and subtelomeric 17p identified in a male without clinical affectation. Am J Med Genet A 2007; 143A:2423-9. [PMID: 17853459 DOI: 10.1002/ajmg.a.31777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Supernumerary marker chromosomes (SMCs) have a reported frequency in the prenatal and newborn population ranging from 0.04% to 0.08% and about 37% of diagnosed SMCs are associated with an abnormal phenotype. Around 7.5% of them are derived from chromosome 22. SMCs(22) that result in tri- or tetrasomy of band 22q11.2 are associated with Cat-eye syndrome (CES), a syndrome of variable penetrance and affectation. CES-like phenotype has been also related to 22q11.2 interstitial duplications and der(22) syndrome. The 22q11.2 region, also involved in the velocardiofacial microdeletional syndrome, presents high susceptibility to chromosomal rearrangements due to the presence of low-copy repeats sequences (LCR22). Another region in the genome rich in LCR is 17p and five recurrent disorders have been mapped on the region 17p11-p13. Some chromosomal imbalances affecting the 17p13.3 subtelomeric region have been reported, related to cryptic unbalanced translocations and associated, in most cases, to mental retardation and dysmorphic features. We report on a healthy male carrier of a SMC that was identified as a +der(22)t(17;22)(p13.3;q11.2) consequence of an abnormal 3:1 segregation of the paternal t(17;22) and we have determined the approximate size of the trisomic regions, comparing the obtained results with other reported imbalances involving 22q11.2 and 17pter.
Collapse
Affiliation(s)
- Carme Morales
- Fundació Clínic per a la Recerca Biomèdica, Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Shearer BM, Thorland EC, Gonzales PR, Ketterling RP. Evaluation of a commercially available focused aCGH platform for the detection of constitutional chromosome anomalies. Am J Med Genet A 2007; 143A:2357-70. [PMID: 17853469 DOI: 10.1002/ajmg.a.31954] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Microarray-based comparative genomic hybridization (aCGH) allows for simultaneous high-resolution analysis of multiple genomic loci. Recently, focused aCGH platforms have emerged allowing for analysis of numerous clinically relevant chromosome loci. The purpose of our study was to evaluate the Spectral Genomics Constitutional Chip 1.0 (CC) for use in the clinical laboratory. The CC consisted of 429 BAC clones for 41 known genetic deletion/duplication syndromes, subtelomeric regions, and chromosomal backbone clones. We conducted a blinded study of 48 samples including 46 patients (one sample was run in triplicate) with previously determined constitutional chromosome anomalies and two negative controls. Patient samples included 31 microdeletions, four duplications, three derivative chromosomes, three trisomies, and five sex chromosome aneuploidies. Our results show that the CC identified the expected gains and/or losses in 46 of 48 samples. The two negative controls were considered to be normal and the three replicates of the same patient sample were concordant. Two samples yielded false-negative results; however, repeat analysis produced acceptable results for one of them. One sample ultimately had an insufficient amount of DNA precluding aCGH analysis. While promising, the results suggest that further studies are needed to reduce protocol variability and to establish standard analysis and interpretation criteria. Further, this study verifies the importance of extensive validation studies prior to clinical implementation of new clinically available methodologies.
Collapse
Affiliation(s)
- Brandon M Shearer
- Division of Laboratory Genetics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
32
|
Girirajan S, Mendoza-Londono R, Vlangos CN, Dupuis L, Nowak NJ, Bunyan DJ, Hatchwell E, Elsea SH. Smith–Magenis syndrome and moyamoya disease in a patient with del(17)(p11.2p13.1). Am J Med Genet A 2007; 143A:999-1008. [PMID: 17431895 DOI: 10.1002/ajmg.a.31689] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chromosomal rearrangements causing microdeletions and microduplications are a major cause of congenital malformation and mental retardation. Because they are not visible by routine chromosome analysis, high resolution whole-genome technologies are required for the detection and diagnosis of small chromosomal abnormalities. Recently, array-comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MLPA) have been useful tools for the identification and mapping of deletions and duplications at higher resolution and throughput. Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation syndrome caused by deletion or mutation of the retinoic acid induced 1 (RAI1) gene and is often associated with a chromosome 17p11.2 deletion. We report here on the clinical and molecular analysis of a 10-year-old girl with SMS and moyamoya disease (occlusion of the circle of Willis). We have employed a combination of aCGH, FISH, and MLPA to characterize an approximately 6.3 Mb deletion spanning chromosome region 17p11.2-p13.1 in this patient, with the proximal breakpoint within the RAI1 gene. Further, investigation of the genomic architecture at the breakpoint intervals of this large deletion documented the presence of palindromic repeat elements that could potentially form recombination substrates leading to unequal crossover.
Collapse
Affiliation(s)
- Santhosh Girirajan
- Department of Human Genetics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee JA, Lupski JR. Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 2006; 52:103-21. [PMID: 17015230 DOI: 10.1016/j.neuron.2006.09.027] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Genomic disorders are a group of human genetic diseases caused by genomic rearrangements resulting in copy-number variation (CNV) affecting a dosage-sensitive gene or genes critical for normal development or maintenance. These disorders represent a wide range of clinically distinct entities but include many diseases affecting nervous system function. Herein, we review selected neurodevelopmental, neurodegenerative, and psychiatric disorders either known or suggested to be caused by genomic rearrangement and CNV. Further, we emphasize the cause-and-effect relationship between gene CNV and complex disease traits. We also discuss the prevalence and heritability of CNV, the correlation between CNV and higher-order genome architecture, and the heritability of personality, behavioral, and psychiatric traits. We speculate that CNV could underlie a significant proportion of normal human variation including differences in cognitive, behavioral, and psychological features.
Collapse
Affiliation(s)
- Jennifer A Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030, USA
| | | |
Collapse
|
34
|
Chavan P, Joshi K, Patwardhan B. DNA microarrays in herbal drug research. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2006; 3:447-57. [PMID: 17173108 PMCID: PMC1697755 DOI: 10.1093/ecam/nel075] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 09/19/2006] [Indexed: 12/18/2022]
Abstract
Natural products are gaining increased applications in drug discovery and development. Being chemically diverse they are able to modulate several targets simultaneously in a complex system. Analysis of gene expression becomes necessary for better understanding of molecular mechanisms. Conventional strategies for expression profiling are optimized for single gene analysis. DNA microarrays serve as suitable high throughput tool for simultaneous analysis of multiple genes. Major practical applicability of DNA microarrays remains in DNA mutation and polymorphism analysis. This review highlights applications of DNA microarrays in pharmacodynamics, pharmacogenomics, toxicogenomics and quality control of herbal drugs and extracts.
Collapse
|
35
|
McGhee SA, McCabe ERB. Genome-wide testing: genomic medicine: commentary on the article by Bar-Shira et al. on page 353. Pediatr Res 2006; 60:243-4. [PMID: 16923947 DOI: 10.1203/01.pdr.0000233116.85413.cd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sean A McGhee
- Department of Pediatrics, David Giffin School of Medicine, Mattel Children's Hospital, University of California, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
36
|
Kang JU, Kang JJ, Kwon KC, Park JW, Jeong TE, Noh SM, Koo SH. Genetic alterations in primary gastric carcinomas correlated with clinicopathological variables by array comparative genomic hybridization. J Korean Med Sci 2006; 21:656-65. [PMID: 16891809 PMCID: PMC2729887 DOI: 10.3346/jkms.2006.21.4.656] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Genetic alterations have been recognized as an important event in the carcinogenesis of gastric cancer (GC). We conducted high resolution bacterial artificial chromosome array-comparative genomic hybridization, to elucidate in more detail the genomic alterations, and to establish a pattern of DNA copy number changes with distinct clinical variables in GC. Our results showed some correlations between novel amplified or deleted regions and clinical status. Copy-number gains were frequently detected at 1p, 5p, 7q, 8q, 11p, 16p, 20p and 20q, and losses at 1p, 2q, 4q, 5q, 7q, 9p, 14q, and 18q. Losses at 4q23, 9p23, 14q31.1, or 18q21.1 as well as a gain at 20q12 were correlated with tumor-node-metastasis tumor stage. Losses at 9p23 or 14q31.1 were associated with lymph node status. Metastasis was determined to be related to losses at 4q23 or 4q28.2, as well as losses at 4q15.2, 4q21.21, 4q 28.2, or 14q31.1, with differentiation. One of the notable aspects of this study was that the losses at 4q or 14q could be employed in the evaluation of the metastatic status of GC. Our results should provide a potential resource for the molecular cytogenetic events in GC, and should also provide clues in the hunt for genes associated with GC.
Collapse
Affiliation(s)
- Ji Un Kang
- Department of Clinical Pathology, Chungnam National University Hospital, Daejeon, Korea
| | | | - Kye Chul Kwon
- Department of Clinical Pathology, Chungnam National University Hospital, Daejeon, Korea
| | - Jong Woo Park
- Department of Clinical Pathology, Chungnam National University Hospital, Daejeon, Korea
| | - Tae Eun Jeong
- Department of Clinical Pathology, Chungnam National University Hospital, Daejeon, Korea
| | - Seung Mu Noh
- Department of Surgery, Chungnam National University Hospital, Daejeon, Korea
| | - Sun Hoe Koo
- Department of Clinical Pathology, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
37
|
Ou Z, Jarmuz M, Sparagana SP, Michaud J, Décarie JC, Yatsenko SA, Nowakowska B, Furman P, Shaw CA, Shaffer LG, Lupski JR, Chinault AC, Cheung SW, Stankiewicz P. Evidence for involvement of TRE-2 (USP6) oncogene, low-copy repeat and acrocentric heterochromatin in two families with chromosomal translocations. Hum Genet 2006; 120:227-37. [PMID: 16791615 DOI: 10.1007/s00439-006-0200-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
We report clinical findings and molecular cytogenetic analyses for two patients with translocations [t(14;17)(p12;p12) and t(15;17)(p12;p13.2)], in which the chromosome 17 breakpoints map at a large low-copy repeat (LCR) and a breakage-prone TRE-2 (USP6) oncogene, respectively. In family 1, a 6-year-old girl and her 5-year-old brother were diagnosed with mental retardation, short stature, dysmorphic features, and Charcot-Marie-Tooth disease type 1A (CMT1A). G-banding chromosome analysis showed a der(14)t(14;17)(p12;p12) in both siblings, inherited from their father, a carrier of the balanced translocation. Chromosome microarray and FISH analyses revealed that the PMP22 gene was duplicated. The chromosome 17 breakpoint was mapped within an approximately 383 kb LCR17pA that is known to also be the site of several breakpoints of different chromosome aberrations including the evolutionary translocation t(4;19) in Gorilla gorilla. In family two, a patient with developmental delay, subtle dysmorphic features, ventricular enlargement with decreased periventricular white matter, mild findings of bilateral perisylvian polymicrogyria and a very small anterior commissure, a cryptic duplication including the Miller-Dieker syndrome region was identified by chromosome microarray analysis. The chromosome 17 breakpoint was mapped by FISH at the TRE-2 oncogene. Both partner chromosome breakpoints were mapped on the short arm acrocentric heterochromatin within or distal to the rRNA cluster, distal to the region commonly rearranged in Robertsonian translocations. We propose that TRE-2 together with LCR17pA, located approximately 10 Mb apart, also generated the evolutionary gorilla translocation t(4;19). Our results support previous observations that the USP6 oncogene, LCRs, and repetitive DNA sequences play a significant role in the origin of constitutional chromosome aberrations and primate genome evolution.
Collapse
Affiliation(s)
- Zhishuo Ou
- Department of Molecular & Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm T821, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vissers LELM, Veltman JA, van Kessel AG, Brunner HG. Identification of disease genes by whole genome CGH arrays. Hum Mol Genet 2006; 14 Spec No. 2:R215-23. [PMID: 16244320 DOI: 10.1093/hmg/ddi268] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Small, submicroscopic, genomic deletions and duplications (1 kb to 10 Mb) constitute up to 15% of all mutations underlying human monogenic diseases. Novel genomic technologies such as microarray-based comparative genomic hybridization (array CGH) allow the mapping of genomic copy number alterations at this submicroscopic level, thereby directly linking disease phenotypes to gene dosage alterations. At present, the entire human genome can be scanned for deletions and duplications at over 30,000 loci simultaneously by array CGH ( approximately 100 kb resolution), thus entailing an attractive gene discovery approach for monogenic conditions, in particular those that are associated with reproductive lethality. Here, we review the present and future potential of microarray-based mapping of genes underlying monogenic diseases and discuss our own experience with the identification of the gene for CHARGE syndrome. We expect that, ultimately, genomic copy number scanning of all 250,000 exons in the human genome will enable immediate disease gene discovery in cases exhibiting single exon duplications and/or deletions.
Collapse
Affiliation(s)
- Lisenka E L M Vissers
- Department of Human Genetics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO Box 9101 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
39
|
Lee JA, Madrid RE, Sperle K, Ritterson CM, Hobson GM, Garbern J, Lupski JR, Inoue K. Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect. Ann Neurol 2006; 59:398-403. [PMID: 16374829 DOI: 10.1002/ana.20732] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To report an association between spastic paraplegia type 2 with axonal peripheral neuropathy and apparent proteolipid protein gene (PLP1) silencing in a family. METHODS Pulsed-field gel electrophoresis, custom array comparative genomic hybridization, and semi-quantitative multiplex polymerase chain reaction analyses were used to examine the PLP1 genomic region. RESULTS Electrodiagnostic studies and a sural nerve biopsy showed features of a dystrophic axonal neuropathy. Molecular studies identified a small duplication downstream of PLP1. INTERPRETATION We propose the duplication to result in PLP1 gene silencing by virtue of a position effect. Our observations suggest that genomic rearrangements that do not include PLP1 coding sequences should be considered as yet another potential mutational mechanism underlying PLP1-related dysmyelinating disorders.
Collapse
Affiliation(s)
- Jennifer A Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bi W, Saifi GM, Girirajan S, Shi X, Szomju B, Firth H, Magenis RE, Potocki L, Elsea SH, Lupski JR. RAI1 point mutations, CAG repeat variation, and SNP analysis in non-deletion Smith–Magenis syndrome. Am J Med Genet A 2006; 140:2454-63. [PMID: 17041942 DOI: 10.1002/ajmg.a.31510] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation disorder characterized by distinct craniofacial features and neurobehavioral abnormalities usually associated with an interstitial deletion in 17p11.2. Heterozygous point mutations in the retinoic acid induced 1 gene (RAI1) have been reported in nine SMS patients without a deletion detectable by fluorescent in situ hybridization (FISH), implicating RAI1 haploinsufficiency as the cause of the major clinical features in SMS. All of the reported point mutations are unique and de novo. RAI1 contains a polymorphic CAG repeat and encodes a plant homeo domain (PHD) zinc finger-containing transcriptional regulator. We report a novel RAI1 frameshift mutation, c.3103delC, in a non-deletion patient with many SMS features. The deletion of a single cytosine occurs in a heptameric C-tract (CCCCCCC), the longest mononucleotide repeat in the RAI1 coding region. Interestingly, we had previously reported a frameshift mutation, c.3103insC, in the same mononucleotide repeat. Furthermore, all five single base frameshift mutations preferentially occurred in polyC but not polyG tracts. We also investigated the distribution of the polymorphic CAG repeats in both the normal population and the SMS patients as one potential molecular mechanism for variability of clinical expression. In this limited data set, there was no significant association between the length of CAG repeats and the SMS phenotype. However, we identified a 5-year-old girl with an apparent SMS phenotype who was a compound heterozygote for an RAI1 missense mutation inherited from her father and a polyglutamine repeat of 18 copies, representing the largest known CAG repeat in this gene, inherited from her mother.
Collapse
Affiliation(s)
- Weimin Bi
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3498, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Altering DNA copy number is one of the many ways that gene expression and function may be modified. Some variations are found among normal individuals ( 14, 35, 103 ), others occur in the course of normal processes in some species ( 33 ), and still others participate in causing various disease states. For example, many defects in human development are due to gains and losses of chromosomes and chromosomal segments that occur prior to or shortly after fertilization, whereas DNA dosage alterations that occur in somatic cells are frequent contributors to cancer. Detecting these aberrations, and interpreting them within the context of broader knowledge, facilitates identification of critical genes and pathways involved in biological processes and diseases, and provides clinically relevant information. Over the past several years array comparative genomic hybridization (array CGH) has demonstrated its value for analyzing DNA copy number variations. In this review we discuss the state of the art of array CGH and its applications in medical genetics and cancer, emphasizing general concepts rather than specific results.
Collapse
Affiliation(s)
- Daniel Pinkel
- Comprehensive Cancer Center, Department of Laboratory Medicine, University of California, San Francisco, California 94143, USA.
| | | |
Collapse
|
42
|
Abstract
Chromosome abnormalities have long been recognised as an important cause of learning disability and multiple malformation syndromes; 0.8% of live born infants have numerical or structural chromosomal anomalies resulting in an abnormal phenotype. The identification of such anomalies is important, both clinically and for accurate genetic counselling. Recently, the human genome sequence has enabled higher resolution screens for chromosome anomalies using both molecular cytogenetic and array based techniques. This review suggests a simple algorithm for the targeted use of diagnostic cytogenetic tools in specific patient groups commonly seen in paediatric practice.
Collapse
|
43
|
Sanlaville D, Lapierre JM, Turleau C, Coquin A, Borck G, Colleaux L, Vekemans M, Romana SP. Molecular karyotyping in human constitutional cytogenetics. Eur J Med Genet 2005; 48:214-31. [PMID: 16179218 DOI: 10.1016/j.ejmg.2005.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 04/08/2005] [Indexed: 01/22/2023]
Abstract
Using array CGH it is possible to detect very small genetic imbalances anywhere in the genome. Its usefulness has been well documented in cancer and more recently in constitutional disorders. In particular it has been used to detect interstitial and subtelomeric submicroscopic imbalances, to characterize their size at the molecular level and to define the breakpoints of chromosomal translocation. Here, we review the various applications of array CGH in constitutional cytogenetics. This technology remains expensive and the existence of numerous sequence polymorphisms makes its interpretation difficult. The challenge today is to transfer this technology in the clinical setting.
Collapse
Affiliation(s)
- Damien Sanlaville
- Service de cytogénétique, laboratoire de cytogénétique, hôpital Necker-Enfants Malades, 149, rue de Sèvres, 75015 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sanlaville D, Lapierre JM, Coquin A, Turleau C, Vermeesch J, Colleaux L, Borck G, Vekemans M, Aurias A, Romana SP. [Microarray CGH: principle and use for constitutional disorders]. Arch Pediatr 2005; 12:1515-20. [PMID: 16153813 DOI: 10.1016/j.arcped.2005.07.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
Chips technology has allowed to miniaturize process making possible to realize in one step and using the same device a lot of chemical reactions. The application of this technology to molecular cytogenetics resulted in the development of comparative genomic hybridization (CGH) on microarrays technique. Using this technique it is possible to detect very small genetic imbalances anywhere in the genome. Its usefulness has been well documented in cancer and more recently in constitutional disorders. In particular it has been used to detect interstitial and subtelomeric submicroscopic imbalances, to characterize their size at the molecular level or to define the breakpoints of translocation. The challenge today is to transfer this technology in laboratory medicine. Nevertheless this technology remains expensive and the existence of numerous sequence polymorphisms makes its interpretation difficult. Finally its is unlikely that it will make karyotyping obsolete as it does not allow to detect balanced rearrangements which after meiotic segregation might result in genome imbalance in the progeny.
Collapse
Affiliation(s)
- D Sanlaville
- Service de cytogénétique, hôpital Necker-Enfants-malades, Assistance-publique-hôpitaux-de-Paris, 149, rue de Sèvres, 75015 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hwang KS, Pearson MA, Stankiewicz P, Lennon PA, Cooper ML, Wu J, Ou Z, Cai WW, Patel A, Cheung SW. Cryptic unbalanced translocation t(17;18)(p13.2;q22.3) identified by subtelomeric FISH and defined by array-based comparative genomic hybridization in a patient with mental retardation and dysmorphic features. Am J Med Genet A 2005; 137:88-93. [PMID: 16015583 DOI: 10.1002/ajmg.a.30858] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Molecular cytogenetics allows the identification of cryptic chromosome rearrangements, which is clinically useful in mentally retarded and/or dysmorphic individuals with normal results from conventional cytogenetics analysis. We report on a 3-year-old girl with mental retardation, growth deficiency, speech delay, and dysmorphic features including hypertelorism, upslanting palpebral fissures, midfacial hypoplasia, and posteriorly rotated ears. The G-banding analysis showed a 46,XX,t(3;8)(q26.2;p21.1)mat karyotype. However, her clinical features were suggestive of the 18q syndrome. Subtelomeric FISH analysis revealed a der(18) translocated material from chromosome 17. Array-based comparative genomic hybridization (array-CGH) with subtelomeric BAC and PAC clones confirmed the abnormality and refined the breakpoints to 18q22.3-qter and 17p13.2-pter (deletion of 8.5 Mb and duplication of 3.9 Mb, respectively). This case demonstrates the diagnostic utility of combining conventional cytogenetics with molecular chromosome analyses for the identification of subtle chromosome abnormalities.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/pathology
- Child, Preschool
- Chromosome Banding
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, Pair 18/genetics
- Face/abnormalities
- Female
- Genome, Human
- Humans
- In Situ Hybridization, Fluorescence/methods
- Intellectual Disability/pathology
- Karyotyping
- Nucleic Acid Hybridization/methods
- Syndrome
- Telomere/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Kwei Shuai Hwang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bauters M, Van Esch H, Marynen P, Froyen G. X chromosome array-CGH for the identification of novel X-linked mental retardation genes. Eur J Med Genet 2005; 48:263-75. [PMID: 16179222 DOI: 10.1016/j.ejmg.2005.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 03/30/2005] [Accepted: 04/26/2005] [Indexed: 01/25/2023]
Abstract
Array-CGH technology for the detection of submicroscopic copy number changes in the genome has recently been developed for the identification of novel disease-associated genes. It has been estimated that submicroscopic genomic deletions or duplications will be present in 5-7% of patients with idiopathic mental retardation (MR). Since 30% more males than females are diagnosed with MR, we have developed a full coverage X chromosome array-CGH with a theoretical resolution of 82 kb, for the detection of copy number alterations in patients with suspected X-linked mental retardation (XLMR). First, we have validated the genomic location of X-derived clones through male versus female hybridisations. Next, we validated our array for efficient and reproducible detection of known alterations in XLMR patients. In all cases, we were able to detect the deletions and duplications in males as well as females. Due to the high resolution of our X-array, the boundaries of the genomic aberrations could clearly be identified making genotype-phenotype studies more reliable. Here, we describe the production and validation of a full coverage X-array-CGH, which will allow for fast and easy screening of submicroscopic copy number alterations in XLMR patients with the aim to identify novel MR genes or mechanisms involved in a deranged cognitive development.
Collapse
Affiliation(s)
- Marijke Bauters
- Human Genome Laboratory, Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Leuven, Belgium
| | | | | | | |
Collapse
|
47
|
Schoumans J, Staaf J, Jönsson G, Rantala J, Zimmer KS, Borg A, Nordenskjöld M, Anderlid BM. Detection and delineation of an unusual 17p11.2 deletion by array-CGH and refinement of the Smith–Magenis syndrome minimum deletion to ~650 kb. Eur J Med Genet 2005; 48:290-300. [PMID: 16179224 DOI: 10.1016/j.ejmg.2005.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Indexed: 10/25/2022]
Abstract
Smith-Magenis syndrome (SMS) is a multiple congenital anomaly/mental retardation syndrome and it is characterized by an interstitial deletion of chromosome 17p11.2. SMS patients have a distinct phenotype which is believed to be caused by haploinsufficiency of one or more genes in the associated deleted region. Five non-deletion patients with classical phenotypic features of SMS have been reported with mutations in the retinoic acid induced 1 (RAI1) gene, located within the SMS critical interval. Happloinsufficiency of the RAI1 gene is likely to be the responsible gene for the majority of the SMS features, but other deleted genes in the SMS region may modify the overall phenotype in the patients with 17p11.2 deletions. SMS is usually diagnosed in the clinical genetic setting by FISH analysis using commercially available probes. We detected a submicroscopic deletion in 17p11.2 using array-CGH with a resolution of approximately 1 Mb in a patient with the SMS phenotype, who was not deleted for the commercially available SMS microdeletion FISH probe. Delineation of the deletion was performed using a 32K tiling BAC-array, containing 32,500 BAC clones. The deletion in this patient was size mapped to 2.7 Mb and covered the RAI1 gene. This case enabled the refinement of the SMS minimum deletion to approximately 650 kb containing eight putative genes and one predicted gene. In addition, it demonstrates the importance to investigate deletion of RAI1 in SMS patients.
Collapse
Affiliation(s)
- Jacqueline Schoumans
- Department of Molecular Medicine, Karolinska Hospital, CMM L8:02, 171 76 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cheung SW, Shaw CA, Yu W, Li J, Ou Z, Patel A, Yatsenko SA, Cooper ML, Furman P, Stankiewicz P, Stankiewicz P, Lupski JR, Chinault AC, Beaudet AL. Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet Med 2005; 7:422-32. [PMID: 16024975 DOI: 10.1097/01.gim.0000170992.63691.32] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE We developed a microarray for clinical diagnosis of chromosomal disorders using large insert genomic DNA clones as targets for comparative genomic hybridization (CGH). METHODS The array contains 362 FISH-verified clones that span genomic regions implicated in over 40 known human genomic disorders and representative subtelomeric clones for each of the 41 clinically relevant human chromosome telomeres. Three or four clones from almost all deletion or duplication genomic regions and three or more clones for each subtelomeric region were included. We tested chromosome microarray analysis (CMA) in a masked fashion by examining genomic DNA from 25 patients who were previously ascertained in a genetic clinic and studied by conventional cytogenetics. A novel software package implemented in the R statistical programming language was developed for normalization, visualization, and inference. RESULTS The CMA results were entirely consistent with previous cytogenetic and FISH findings. For clone by clone analysis, the sensitivity was estimated to be 96.7% and the specificity was 99.1%. Major advantages of this selected human genome array include the following: interrogation of clinically relevant genomic regions, the ability to test for a wide range of duplication and deletion syndromes in a single analysis, the ability to detect duplications that would likely be undetected by metaphase FISH, and ease of confirmation of suspected genomic changes by conventional FISH testing currently available in the cytogenetics laboratory. CONCLUSION The array is an attractive alternative to telomere FISH and locus-specific FISH, but it does not include uniform coverage across the arms of each chromosome and is not intended to substitute for a standard karyotype. Limitations of CMA include the inability to detect both balanced chromosome changes and low levels of mosaicism.
Collapse
Affiliation(s)
- Sau W Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Stankiewicz P, Shaw CJ, Withers M, Inoue K, Lupski JR. Serial segmental duplications during primate evolution result in complex human genome architecture. Genome Res 2005; 14:2209-20. [PMID: 15520286 PMCID: PMC525679 DOI: 10.1101/gr.2746604] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The human genome is particularly rich in low-copy repeats (LCRs) or segmental duplications (5%-10%), and this characteristic likely distinguishes us from lower mammals such as rodents. How and why the complex human genome architecture consisting of multiple LCRs has evolved remains an open question. Using molecular and computational analyses of human and primate genomic regions, we analyzed the structure and evolution of LCRs that resulted in complex architectural features of the human genome in proximal 17p. We found that multiple LCRs of different origins are situated adjacent to one another, whereas each LCR changed at different time points between >25 to 3-7 million years ago (Mya) during primate evolution. Evolutionary studies in primates suggested communication between the LCRs by gene conversion. The DNA transposable element MER1-Charlie3 and retroviral ERVL elements were identified at the breakpoint of the t(4;19) chromosome translocation in Gorilla gorilla, suggesting a potential role for transpositions in evolution of the primate genome. Thus, a series of consecutive segmental duplication events during primate evolution resulted in complex genome architecture in proximal 17p. Some of the more recent events led to the formation of novel genes that in human are expressed primarily in the brain. Our observations support the contention that serial segmental duplication events might have orchestrated primate evolution by the generation of novel fusion/fission genes as well as potentially by genomic inversions associated with decreased recombination rates facilitating gene divergence.
Collapse
Affiliation(s)
- Pawełl Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
50
|
Mao R, Pevsner J. The use of genomic microarrays to study chromosomal abnormalities in mental retardation. ACTA ACUST UNITED AC 2005; 11:279-85. [PMID: 16240409 DOI: 10.1002/mrdd.20082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mental retardation affects 2 to 3% of the US population. It is defined by broad criteria, including significantly subaverage intelligence, onset by age 18, and impaired function in a group of adaptive skills. A myriad of genetic and environmental causes have been described, but for approximately half of individuals diagnosed with mental retardation the molecular basis remains unknown. Genomic microarrays, also called array comparative genomic hybridization (array CGH), represent one of several novel technologies that allow the detection of chromosomal abnormalities, such as microdeletions and microduplications, in a rapid, high throughput fashion from genomic DNA samples. In one early application of this technology, genomic microarrays have been used to characterize the extent of chromosomal changes in a group of patients diagnosed with one particular type of disorder that causes mental retardation, such as deletion 1p36 syndrome. In another application, DNA samples from individuals with idiopathic mental retardation have been assayed to scan the entire genome in attempts to identify chromosomal changes. Genomic microarrays offer both a genome-wide perspective of chromosomal aberrations as well as higher resolution (to the level of approximately one megabase) compared to alternative available technologies.
Collapse
Affiliation(s)
- Rong Mao
- Program in Biochemistry, Molecular, and Cellular Biology, Johns Hopkins School of Medicine, and Department of Neurology, Kennedy Krieger Institute, Baltimore, Maryland 21205, USA
| | | |
Collapse
|