1
|
Yang S, Li Z, Ren X, Yue J. A Compound Heterozygous Pathogenic Variant in ZP2 Gene Causes Female Infertility. Reprod Sci 2025; 32:1557-1565. [PMID: 39443359 DOI: 10.1007/s43032-024-01729-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
The oocyte maturation defect 6 is an autosomal recessive hereditary disease caused by a homozygous variant in ZP2 gene. It is characterized by female primary infertility due to an abnormally thin zona pellucida (ZP) and defective sperm binding. Here we identified a compound heterozygous variant (c.1924C > T and c.1695-2A > G) in ZP2 gene in a Chinese Han family. Quantitative real-time PCR showed that the variant c.1924C > T significantly decreased the expression of truncated ZP2 message RNA by the nonsense-mediated decay pathway. Minigene assays showed the c.1695-2A > G variant led to an extra-61-nt preservation of intron 15 at the junction between exons 15 and 16 during transcription. Both variants (c.1924C > T and c.1695-2A > G) resulted in truncated ZP2 proteins (p.R642X and p.C566Hfs*2) that lost the transmembrane domain, which prevented the secretion of the mutant ZP2 proteins and produced a structurally abnormal ZP, thus resulting in female infertility. This study further elucidated the pathogenic mechanism of these two variants and provided new support for the genetic diagnosis of female infertility.
Collapse
Affiliation(s)
- Shulin Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zongzhe Li
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
2
|
Rawnsley K, Weisschuh N, Kohl S, Reuter P. Comprehensive functional splicing analysis of non-canonical CNGB3 variants using in vitro minigene splice assays. J Pathol 2025. [PMID: 40304364 DOI: 10.1002/path.6431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Variants in the CNGB3 gene, encoding the B3-subunit of the cone photoreceptor cyclic nucleotide gated channel, are a major cause of autosomal recessive achromatopsia, a rare inherited retinal disease. The mutation spectrum of achromatopsia-associated CNGB3 variants comprises all types of mutations, including those that are straightforward to evaluate in molecular genetic diagnostics, such as frame-shifting, nonsense, and canonical splice site variants. Additionally, variants have been identified within splice regions outside the conserved ±1,2 splice site dinucleotides, making their potential impact on disease association challenging to interpret. This poses a major hurdle for clinical interpretation of causality between the patient's genotype and the proposed clinical diagnosis, but also for the inclusion of such patients into clinical trials for gene augmentation therapy, for which only patients with confirmed (likely) pathogenic CNGB3 variants are eligible. We here performed comprehensive genetic functional analysis of 21 candidate spliceogenic CNGB3 variants-15 reported and 6 novel variants-by means of in vitro minigene splice assays and cDNA analysis, and characterization of spliceogenic events by subcloning, Sanger-sequencing, and capillary fragment analysis. For 16 variants, an impact on splicing was confirmed, supporting the reclassification of 86% of variants of uncertain significance as likely pathogenic or pathogenic according to the ACMG/AMP guidelines. This reclassification enables the confirmation of patients' genotypes, both retrospectively and prospectively. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Katharina Rawnsley
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Peggy Reuter
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Bozsik A, Butz H, Grolmusz VK, Pócza T, Patócs A, Papp J. Spectrum and genotyping strategies of "dark" genetic matter in germline susceptibility genes of tumor syndromes. Crit Rev Oncol Hematol 2025; 205:104549. [PMID: 39528122 DOI: 10.1016/j.critrevonc.2024.104549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE Despite the widespread use of high-throughput genotyping strategies, certain mutation types remain understudied. We provide an overview of these often overlooked mutation types, with representative examples from common hereditary cancer syndromes. METHODS We conducted a comprehensive review of the literature and locus-specific variant databases to summarize the germline pathogenic variants discovered through non-routine genotyping methods. We evaluated appropriate detection and analysis methods tailored for these specific genetic aberrations. Additionally, we performed in silico splice predictions on deep intronic variants registered in the ClinVar database. RESULTS Our study suggests that, aside from founder mutations, most cases are sporadic. However, we anticipate a relatively high likelihood of splice effects for deep intronic variants. The findings underscore the significant clinical utility of genome sequencing techniques and the importance of applying relevant analysis methods.
Collapse
Affiliation(s)
- Anikó Bozsik
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary.
| | - Henriett Butz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary; Department of Laboratory Medicine, Semmelweis University, Ráth György út 7-9, Budapest H-1122, Hungary; Department of Oncology Biobank, National Institute of Oncology, Budapest 1122, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary; Department of Laboratory Medicine, Semmelweis University, Ráth György út 7-9, Budapest H-1122, Hungary
| | - János Papp
- Department of Molecular Genetics, The National Tumor Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Ráth György út 7-9, Budapest H-1122, Hungary; Hereditary Tumours Research Group, Eötvös Loránd Research Network, Nagyvárad tér 4, Budapest H-1089, Hungary
| |
Collapse
|
4
|
Rezaei M, Liang M, Yalcin Z, Martin JH, Kazemi P, Bareke E, Ge ZJ, Fardaei M, Benadiva C, Hemida R, Hassan A, Maher GJ, Abdalla E, Buckett W, Bolze PA, Sandhu I, Duman O, Agrawal S, Qian J, Vallian Broojeni J, Bhati L, Miron P, Allias F, Selim A, Fisher RA, Seckl MJ, Sauthier P, Touitou I, Tan SL, Majewski J, Taketo T, Slim R. Defects in meiosis I contribute to the genesis of androgenetic hydatidiform moles. J Clin Invest 2024; 134:e170669. [PMID: 39545410 PMCID: PMC11563684 DOI: 10.1172/jci170669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
To identify novel genes responsible for recurrent hydatidiform moles (HMs), we performed exome sequencing on 75 unrelated patients who were negative for mutations in the known genes. We identified biallelic deleterious variants in 6 genes, FOXL2, MAJIN, KASH5, SYCP2, MEIOB, and HFM1, in patients with androgenetic HMs, including a familial case of 3 affected members. Five of these genes are essential for meiosis I, and their deficiencies lead to premature ovarian insufficiency. Advanced maternal age is the strongest risk factor for sporadic androgenetic HM, which affects 1 in every 600 pregnancies. We studied Hfm1-/- female mice and found that these mice lost all their oocytes before puberty but retained some at younger ages. Oocytes from Hfm1-/- mice initiated meiotic maturation and extruded the first polar bodies in culture; however, their meiotic spindles were often positioned parallel, instead of perpendicular, to the ooplasmic membrane at telophase I, and some oocytes extruded the entire spindle with all the chromosomes into the polar bodies at metaphase II, a mechanism we previously reported in Mei1-/- oocytes. The occurrence of a common mechanism in two mouse models argues in favor of its plausibility at the origin of androgenetic HM formation in humans.
Collapse
Affiliation(s)
- Maryam Rezaei
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Manqi Liang
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zeynep Yalcin
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jacinta H. Martin
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Parinaz Kazemi
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Zhao-Jia Ge
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Majid Fardaei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Claudio Benadiva
- Center for Advanced Reproductive Services, Farmington, Connecticut, USA
| | - Reda Hemida
- Department of Obstetrics and Gynecology, Mansoura University, Mansoura, Egypt
| | - Adnan Hassan
- Department of Obstetrics and Gynecology, Jordan Hospital, Amman, Jordan
| | - Geoffrey J. Maher
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - William Buckett
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre-Adrien Bolze
- Université Lyon 1, Service de Chirurgie Gynécologique et Ontologique, Obstétrique, Centre Français de Référence des Maladies Trophoblastiques, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre Bénite, France
| | - Iqbaljit Sandhu
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Onur Duman
- Security Research Center, Concordia University, Montreal, Quebec, Canada
| | - Suraksha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - JianHua Qian
- Department of Gynecology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Lavi Bhati
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre Miron
- Centre d’Aide Médicale à la Procréation Fertilys, Laval, Quebec, Canada
- Institut National de Recherche Scientifique–Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Fabienne Allias
- Department of Pathology, Hospices Civils de Lyon, Centre, Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Amal Selim
- Department of Medical Biochemistry and Molecular Biology, Mansoura University, Mansoura, Egypt
| | - Rosemary A. Fisher
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Michael J. Seckl
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Philippe Sauthier
- Department of Obstetrics and Gynecology, Gynecologic Oncology Division, Centre Hospitalier de l’Université de Montréal, Réseau des Maladies Trophoblastiques du Québec, Montreal, Quebec, Canada
| | - Isabelle Touitou
- Department of Genetics CHU of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Seang Lin Tan
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
- OriginElle Fertility Clinic and Women’s Health Centre, Montreal, Quebec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Teruko Taketo
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Rima Slim
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Chen J, Liu Y, Wu X, Zhang Y, Huang W, Han W, Chen G, Xu Q, Chen H, Wu Q, Wang J, Huang J. Identification of a novel splicing variant of thyroid hormone receptor interaction protein 13 (TRIP13) in female infertility characterized by oocyte maturation arrest. J Assist Reprod Genet 2024; 41:2777-2785. [PMID: 39297991 PMCID: PMC11535116 DOI: 10.1007/s10815-024-03219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024] Open
Abstract
PURPOSE As a cause of primary female infertility, oocyte maturation arrest (OMA) is characterized by failure to obtain mature oocytes due to abnormal meiosis. We aimed to identify pathogenic variants in two sisters with OMA phenotype from a non-consanguineous family. METHODS Whole-exome sequencing and Sanger sequencing were conducted to identify and validate the disease-causing gene variant. Additionally, we performed a minigene assay, quantitative reverse transcription PCR, and Western blotting to assess the effects of the variant. RESULTS We identified a novel homozygous splicing variant (c.1021-11T>C) in TRIP13, which followed a recessive inheritance pattern. Minigene assay showed that the variant could disrupt the integrity of TRIP13 mRNA, as evidenced by the production of an alternative transcript with intron10 intermediate retention of 79 bp. Compared to normal controls, the expression of TRIP13 mRNA and abundance of TRIP13 protein were also significantly decreased in Epstein-Barr virus-immortalized lymphoblastoid cells derived from affected individuals. CONCLUSION Our findings confirm the contribution of genetic factors to OMA and expand the mutation spectrum of TRIP13 in female infertility.
Collapse
Affiliation(s)
- Jia Chen
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Yuxin Liu
- Department of Clinical Medicine, Nanchang University School of Queen Mary, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Yiwei Zhang
- Department of Clinical Medicine, Nanchang University School of Queen Mary, Nanchang, China
| | - Wen Huang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Wenbo Han
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Ge Chen
- Central Laboratory, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Qiang Xu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Houyang Chen
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Qiongfang Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Jiawei Wang
- Division of Life Sciences and Medicine, Reproductive and Genetic Hospital, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Reproductive Health, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China.
| |
Collapse
|
6
|
Pitiot AS, Blay P, Díaz-Navarro A, Fernández-Arrojo S, Romero R, Álvarez-Eguiluz Á, Alvarado MG, Álvarez N, García-Teijido P, Fernández Y, Palacio I, Puente XS, Balbín M. Featuring BRCA1 and BRCA2 germline mutational landscape from Asturias (North Spain). Clin Genet 2024; 106:525-531. [PMID: 38922859 DOI: 10.1111/cge.14580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The singular BRCA1/2 mutational landscape of Asturias is updated 10 years after the first study. We analyzed BRCA1 and BRCA2 pathogenic variants in 1653 index cases. In total, 238 families were identified to carry a pathogenic variant, 163 families in BRCA1 and 75 families in BRCA2. This yielded a prevalence rate of 14.4%. Seven recurrent variants were found accounting for 55% of the cases. Among them, three are widely distributed (BRCA1 c.211A>G, c.470_471del and c.3331_3334del) and four had been reported as novel in Asturias: two in BRCA1 (c.1674del and c.2901_2902dup) and two in BRCA2 (c.2095C>T and c.4040_4035delinsC). A common haplotype was established for all recurrent variants indicating a shared ancestral origin. Three splicing analyses are shown: BRCA1:c.5152+3A>C and BRCA1:c.5333-3T>G that lead to skipping of exon 18, and 22 respectively, and BRCA1:c.5278-1G>T giving rise to two transcripts, one lacking exon 21 (p.Ille1760Glyfs*60) and one lacking the first 8 nucleotides of exon 21 (p.Phe1761Asnfs*14), supporting pathogenicity for these variants.
Collapse
Affiliation(s)
- Ana S Pitiot
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pilar Blay
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Oncología Médica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Ander Díaz-Navarro
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Sara Fernández-Arrojo
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Rosa Romero
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ángel Álvarez-Eguiluz
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Marta G Alvarado
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Nieves Álvarez
- Servicio de Oncología Médica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Paula García-Teijido
- Servicio de Oncología Médica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Yolanda Fernández
- Servicio de Oncología Médica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Isabel Palacio
- Servicio de Oncología Médica, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Xose S Puente
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Milagros Balbín
- Laboratorio de Oncología Molecular, Laboratorio de Medicina, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
7
|
Miao M, Feng L, Wang J, Xu C, Su X, Zhang G, Lu S. A novel PKHD1 splicing variant identified in a fetus with autosomal recessive polycystic kidney disease. Front Genet 2023; 14:1207772. [PMID: 37456659 PMCID: PMC10339289 DOI: 10.3389/fgene.2023.1207772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
Objective: Variants of the polycystic kidney and hepatic disease 1 (PKHD1) gene are associated with autosomal recessive polycystic kidney disease (ARPKD). This study aimed to identify the genetic causes in a Chinese pedigree with ARPKD and design a minigene construct of the PKHD1 gene to investigate the impact of its variants on splicing. Methods: Umbilical cord samples from the proband and peripheral blood samples from his parents were collected, and genomic DNA was extracted for whole-exome sequencing (WES). Bioinformatic analysis was used to identify potential genetic causes, and Sanger sequencing confirmed the existence of variants within the pedigree. A minigene assay was performed to validate the effects of an intronic variant on mRNA splicing. Results: Two variants, c.9455del (p.N3152Tfs*10) and c.2408-13C>G, were identified in the PKHD1 gene (NM_138694.4) by WES; the latter has not been previously reported. In silico analysis predicted that this intronic variant is potentially pathogenic. Bioinformatic splice prediction tools revealed that the variant is likely to strongly impact splice site function. An in vitro minigene assay revealed that c.2408-13C>G can cause aberrant splicing, resulting in the retention of 12 bp of intron 23. Conclusion: A novel pathogenic variant of PKHD1, c.2408-13C>G, was found in a fetus with ARPKD, which enriches the variant spectrum of the PKHD1 gene and provides a basis for genetic counseling and the diagnosis of ARPKD. Minigenes are optimal to determine whether intron variants can cause aberrant splicing.
Collapse
Affiliation(s)
- Mingzhu Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liqun Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jue Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaotian Su
- Department of Bioinformatics, Berry Genomics Co., Ltd., Beijing, China
| | - Guoying Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shoulian Lu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Systematic analysis of CNGA3 splice variants identifies different mechanisms of aberrant splicing. Sci Rep 2023; 13:2896. [PMID: 36801918 PMCID: PMC9938885 DOI: 10.1038/s41598-023-29452-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/06/2023] [Indexed: 02/20/2023] Open
Abstract
Achromatopsia is an autosomal recessive cone photoreceptor disease that is frequently caused by pathogenic variants in the CNGA3 gene. Here, we present a systematic functional analysis of 20 CNGA3 splice site variants detected in our large cohort of achromatopsia patients and/or listed in common variant databases. All variants were analyzed by functional splice assays based on the pSPL3 exon trapping vector. We demonstrated that ten variants, both at canonical and non-canonical splice sites, induced aberrant splicing, including intronic nucleotide retention, exonic nucleotide deletion and exon skipping, resulting in 21 different aberrant transcripts. Of these, eleven were predicted to introduce a premature termination codon. The pathogenicity of all variants was assessed based on established guidelines for variant classification. Incorporation of the results of our functional analyses enabled re-classification of 75% of variants previously classified as variants of uncertain significance into either likely benign or likely pathogenic. Our study is the first in which a systematic characterization of putative CNGA3 splice variants has been performed. We demonstrated the utility of pSPL3 based minigene assays in the effective assessment of putative splice variants. Our findings improve the diagnosis of achromatopsia patients, who may thus benefit from future gene-based therapeutic strategies.
Collapse
|
9
|
Dong Z, Wang Y, Zhang J, Zhu F, Liu Z, Kang Y, Lin M, Shi H. Analyzing the effects of BRCA1/2 variants on mRNA splicing by minigene assay. J Hum Genet 2023; 68:65-71. [PMID: 36446827 DOI: 10.1038/s10038-022-01077-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
As BRCA1/2 gene sequencing become more extensive, a large number VUS (variants of uncertain significance) emerge rapidly. Verifying the splicing effect is an effective means for VUS reclassification. The Minigene Assay platform was established and its reliability was verified in this article. 47 BRCA1 or BRCA2 variants were selected and performed to validate their effect on mRNA splicing. The results showed that, a total of 16 variants were experimentally proved to have effects on mRNA splicing, among which 14 variants were shown to cause truncated proteins by Sanger sequencing. While the other two variants, BRCA2 c.7976 + 3 A > G and BRCA1 c.5152 + 3_5152 + 4insT was analyzed to cause 57 bp and 26 bp base in-frame deletion, respectively. The remaining 31 variants were not shown to cause mRNA splicing abnormity, including several sites at the edge of exons, which were predicted to affect splicing of mRNA by multiple bioinformatic software. Based on our experimental results, 37 variants were reclassified by ACMG rules. Our study showed that experimental splicing analysis was effectual for variants classification, and multiple functional assay or clinical data were also necessary for comprehensive judgment of variants.
Collapse
Affiliation(s)
- Zhouhuan Dong
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Yun Wang
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Jing Zhang
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Fengwei Zhu
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China
| | - Zhiyuan Liu
- Amoy Diagnostics Co., Ltd., Xiamen, 361027, PR China
| | - Yajun Kang
- Amoy Diagnostics Co., Ltd., Xiamen, 361027, PR China
| | - Mingyuan Lin
- Amoy Diagnostics Co., Ltd., Xiamen, 361027, PR China
| | - Huaiyin Shi
- The First Medical Center, Chinese PLA General Hospital & PLA Medical School, Beijing, 100853, PR China.
| |
Collapse
|
10
|
Alimohamed MZ, Boven LG, van Dijk KK, Vos YJ, Hoedemaekers YM, van der Zwaag PA, Sijmons RH, Jongbloed JD, Sikkema-Raddatz B, Westers H. SEPT–GD: A decision tree to prioritise potential RNA splice variants in cardiomyopathy genes for functional splicing assays in diagnostics. Gene 2023; 851:146984. [DOI: 10.1016/j.gene.2022.146984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/09/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
11
|
Molina MF, Pio MG, Scheps KG, Adrover E, Abelleyro MM, Targovnik HM, Rivolta CM. Curating the gnomAD database: Report of novel variants in the thyroid peroxidase gene using in silico bioinformatics algorithms and a literature review. Mol Cell Endocrinol 2022; 558:111748. [PMID: 35995307 DOI: 10.1016/j.mce.2022.111748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
Thyroid peroxidase (TPO) is a membrane-bound glycoprotein located at the apical side of the thyroid follicular cells that catalyzes both iodination and coupling of iodotyrosine residues within the thyroglobulin molecule, leading to the synthesis of thyroid hormone. Variants in TPO cause congenital hypothyroidism (CH) by iodide organification defect and are commonly inherited in an autosomal recessive fashion. In the present work, we report a detailed population analysis and bioinformatic prediction of the TPO variants indexed in the Genome Aggregation Database (gnomAD) v2.1.1. The proportion of missense cysteine variants and nonsense, frameshift, and splice acceptor/donor variants were analyzed in each ethnic group (European (Non-Finnish), European (Finnish), African/African Americans, Latino/Admixed American, East Asian, South Asian, Ashkenazi Jewish, Other). The results showed a clear predominance of frameshift variants in the East Asian (82%) and European (Finnish) (75%) population, whereas the splice site variants predominate in African/African Americans (99.46%), Other (96%), Latino/Admixed American (94%), South Asian (86%), European (Non-Finnish) (56%) and Ashkenazi Jewish (56%) populations. The analysis of the distribution of the variants indexed in gnomAD v2.1.1 database revealed that most missense variants identified in the An peroxidase domain map in exon 8, followed by exons 11, 7 and 9, and finally in descending order by exons 10, 6, 12 and 5. In total, 183 novel TPO variants were described (13 missense cysteine's variants, 158 missense variants involving the An peroxidase domain and 12 splicing acceptor or donor sites variants) which were not reported in the literature and that would have deleterious effects on prediction programs. In the gnomAD v2.1.1 population, the estimated prevalence of heterozygous carriers of the potentially damaging variants was 1:77. In conclusion, we provide an updated and curated reference source of new TPO variants for application in clinical diagnosis and genetic counseling. Also, this work contributes to elucidating the molecular basis of CH associated with TPO defects.
Collapse
Affiliation(s)
- Maricel F Molina
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Mauricio Gomes Pio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Karen G Scheps
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ezequiela Adrover
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Miguel M Abelleyro
- CONICET-Academia Nacional de Medicina, Instituto de Medicina Experimental (IMEX), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
12
|
Alenezi WM, Fierheller CT, Revil T, Serruya C, Mes-Masson AM, Foulkes WD, Provencher D, El Haffaf Z, Ragoussis J, Tonin PN. Case Review: Whole-Exome Sequencing Analyses Identify Carriers of a Known Likely Pathogenic Intronic BRCA1 Variant in Ovarian Cancer Cases Clinically Negative for Pathogenic BRCA1 and BRCA2 Variants. Genes (Basel) 2022; 13:genes13040697. [PMID: 35456503 PMCID: PMC9032308 DOI: 10.3390/genes13040697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Detecting pathogenic intronic variants resulting in aberrant splicing remains a challenge in routine genetic testing. We describe germline whole-exome sequencing (WES) analyses and apply in silico predictive tools of familial ovarian cancer (OC) cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants. Methods: WES data from 27 familial OC cases reported clinically negative for pathogenic BRCA1 and BRCA2 variants and 53 sporadic early-onset OC cases were analyzed for pathogenic variants in BRCA1 or BRCA2. WES data from carriers of pathogenic BRCA1 or BRCA2 variants were analyzed for pathogenic variants in 10 other OC predisposing genes. Loss of heterozygosity analysis was performed on tumor DNA from variant carriers. Results: BRCA1 c.5407-25T>A intronic variant, identified in two affected sisters and one sporadic OC case, is predicted to create a new splice effecting transcription of BRCA1. WES data from BRCA1 c.5407-25T>A carriers showed no evidence of pathogenic variants in other OC predisposing genes. Sequencing the tumor DNA from the variant carrier showed complete loss of the wild-type allele. Conclusions: The findings support BRCA1 c.5407-25T>A as a likely pathogenic variant and highlight the importance of investigating intronic sequences as causal variants in OC families where the involvement of BRCA1 is highly suggestive.
Collapse
Affiliation(s)
- Wejdan M. Alenezi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Department of Medical Laboratory Technology, Taibah University, Medina 42353, Saudi Arabia
| | - Caitlin T. Fierheller
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Timothée Revil
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Corinne Serruya
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Anne-Marie Mes-Masson
- Département de Médecine, Université de Montréal, Montreal, QC H3T 1J4, Canada;
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada; (D.P.); (Z.E.H.)
| | - William D. Foulkes
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Lady Davis Institute for Medical Research of the Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Department of Medical Genetics, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 1G5, Canada
| | - Diane Provencher
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada; (D.P.); (Z.E.H.)
- Division of Gynecologic Oncology, Université de Montréal, Montreal, QC H4A 3J1, Canada
| | - Zaki El Haffaf
- Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada; (D.P.); (Z.E.H.)
- Service de Médecine Génique, Centre Hospitalier de l’Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- McGill Genome Centre, McGill University, Montreal, QC H3A 0G1, Canada
| | - Patricia N. Tonin
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; (W.M.A.); (C.T.F.); (T.R.); (W.D.F.); (J.R.)
- Cancer Research Program, Centre for Translational Biology, The Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-(514)-934-1934 (ext. 44069)
| |
Collapse
|
13
|
Deng H, Zhang Y, Ding J, Wang F. Presumed COL4A3/COL4A4 Missense/Synonymous Variants Induce Aberrant Splicing. Front Med (Lausanne) 2022; 9:838983. [PMID: 35386907 PMCID: PMC8977549 DOI: 10.3389/fmed.2022.838983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
Background The incorrect interpretation of missense and synonymous variants can lead to improper molecular diagnosis and subsequent faulty genetic counselling. The aim of this study was to evaluate the pathogenicity of presumed COL4A3/COL4A4 missense and synonymous variants detected by next-generation sequencing to provide evidence for diagnosis and genetic counselling. Methods Patients' clinical findings and genetic data were analysed retrospectively. An in vitro minigene assay was conducted to assess the effect of presumed COL4A3/COL4A4 missense and synonymous variants on RNA splicing. Results Five unclassified COL4A3/COL4A4 variants, which were detected in five of 343 patients with hereditary kidney diseases, were analysed. All of them were predicted to affect splicing by Human Splicing Finder. The presumed COL4A3 missense variant c.4793T > G [p. (Leu1598Arg)] resulted in a loss of alternative full-length transcript during the splicing process. The COL4A3 transcript carried synonymous variant c.765G > A [p. (Thr255Thr)], led to an in-frame deletion of exon 13. Nevertheless, variants c.3566G > A [p. (Gly1189Glu)] in COL4A3 and c.3990G > A [p. (Pro1330Pro)], c.4766C > T [p. (Pro1589Leu)] in COL4A4 exhibited no deleterious effect on splicing. Among the five patients harbouring the abovementioned COL4A3/COL4A4 variants, three patients were genetically diagnosed with autosomal recessive Alport syndrome, one patient was highly suspected of having thin basement membrane nephropathy, and the other patient was clinically diagnosed with Alport syndrome. Conclusions COL4A3 presumed missense variant p. (Leu1598Arg) and synonymous variant p. (Thr255Thr) affect RNA splicing, which highlights the prime importance of transcript analysis of unclassified exonic sequence variants for better molecular diagnosis and genetic counselling. Meanwhile, the reliability of splicing predictions by predictive tools for exonic substitutions needs to be improved.
Collapse
Affiliation(s)
- Haiyue Deng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Ebner S, Winkelmann R, Martin S, Köllermann J, Wild PJ, Demes M. Sequencing of BRCA1/2-alterations using NGS-based technology: annotation as a challenge. Oncotarget 2022; 13:464-475. [PMID: 35251494 PMCID: PMC8893798 DOI: 10.18632/oncotarget.28213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
In this study, the molecular profile of different BRCA-associated tumor types was assessed with regard to the classification and annotation of detected BRCA1/2 variants. The aim was to establish guidelines in order to facilitate the interpretation of BRCA1/2 alterations in routine diagnostics. Annotation of detected variants was evaluated compared to background mutations found in normal tissue samples and manually reviewed according to distinct online databases. This retrospective study included 48 samples (45 tumors, three non-tumors), which were sequenced with the GeneReader (QIAGEN). Thereof ten samples were additionally analyzed with the Ion S5™ (Thermo Fisher) and 20 samples with the MiSeq™ (Illumina®) to compare the different NGS devices, as well as the sequencing results and their quality. The analysis showed that the individual NGS platforms detected different numbers of BRCA1/2 alterations in the respective tumor sample. In addition, the GeneReader revealed variability in the detection and classification of pathogenic alterations within the platform itself as well as in comparison with the other platforms or online databases. The study concluded that the Ion S5™ in combination with the Oncomine™ Comprehensive Assay v3 is most recommendable for current and prospective requirements of molecular analysis in routine diagnostics. In addition to the two BRCA1/2 genes, a broad number of other genes (BRCAness genes and genes involved in the repair pathway) is covered by the panel, which may open up new treatment options for patients depending on the respective eligibility criteria.
Collapse
Affiliation(s)
- Silvana Ebner
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ria Winkelmann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Saskia Martin
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Jens Köllermann
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany.,Wildlab, University Hospital MVZ GmbH, Frankfurt am Main, Germany
| | - Melanie Demes
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany.,Wildlab, University Hospital MVZ GmbH, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Chiang YC, Lin PH, Cheng WF. Homologous Recombination Deficiency Assays in Epithelial Ovarian Cancer: Current Status and Future Direction. Front Oncol 2021; 11:675972. [PMID: 34722237 PMCID: PMC8551835 DOI: 10.3389/fonc.2021.675972] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Epithelial ovarian cancer (EOC) patients are generally diagnosed at an advanced stage, usually relapse after initial treatments, which include debulking surgery and adjuvant platinum-based chemotherapy, and eventually have poor 5-year survival of less than 50%. In recent years, promising survival benefits from maintenance therapy with poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) has changed the management of EOC in newly diagnosed and recurrent disease. Identification of BRCA mutations and/or homologous recombination deficiency (HRD) is critical for selecting patients for PARPi treatment. However, the currently available HRD assays are not perfect predictors of the clinical response to PARPis in EOC patients. In this review, we introduce the concept of synthetic lethality, the rationale of using PARPi when HRD is present in tumor cells, the clinical trials of PARPi incorporating the HRD assays for EOC, the current HRD assays, and other HRD assays in development.
Collapse
Affiliation(s)
- Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Han Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Tao M, Wu X. The role of patient-derived ovarian cancer organoids in the study of PARP inhibitors sensitivity and resistance: from genomic analysis to functional testing. J Exp Clin Cancer Res 2021; 40:338. [PMID: 34702316 PMCID: PMC8547054 DOI: 10.1186/s13046-021-02139-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
Epithelial ovarian cancer (EOC) harbors distinct genetic features such as homologous recombination repair (HRR) deficiency, and therefore may respond to poly ADP-ribose polymerase inhibitors (PARPi). Over the past few years, PARPi have been added to the standard of care for EOC patients in both front-line and recurrent settings. Next-generation sequencing (NGS) genomic analysis provides key information, allowing for the prediction of PARPi response in patients who are PARPi naïve. However, there are indeed some limitations in NGS analyses. A subset of patients can benefit from PARPi, despite the failed detection of the predictive biomarkers such as BRCA1/2 mutations or HRR deficiency. Moreover, in the recurrent setting, the sequencing of initial tumor does not allow for the detection of reversions or secondary mutations restoring proficient HRR and thus leading to PARPi resistance. Therefore, it becomes crucial to better screen patients who will likely benefit from PARPi treatment, especially those with prior receipt of maintenance PARPi therapy. Recently, patient-derived organoids (PDOs) have been regarded as a reliable preclinical platform with clonal heterogeneity and genetic features of original tumors. PDOs are found feasible for functional testing and interrogation of biomarkers for predicting response to PARPi in EOC. Hence, we review the strengths and limitations of various predictive biomarkers and highlight the role of patient-derived ovarian cancer organoids as functional assays in the study of PARPi response. It was found that a combination of NGS and functional assays using PDOs could enhance the efficient screening of EOC patients suitable for PARPi, thus prolonging their survival time.
Collapse
Affiliation(s)
- Mengyu Tao
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, People's Republic of China
| | - Xia Wu
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecology Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai, 200127, People's Republic of China.
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
17
|
Chiang YC, Lin PH, Lu TP, Kuo KT, Tai YJ, Hsu HC, Wu CY, Lee CY, Shen H, Chen CA, Cheng WF. A DNA Damage Response Gene Panel for Different Histologic Types of Epithelial Ovarian Carcinomas and Their Outcomes. Biomedicines 2021; 9:biomedicines9101384. [PMID: 34680501 PMCID: PMC8533221 DOI: 10.3390/biomedicines9101384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
DNA damage response (DDR) is important for maintaining genomic integrity of the cell. Aberrant DDR pathways lead to accumulation of DNA damage, genomic instability and malignant transformations. Gene mutations have been proven to be associated with epithelial ovarian cancer, and the majority of the literature has focused on BRCA. In this study, we investigated the somatic mutation of DNA damage response genes in epithelial ovarian cancer patients using a multiple-gene panel with next-generation sequencing. In all, 69 serous, 39 endometrioid and 64 clear cell carcinoma patients were enrolled. Serous carcinoma patients (69.6%) had higher percentages of DDR gene mutations compared with patients with endometrioid (33.3%) and clear cell carcinoma (26.6%) (p < 0.001, chi-squared test). The percentages of DDR gene mutations in patients with recurrence (53.9 vs. 32.9% p = 0.006, chi-squared test) or cancer-related death (59.2 vs. 34.4% p = 0.001, chi-squared test) were higher than those without recurrence or living patients. In endometrioid carcinoma, patients with ≥2 DDR gene mutations had shorter PFS (p = 0.0035, log-rank test) and OS (p = 0.015, log-rank test) than those with one mutation or none. In clear cell carcinoma, patients with ≥2 DDR gene mutations had significantly shorter PFS (p = 0.0056, log-rank test) and OS (p = 0.0046, log-rank test) than those with 1 DDR mutation or none. In the EOC patients, somatic DDR gene mutations were associated with advanced-stage tumor recurrence and tumor-related death. Type I EOC patients with DDR mutations had an unfavorable prognosis, especially for clear cell carcinoma.
Collapse
Affiliation(s)
- Ying-Cheng Chiang
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100226, Taiwan;
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan; (Y.-J.T.); (C.-Y.W.)
| | - Po-Han Lin
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100226, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
| | - Tzu-Pin Lu
- Institute of Epidemiology and Preventive Medicine, Department of Public Health, National Taiwan University, Taipei 100025, Taiwan;
| | - Kuan-Ting Kuo
- Department of Pathology, College of Medicine, National Taiwan University, Taipei 100225, Taiwan;
| | - Yi-Jou Tai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan; (Y.-J.T.); (C.-Y.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
| | - Heng-Cheng Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan
| | - Chia-Ying Wu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan; (Y.-J.T.); (C.-Y.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
| | - Chia-Yi Lee
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan
| | - Hung Shen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu 30059, Taiwan
| | - Chi-An Chen
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100226, Taiwan;
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan; (Y.-J.T.); (C.-Y.W.)
- Correspondence: (C.-A.C.); (W.-F.C.); Tel.: +886-2-2312-3456 (ext. 71964) (W.-F.C.)
| | - Wen-Fang Cheng
- Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, Taipei 100226, Taiwan;
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100226, Taiwan; (Y.-J.T.); (C.-Y.W.)
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100225, Taiwan; (H.-C.H.); (C.-Y.L.); (H.S.)
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 100025, Taiwan
- Correspondence: (C.-A.C.); (W.-F.C.); Tel.: +886-2-2312-3456 (ext. 71964) (W.-F.C.)
| |
Collapse
|
18
|
Pio MG, Siffo S, Scheps KG, Molina MF, Adrover E, Abelleyro MM, Rivolta CM, Targovnik HM. Curating the gnomAD database: Report of novel variants in the thyrogobulin gene using in silico bioinformatics algorithms. Mol Cell Endocrinol 2021; 534:111359. [PMID: 34119605 DOI: 10.1016/j.mce.2021.111359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 01/09/2023]
Abstract
Thyroglobulin (TG) is a large glycosylated protein of 2767 amino acids, secreted by the thyrocytes into the follicular lumen. It plays an essential role in the process of thyroid hormone synthesis. TG gene variants lead to permanent congenital hypothyroidism. In the present work, we report a detailed population and bioinformatic prediction analyses of the TG variants indexed in the Genome Aggregation Database (gnomAD). The results showed a clear predominance of nonsense variants in the European (Finnish), European (Non-Finnish) and Ashkenazi Jewish ethnic groups, whereas the splice site variants predominate in South Asian and African/African-American populations. In total, 282 novel TG variants were described (47 missense involving the wild-type cysteine residues, 177 missense located in the ChEL domain and 58 splice site variants) which were not reported in the literature and that would have deleterious effects in prediction programs. In the gnomAD population, the estimated prevalence of heterozygous carriers of the potentially damaging variants was 1:320. In conclusion, we provide an updated and curated reference source for the diagnosis of thyroid disease, mainly to congenital hypothyroidism due to TG deficiency. The identification and characterization of TG variants is undoubtedly a valuable approach to study the TG structure/function relations and an important tool for clinical diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Mauricio Gomes Pio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Sofia Siffo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Karen G Scheps
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Maricel F Molina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ezequiela Adrover
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Miguel M Abelleyro
- CONICET-Academia Nacional de Medicina, Instituto de Medicina Experimental (IMEX), Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
19
|
Yang P, Chen T, Wu K, Hou Z, Zou Y, Li M, Zhang X, Xu J, Zhao H. A homozygous variant in TBPL2 was identified in women with oocyte maturation defects and infertility. Hum Reprod 2021; 36:2011-2019. [PMID: 33893736 DOI: 10.1093/humrep/deab094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION What are the genetic causes of oocyte maturation defects? SUMMARY ANSWER A homozygous splicing variant (c.788 + 3A>G) in TATA-box binding protein like 2 (TBPL2) was identified as a contributory genetic factor in oocyte maturation defects. WHAT IS KNOWN ALREADY TBPL2, a vertebrate oocyte-specific general transcription factor, is essential for oocyte development. TBPL2 variants have not been studied in human oocyte maturation defects. STUDY DESIGN, SIZE, DURATION Two infertile families characterized by oocyte maturation defects were recruited for whole-exome sequencing (WES). PARTICIPANTS/MATERIALS, SETTING, METHODS Genomic DNA was extracted from peripheral blood for WES analysis. Sanger sequencing was performed for data validation. Pathogenicity of variants was predicted by in silico analysis. Minigene assay and single-oocyte RNA sequencing were performed to investigate the effects of the variant on mRNA integrity and oocyte transcriptome, respectively. MAIN RESULTS AND THE ROLE OF CHANCE A homozygous splicing variant (c.788 + 3A>G) in TBPL2 was identified in two unrelated families characterized by oocyte maturation defects. Haplotype analysis indicated that the disease allele of Families 1 and 2 was independent. The variant disrupted the integrity of TBPL2 mRNA. Transcriptome sequencing of affected oocytes showed that vital genes for oocyte maturation and fertilization were widely and markedly downregulated, suggesting that a mutation in the transcriptional factor, TBPL2, led to global gene alterations in oocytes. LIMITATIONS, REASONS FOR CAUTION Limitations include the lack of direct functional evidence. Owing to the scarcity of human oocyte samples, only two immature MI oocytes were obtained from the patients, and we could only investigate the effect of the mutation at the transcriptional level by high-throughput sequencing technology. No extra oocytes were obtained to assess the transcriptional activity of the mutant oocytes by immunofluorescence, or investigate the effects on the binding of TBPL2 caused by the mutation. WIDER IMPLICATIONS OF THE FINDINGS Our findings highlight a critical role of TBPL2 in female reproduction and identify a homozygous splicing mutation in TBPL2 that might be related to defects in human oocyte maturation. This information will facilitate the genetic diagnosis of infertile individuals with repeated failures of IVF, providing a basis for genetic counseling. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Key Research and Development Program of China (2018YFC1004000, 2017YFC1001504 and 2017YFC1001600), the National Natural Science Foundation of China (81871168, 31900409 and 31871509), the Foundation for Distinguished Young Scholars of Shandong Province (JQ201816), the Innovative Research Team of High-Level Local Universities in Shanghai (SSMU-ZLCX20180401) and the Fundamental Research Funds of Shandong University. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Ping Yang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Tailai Chen
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Keliang Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Zhenzhen Hou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yang Zou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Mei Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - XinZe Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Junting Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Shandong Key Laboratory of Reproductive Medicine, Jinan, China
| |
Collapse
|
20
|
Bueno-Martínez E, Sanoguera-Miralles L, Valenzuela-Palomo A, Lorca V, Gómez-Sanz A, Carvalho S, Allen J, Infante M, Pérez-Segura P, Lázaro C, Easton DF, Devilee P, Vreeswijk MPG, de la Hoya M, Velasco EA. RAD51D Aberrant Splicing in Breast Cancer: Identification of Splicing Regulatory Elements and Minigene-Based Evaluation of 53 DNA Variants. Cancers (Basel) 2021; 13:2845. [PMID: 34200360 PMCID: PMC8201001 DOI: 10.3390/cancers13112845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
RAD51D loss-of-function variants increase lifetime risk of breast and ovarian cancer. Splicing disruption is a frequent pathogenic mechanism associated with variants in susceptibility genes. Herein, we have assessed the splicing and clinical impact of splice-site and exonic splicing enhancer (ESE) variants identified through the study of ~113,000 women of the BRIDGES cohort. A RAD51D minigene with exons 2-9 was constructed in splicing vector pSAD. Eleven BRIDGES splice-site variants (selected by MaxEntScan) were introduced into the minigene by site-directed mutagenesis and tested in MCF-7 cells. The 11 variants disrupted splicing, collectively generating 25 different aberrant transcripts. All variants but one produced negligible levels (<3.4%) of the full-length (FL) transcript. In addition, ESE elements of the alternative exon 3 were mapped by testing four overlapping exonic microdeletions (≥30-bp), revealing an ESE-rich interval (c.202_235del) with critical sequences for exon 3 recognition that might have been affected by germline variants. Next, 26 BRIDGES variants and 16 artificial exon 3 single-nucleotide substitutions were also assayed. Thirty variants impaired splicing with variable amounts (0-65.1%) of the FL transcript, although only c.202G>A demonstrated a complete aberrant splicing pattern without the FL transcript. On the other hand, c.214T>C increased efficiency of exon 3 recognition, so only the FL transcript was detected (100%). In conclusion, 41 RAD51D spliceogenic variants (28 of which were from the BRIDGES cohort) were identified by minigene assays. We show that minigene-based mapping of ESEs is a powerful approach for identifying ESE hotspots and ESE-disrupting variants. Finally, we have classified nine variants as likely pathogenic according to ACMG/AMP-based guidelines, highlighting the complex relationship between splicing alterations and variant interpretation.
Collapse
Affiliation(s)
- Elena Bueno-Martínez
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Lara Sanoguera-Miralles
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| | - Víctor Lorca
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Alicia Gómez-Sanz
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Mar Infante
- Cancer Genetics, Unidad de Excelencia Instituto de Biología y Genética Molecular (CSIC-UVa), 47003 Valladolid, Spain;
| | - Pedro Pérez-Segura
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL and CIBERONC, 08908 Hospitalet de Llobregat, Spain;
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; (S.C.); (J.A.); (D.F.E.)
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Maaike P. G. Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (P.D.); (M.P.G.V.)
| | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONC, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Hospital Clinico San Carlos, 28040 Madrid, Spain; (V.L.); (A.G.-S.); (P.P.-S.)
| | - Eladio A. Velasco
- Splicing and Genetic Susceptibility to Cancer Laboratory, Unidad de Excelencia Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC-UVa), 47003 Valladolid, Spain; (E.B.-M.); (L.S.-M.); (A.V.-P.)
| |
Collapse
|
21
|
Özkara G, Ersoy Tunali N. SEPTIN12 c.474 G > A polymorphism as a risk factor in teratozoospermic patients. Mol Biol Rep 2021; 48:4073-4081. [PMID: 34057684 DOI: 10.1007/s11033-021-06417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 05/17/2021] [Indexed: 12/01/2022]
Abstract
Teratozoospermia is a condition related to poor morphologically normal sperm count below the lower reference limit, which could hinder natural conception. Single nucleotide polymorphisms (SNPs) in the genes involved in sperm production and testicular function are proved to be risk factors, resulting in decreased sperm parameters and defects in sperm morphology. c.474 G > A polymorphism in the SEPTIN12 gene which is one of the testis-specific genes creates a novel splice variant and the resulting truncated protein was previously found to be more prevalent in infertile men. We aimed to investigate the association of SEPTIN12 c.474 G > A polymorphism with male infertility in teratozoospermia patients. Forty-eight teratozoospermic patients, diagnosed according to Kruger's criteria and 164 fertile controls who fathered at least 1 child within 3 years without assisted reproductive technologies were included into our prospective randomized controlled study. PCR-RFLP method was used for genotyping. Although no statistical difference was found between teratozoospermic patients and fertile controls in terms of genotype distributions, significance was identified between the genotypes of all and non-smoking teratozoopermic patients in terms of neck defects. SEPTIN12 c.474 G > A polymorphism was shown to be associated with sperm neck defects in teratozoospermic patients using the dominant statistical model. Smoking was identified as a risk factor for the sperm morphology defects in teratozoospermic A allele carriers.
Collapse
Affiliation(s)
- Gülçin Özkara
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, İstanbul University, İstanbul, Turkey
| | - Nagehan Ersoy Tunali
- Department of Molecular Biology Genetics, İstanbul Medeniyet University, İstanbul, Turkey.
| |
Collapse
|
22
|
Wang X, Xiao H, Su B, Ren Y, Ding J, Wang F. LAMB2 novel variant c.2885-9 C>A affects RNA splicing in a minigene assay. Mol Genet Genomic Med 2021; 9:e1704. [PMID: 33982833 PMCID: PMC8372075 DOI: 10.1002/mgg3.1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background Both Pierson syndrome (PS) and isolated nephrotic syndrome can be caused by LAMB2 biallelic pathogenic variants. Only 15 causative splicing variants in the LAMB2 gene have been reported. However, the pathogenicity of most of these variants has not been verified, which may lead to incorrect interpretation of the functional consequence of these variants. Methods Using high‐throughput DNA sequencing and Sanger sequencing, we detected variants in a female with clinically suspected PS. A minigene splicing assay was performed to assess the effect of LAMB2 intron 20 c.2885‐9C>A on RNA splicing. We also performed the immunohistochemical analysis of laminin beta‐2 in kidney tissues. Results Two novel LAMB2 heteroallelic variants were found: a paternally inherited variant c.2885‐9C>A in intron 20 and a maternally inherited variant c. 3658C>T (p. (Gln1220Ter)). In vitro minigene assay showed that the variant c.2885‐9C>A caused erroneous integration of a 7 bp sequence into intron 20. Immunohistochemical analysis revealed the absence of glomerular expression of laminin beta‐2, the protein encoded by LAMB2. Conclusion We demonstrated the impact of a novel LAMB2 intronic variant on RNA splicing using the minigene assay firstly. Our results extend the mutational spectrum of LAMB2.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Baige Su
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yali Ren
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
23
|
He L, Zhang B, Yang J, Guan W, Miao S, Fan X. A pitfall in targeted Sanger sequencing of BRCA splicing variants in at-risk individuals. Pathol Res Pract 2021; 222:153456. [PMID: 33964677 DOI: 10.1016/j.prp.2021.153456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Lu He
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Biao Zhang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jun Yang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Wenyan Guan
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Shuying Miao
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiangshan Fan
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
24
|
Kim JH, Park S, Park HS, Park JS, Lee ST, Kim SW, Lee JW, Lee MH, Park SK, Noh WC, Choi DH, Han W, Jung SH. Analysis of BRCA1/2 variants of unknown significance in the prospective Korean Hereditary Breast Cancer study. Sci Rep 2021; 11:8485. [PMID: 33875706 PMCID: PMC8055990 DOI: 10.1038/s41598-021-87792-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/05/2021] [Indexed: 11/12/2022] Open
Abstract
Genetic testing for BRCA1 and BRCA2 is crucial in diagnosing hereditary breast and ovarian cancer syndromes and has increased with the development of multigene panel tests. However, results classified as variants of uncertain significance (VUS) present challenges to clinicians in attempting to choose an appropriate management plans. We reviewed a total of 676 breast cancer patients included in the Korean Hereditary Breast Cancer (KOHBRA) study with a VUS on BRCA mutation tests between November 2007 and April 2013. These results were compared to the ClinVar database. We calculated the incidence and odds ratios for these variants using the Korean Reference Genome Database. A total of 58 and 91 distinct VUS in BRCA1 and BRCA2 were identified in the KOHBRA study (comprising 278 and 453 patients, respectively). A total of 27 variants in the KOHBRA study were not registered in the Single Nucleotide Polymorphism database. Among BRCA1 VUSs, 20 were reclassified as benign or likely benign, four were reclassified as pathogenic or likely pathogenic, and eight remained as VUSs according to the ClinVar database. Of the BRCA2 VUSs, 25 were reclassified as benign or likely benign, two were reclassified as pathogenic or likely pathogenic, and 33 remained as VUS according to the ClinVar database. There were 12 variants with conflicting interpretations of pathogenicity for BRCA1 and 18 for BRCA2. Among them, p.Leu1780Pro showed a particularly high odds ratio. Six pathogenic variants and one conflicting variant identified using ClinVar could be reclassified as pathogenic variants in this study. Using updated ClinVar information and calculating odds ratios can be helpful when reclassifying VUSs in BRCA1/2.
Collapse
Affiliation(s)
- Joo Heung Kim
- Department of Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Gyeonggi, Republic of Korea
| | - Sunggyun Park
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyung Seok Park
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonseiro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Ji Soo Park
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonseiro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Won Kim
- Department of Surgery, Daerim St. Mary's Hospital, Seoul, Republic of Korea
| | - Jong Won Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min Hyuk Lee
- Department of Surgery, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Woo-Chul Noh
- Department of Surgery, Korea Institute of Radiological & Medical Science, Korea Cancer Center Hospital, Seoul, Republic of Korea
| | - Doo Ho Choi
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Wonshik Han
- Department of Surgery, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Chonbuk National University Hospital, Jeonju, Jeollabuk, Republic of Korea
| |
Collapse
|
25
|
The BRCA1 c.788G > T (NM_007294.4) variant in a high grade serous ovarian cancer (HGSOC) patient: foods for thought. Mol Biol Rep 2021; 48:2985-2992. [PMID: 33656647 DOI: 10.1007/s11033-021-06243-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022]
Abstract
In this report we described the case of a BRCA1/2 (BRCA) molecular testing performed on tumor sample in a High Grade Serous Ovarian Cancer (HGSOC) patient with two different Next Generation Tumor Sequencing (NGTS) pipelines. The two clinical reports leaded to apparently different BRCA status, providing important foods for thought. After NGTS, the gene sequencing information (i.e., reads) are aligned to the reference gene sequences obtained from public databases, in order to provide an uniform nomenclature for unambiguous variant designation. However, the criteria adopted for variant reporting in tissue test are not always univocal. Particularly, this is the case of rare and unclassified BRCA variants for which the molecular evaluation may be a relevant challenge. Here we described a BRCA1 unclassified variant that may be re-evaluated in the context of alternative BRCA1 transcripts due to its different biological effect. We underlined that an in-depth knowledge of BRCA testing is mandatory for its appropriate use.
Collapse
|
26
|
Pio MG, Molina MF, Siffo S, Chiesa A, Rivolta CM, Targovnik HM. A novel mutation in intron 11 donor splice site, responsible of a rare genotype in thyroglobulin gene by altering the pre-mRNA splincing process. Cell expression and bioinformatic analysis. Mol Cell Endocrinol 2021; 522:111124. [PMID: 33321114 DOI: 10.1016/j.mce.2020.111124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/09/2023]
Abstract
Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, two hundred twenty-seven variations of the TG gene have been identified in humans. Thyroid dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. The purpose of the present study was to identify and characterize new variants in the TG gene. We report an Argentine patient with congenital hypothyroidism, enlarged thyroid gland and low levels of serum TG. Sequencing of DNA, expression of chimeric minigenes as well as bioinformatics analysis were performed. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a c.3001+5G > A, whereas the paternal mutation consists of p.Arg296*. Minigen analysis of the variant c.3001+5A performed in HeLa, CV1 and Hek293T cell lines, showed a total lack of transcript expression. So, in order to validate that the loss of expression was caused by such variation, site-directed mutagenesis was performed on the mutated clone, which previously had a pSPL3 vector change, to give rise to a wild-type clone c.3001+5G, endorsing that the mutation c.3001+5G > A is the cause of the total lack of expression. In conclusion, we demonstrate that the c.3001+5G > A mutation causes a rare genotype, altering the splicing of the pre-mRNA. This work contributes to elucidating the molecular bases of TG defects associated with congenital hypothyroidism and expands our knowledge in relation to the pathologic roles of the position 5 in the donor splice site.
Collapse
Affiliation(s)
- Mauricio Gomes Pio
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Maricel F Molina
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Sofia Siffo
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Ana Chiesa
- Centro de Investigaciones Endocrinológicas, CEDIE-CONICET, División Endocrinología, Hospital de Niños "Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Carina M Rivolta
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina.
| |
Collapse
|
27
|
Novel candidates of pathogenic variants of the BRCA1 and BRCA2 genes from a dataset of 3,552 Japanese whole genomes (3.5KJPNv2). PLoS One 2021; 16:e0236907. [PMID: 33428613 PMCID: PMC7799847 DOI: 10.1371/journal.pone.0236907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Identification of the population frequencies of definitely pathogenic germline variants in two major hereditary breast and ovarian cancer syndrome (HBOC) genes, BRCA1/2, is essential to estimate the number of HBOC patients. In addition, the identification of moderately penetrant HBOC gene variants that contribute to increasing the risk of breast and ovarian cancers in a population is critical to establish personalized health care. A prospective cohort subjected to genome analysis can provide both sets of information. Computational scoring and prospective cohort studies may help to identify such likely pathogenic variants in the general population. We annotated the variants in the BRCA1 and BRCA2 genes from a dataset of 3,552 whole-genome sequences obtained from members of a prospective cohorts with genome data in the Tohoku Medical Megabank Project (TMM) with InterVar software. Computational impact scores (CADD_phred and Eigen_raw) and minor allele frequencies (MAFs) of pathogenic (P) and likely pathogenic (LP) variants in ClinVar were used for filtration criteria. Familial predispositions to cancers among the 35,000 TMM genome cohort participants were analyzed to verify the identified pathogenicity. Seven potentially pathogenic variants were newly identified. The sisters of carriers of these moderately deleterious variants and definite P and LP variants among members of the TMM prospective cohort showed a statistically significant preponderance for cancer onset, from the self-reported cancer history. Filtering by computational scoring and MAF is useful to identify potentially pathogenic variants in BRCA genes in the Japanese population. These results should help to follow up the carriers of variants of uncertain significance in the HBOC genes in the longitudinal prospective cohort study.
Collapse
|
28
|
Miller RE, Leary A, Scott CL, Serra V, Lord CJ, Bowtell D, Chang DK, Garsed DW, Jonkers J, Ledermann JA, Nik-Zainal S, Ray-Coquard I, Shah SP, Matias-Guiu X, Swisher EM, Yates LR. ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer. Ann Oncol 2020; 31:1606-1622. [PMID: 33004253 DOI: 10.1016/j.annonc.2020.08.2102] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Homologous recombination repair deficiency (HRD) is a frequent feature of high-grade serous ovarian, fallopian tube and peritoneal carcinoma (HGSC) and is associated with sensitivity to PARP inhibitor (PARPi) therapy. HRD testing provides an opportunity to optimise PARPi use in HGSC but methodologies are diverse and clinical application remains controversial. MATERIALS AND METHODS To define best practice for HRD testing in HGSC the ESMO Translational Research and Precision Medicine Working Group launched a collaborative project that incorporated a systematic review approach. The main aims were to (i) define the term 'HRD test'; (ii) provide an overview of the biological rationale and the level of evidence supporting currently available HRD tests; (iii) provide recommendations on the clinical utility of HRD tests in clinical management of HGSC. RESULTS A broad range of repair genes, genomic scars, mutational signatures and functional assays are associated with a history of HRD. Currently, the clinical validity of HRD tests in ovarian cancer is best assessed, not in terms of biological HRD status per se, but in terms of PARPi benefit. Clinical trials evidence supports the use of BRCA mutation testing and two commercially available assays that also incorporate genomic instability for identifying subgroups of HGSCs that derive different magnitudes of benefit from PARPi therapy, albeit with some variation by clinical scenario. These tests can be used to inform treatment selection and scheduling but their use is limited by a failure to consistently identify a subgroup of patients who derive no benefit from PARPis in most studies. Existing tests lack negative predictive value and inadequately address the complex and dynamic nature of the HRD phenotype. CONCLUSIONS Currently available HRD tests are useful for predicting likely magnitude of benefit from PARPis but better biomarkers are urgently needed to better identify current homologous recombination proficiency status and stratify HGSC management.
Collapse
Affiliation(s)
- R E Miller
- Department of Medical Oncology, University College London, London, UK; Department of Medical Oncology, St Bartholomew's Hospital, London, UK
| | - A Leary
- Department of Medicine and INSERM U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Paris, France
| | - C L Scott
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - V Serra
- Experimental Therapeutics Group Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - C J Lord
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK; CRUK Gene Function Laboratory, The Institute of Cancer Research, London, UK
| | - D Bowtell
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - D K Chang
- Glasgow Precision Oncology Laboratory, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - D W Garsed
- Peter MacCallum Cancer Centre, Melbourne, Australia; The University of Melbourne, Melbourne, Australia
| | - J Jonkers
- Division of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - J A Ledermann
- UCL Cancer Institute, University College London, London, UK
| | - S Nik-Zainal
- Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK; MRC Cancer Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - I Ray-Coquard
- Centre Leon Berard, Lyon, France; University Claude Bernard Groupe University of Lyon, France
| | - S P Shah
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
| | - X Matias-Guiu
- Departments of Pathology, Hospital U Arnau de Vilanova and Hospital U de Bellvitge, Universities of Lleida and Barcelona, Irblleida, Idibell, Ciberonc, Barcelona, Spain
| | - E M Swisher
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - L R Yates
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge; Guy's Cancer Centre, Guys and St Thomas' NHS Foundation Trust, London, UK.
| |
Collapse
|
29
|
Dionnet E, Defour A, Da Silva N, Salvi A, Lévy N, Krahn M, Bartoli M, Puppo F, Gorokhova S. Splicing impact of deep exonic missense variants in CAPN3 explored systematically by minigene functional assay. Hum Mutat 2020; 41:1797-1810. [PMID: 32668095 DOI: 10.1002/humu.24083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023]
Abstract
Improving the accuracy of variant interpretation during diagnostic sequencing is a major goal for genomic medicine. To explore an often-overlooked splicing effect of missense variants, we developed the functional assay ("minigene") for the majority of exons of CAPN3, the gene responsible for limb girdle muscular dystrophy. By systematically screening 21 missense variants distributed along the gene, we found that eight clinically relevant missense variants located at a certain distance from the exon-intron borders (deep exonic missense variants) disrupted normal splicing of CAPN3 exons. Several recent machine learning-based computational tools failed to predict splicing impact for the majority of these deep exonic missense variants, highlighting the importance of including variants of this type in the training sets during the future algorithm development. Overall, 24 variants in CAPN3 gene were explored, leading to the change in the American College of Medical Genetics and Genomics classification of seven of them when results of the "minigene" functional assay were considered. Our findings reveal previously unknown splicing impact of several clinically important variants in CAPN3 and draw attention to the existence of deep exonic variants with a disruptive effect on gene splicing that could be overlooked by the current approaches in clinical genetics.
Collapse
Affiliation(s)
- Eugénie Dionnet
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Aurélia Defour
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Nathalie Da Silva
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Alexandra Salvi
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Nicolas Lévy
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France.,GIPTIS (Genetics Institute for Patients, Therapies Innovation and Science), Marseille, France
| | - Martin Krahn
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France
| | - Marc Bartoli
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Francesca Puppo
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France
| | - Svetlana Gorokhova
- Faculté des Sciences Médicales et Paramédicales, Marseille Medical Genetics, Aix Marseille Université, INSERM, Marseille, France.,Service de génétique Médicale, Hôpital de la Timone, APHM, Marseille, France
| |
Collapse
|
30
|
Tubeuf H, Caputo SM, Sullivan T, Rondeaux J, Krieger S, Caux-Moncoutier V, Hauchard J, Castelain G, Fiévet A, Meulemans L, Révillion F, Léoné M, Boutry-Kryza N, Delnatte C, Guillaud-Bataille M, Cleveland L, Reid S, Southon E, Soukarieh O, Drouet A, Di Giacomo D, Vezain M, Bonnet-Dorion F, Bourdon V, Larbre H, Muller D, Pujol P, Vaz F, Audebert-Bellanger S, Colas C, Venat-Bouvet L, Solano AR, Stoppa-Lyonnet D, Houdayer C, Frebourg T, Gaildrat P, Sharan SK, Martins A. Calibration of Pathogenicity Due to Variant-Induced Leaky Splicing Defects by Using BRCA2 Exon 3 as a Model System. Cancer Res 2020; 80:3593-3605. [PMID: 32641407 DOI: 10.1158/0008-5472.can-20-0895] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 12/25/2022]
Abstract
BRCA2 is a clinically actionable gene implicated in breast and ovarian cancer predisposition that has become a high priority target for improving the classification of variants of unknown significance (VUS). Among all BRCA2 VUS, those causing partial/leaky splicing defects are the most challenging to classify because the minimal level of full-length (FL) transcripts required for normal function remains to be established. Here, we explored BRCA2 exon 3 (BRCA2e3) as a model for calibrating variant-induced spliceogenicity and estimating thresholds for BRCA2 haploinsufficiency. In silico predictions, minigene splicing assays, patients' RNA analyses, a mouse embryonic stem cell (mESC) complementation assay and retrieval of patient-related information were combined to determine the minimal requirement of FL BRCA2 transcripts. Of 100 BRCA2e3 variants tested in the minigene assay, 64 were found to be spliceogenic, causing mild to severe RNA defects. Splicing defects were also confirmed in patients' RNA when available. Analysis of a neutral leaky variant (c.231T>G) showed that a reduction of approximately 60% of FL BRCA2 transcripts from a mutant allele does not cause any increase in cancer risk. Moreover, data obtained from mESCs suggest that variants causing a decline in FL BRCA2 with approximately 30% of wild-type are not pathogenic, given that mESCs are fully viable and resistant to DNA-damaging agents in those conditions. In contrast, mESCs producing lower relative amounts of FL BRCA2 exhibited either null or hypomorphic phenotypes. Overall, our findings are likely to have broader implications on the interpretation of BRCA2 variants affecting the splicing pattern of other essential exons. SIGNIFICANCE: These findings demonstrate that BRCA2 tumor suppressor function tolerates substantial reduction in full-length transcripts, helping to determine the pathogenicity of BRCA2 leaky splicing variants, some of which may not increase cancer risk.
Collapse
Affiliation(s)
- Hélène Tubeuf
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Julie Rondeaux
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sophie Krieger
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Laboratory of Cancer Biology and Genetics, Centre François Baclesse, Caen, France - Normandie University, UNICAEN, Caen, France
| | | | - Julie Hauchard
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Gaia Castelain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alice Fiévet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France.,Service Génétique des Tumeurs, Gustave Roussy, Villejuif, France
| | - Laëtitia Meulemans
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | | | | | | | | | - Linda Cleveland
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Omar Soukarieh
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Aurélie Drouet
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Daniela Di Giacomo
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Myriam Vezain
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Violaine Bourdon
- Department of Genetics, Institut Paoli-Calmettes, Marseille, France
| | - Hélène Larbre
- Laboratoire d'Oncogénétique Moléculaire, Institut Godinot, Reims, France
| | - Danièle Muller
- Unité d'Oncogénétique, Centre Paul Strauss, Strasbourg, France
| | - Pascal Pujol
- Unité d'Oncogénétique, CHU Arnaud de Villeneuve, Montpellier, France
| | - Fátima Vaz
- Breast Cancer Risk Evaluation Clinic, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
| | | | - Chrystelle Colas
- Department of Genetics, Institut Curie, Paris, France.,PSL Research University, Paris, France
| | | | - Angela R Solano
- Genotipificacion y Cancer Hereditario, Departmento de Analisis Clinicos, Centro de Educacion Medica e Investigaciones Clinicas (CEMIC), Ciudad Autonoma de Buenos Aires, Argentina
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France.,INSERM U830, University Paris Descartes, Paris, France
| | - Claude Houdayer
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Thierry Frebourg
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Department of Genetics, University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Pascaline Gaildrat
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Alexandra Martins
- Inserm U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.
| |
Collapse
|
31
|
In or Out? New Insights on Exon Recognition through Splice-Site Interdependency. Int J Mol Sci 2020; 21:ijms21072300. [PMID: 32225107 PMCID: PMC7177576 DOI: 10.3390/ijms21072300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
Noncanonical splice-site mutations are an important cause of inherited diseases. Based on in vitro and stem-cell-based studies, some splice-site variants show a stronger splice defect than expected based on their predicted effects, suggesting that other sequence motifs influence the outcome. We investigated whether splice defects due to human-inherited-disease-associated variants in noncanonical splice-site sequences in ABCA4, DMD, and TMC1 could be rescued by strengthening the splice site on the other side of the exon. Noncanonical 5′- and 3′-splice-site variants were selected. Rescue variants were introduced based on an increase in predicted splice-site strength, and the effects of these variants were analyzed using in vitro splice assays in HEK293T cells. Exon skipping due to five variants in noncanonical splice sites of exons in ABCA4, DMD, and TMC1 could be partially or completely rescued by increasing the predicted strengths of the other splice site of the same exon. We named this mechanism “splicing interdependency”, and it is likely based on exon recognition by splicing machinery. Awareness of this interdependency is of importance in the classification of noncanonical splice-site variants associated with disease and may open new opportunities for treatments.
Collapse
|
32
|
Landrith T, Li B, Cass AA, Conner BR, LaDuca H, McKenna DB, Maxwell KN, Domchek S, Morman NA, Heinlen C, Wham D, Koptiuch C, Vagher J, Rivera R, Bunnell A, Patel G, Geurts JL, Depas MM, Gaonkar S, Pirzadeh-Miller S, Krukenberg R, Seidel M, Pilarski R, Farmer M, Pyrtel K, Milliron K, Lee J, Hoodfar E, Nathan D, Ganzak AC, Wu S, Vuong H, Xu D, Arulmoli A, Parra M, Hoang L, Molparia B, Fennessy M, Fox S, Charpentier S, Burdette J, Pesaran T, Profato J, Smith B, Haynes G, Dalton E, Crandall JRR, Baxter R, Lu HM, Tippin-Davis B, Elliott A, Chao E, Karam R. Splicing profile by capture RNA-seq identifies pathogenic germline variants in tumor suppressor genes. NPJ Precis Oncol 2020; 4:4. [PMID: 32133419 PMCID: PMC7039900 DOI: 10.1038/s41698-020-0109-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
Germline variants in tumor suppressor genes (TSGs) can result in RNA mis-splicing and predisposition to cancer. However, identification of variants that impact splicing remains a challenge, contributing to a substantial proportion of patients with suspected hereditary cancer syndromes remaining without a molecular diagnosis. To address this, we used capture RNA-sequencing (RNA-seq) to generate a splicing profile of 18 TSGs (APC, ATM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, MLH1, MSH2, MSH6, MUTYH, NF1, PALB2, PMS2, PTEN, RAD51C, RAD51D, and TP53) in 345 whole-blood samples from healthy donors. We subsequently demonstrated that this approach can detect mis-splicing by comparing splicing profiles from the control dataset to profiles generated from whole blood of individuals previously identified with pathogenic germline splicing variants in these genes. To assess the utility of our TSG splicing profile to prospectively identify pathogenic splicing variants, we performed concurrent capture DNA and RNA-seq in a cohort of 1000 patients with suspected hereditary cancer syndromes. This approach improved the diagnostic yield in this cohort, resulting in a 9.1% relative increase in the detection of pathogenic variants, demonstrating the utility of performing simultaneous DNA and RNA genetic testing in a clinical context.
Collapse
Affiliation(s)
| | - Bing Li
- Ambry Genetics, Aliso Viejo, CA USA
| | | | | | | | | | | | | | | | | | - Deborah Wham
- Aurora St. Luke’s Medical Center, Milwaukee, WI USA
| | | | | | - Ragene Rivera
- Texas Oncology, El Paso, Fort Worth, and Austin, TX USA
| | - Ann Bunnell
- Texas Oncology, El Paso, Fort Worth, and Austin, TX USA
| | - Gayle Patel
- Texas Oncology, El Paso, Fort Worth, and Austin, TX USA
| | | | | | | | | | | | | | - Robert Pilarski
- Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH USA
| | - Meagan Farmer
- University of Alabama at Birmingham, Birmingham, AL USA
| | | | | | - John Lee
- Cedars-Sinai Medical Center, Los Angeles, CA USA
| | | | | | | | - Sitao Wu
- Ambry Genetics, Aliso Viejo, CA USA
| | | | - Dong Xu
- Ambry Genetics, Aliso Viejo, CA USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Elizabeth Chao
- Ambry Genetics, Aliso Viejo, CA USA
- University of California at Irvine, Irvine, CA USA
| | | |
Collapse
|
33
|
Savige J, Ariani F, Mari F, Bruttini M, Renieri A, Gross O, Deltas C, Flinter F, Ding J, Gale DP, Nagel M, Yau M, Shagam L, Torra R, Ars E, Hoefele J, Garosi G, Storey H. Expert consensus guidelines for the genetic diagnosis of Alport syndrome. Pediatr Nephrol 2019; 34:1175-1189. [PMID: 29987460 DOI: 10.1007/s00467-018-3985-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/22/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
Abstract
Recent expert guidelines recommend genetic testing for the diagnosis of Alport syndrome. Here, we describe current best practice and likely future developments. In individuals with suspected Alport syndrome, all three COL4A5, COL4A3 and COL4A4 genes should be examined for pathogenic variants, probably by high throughput-targeted next generation sequencing (NGS) technologies, with a customised panel for simultaneous testing of the three Alport genes. These techniques identify up to 95% of pathogenic COL4A variants. Where causative pathogenic variants cannot be demonstrated, the DNA should be examined for deletions or insertions by re-examining the NGS sequencing data or with multiplex ligation-dependent probe amplification (MLPA). These techniques identify a further 5% of variants, and the remaining few changes include deep intronic splicing variants or cases of somatic mosaicism. Where no pathogenic variants are found, the basis for the clinical diagnosis should be reviewed. Genes in which mutations produce similar clinical features to Alport syndrome (resulting in focal and segmental glomerulosclerosis, complement pathway disorders, MYH9-related disorders, etc.) should be examined. NGS approaches have identified novel combinations of pathogenic variants in Alport syndrome. Two variants, with one in COL4A3 and another in COL4A4, produce a more severe phenotype than an uncomplicated heterozygous change. NGS may also identify further coincidental pathogenic variants in genes for podocyte-expressed proteins that also modify the phenotype. Our understanding of the genetics of Alport syndrome is evolving rapidly, and both genetic and non-genetic factors are likely to contribute to the observed phenotypic variability.
Collapse
Affiliation(s)
- Judy Savige
- Department of Medicine, Melbourne and Northern Health, The University of Melbourne, Parkville, VIC, 3050, Australia.
| | | | | | | | | | - Oliver Gross
- Clinic of Nephrology and Rheumatology, University of Gottingen, Gottingen, Germany
| | | | - Frances Flinter
- Department of Clinical Genetics, Guys' and St Thomas' NHS Foundation Trust, London, UK
| | - Jie Ding
- Peking University First Hospital, Beijing, China
| | - Daniel P Gale
- Centre for Nephrology, Royal Free Hospital, University College London, London, UK
| | - Mato Nagel
- Centre for Nephrology and Metabolic Disorders, Weisswasser, Germany
| | - Michael Yau
- Genetics, Guy's Hospital, Viapath, London, UK
| | - Lev Shagam
- Institute of Pediatrics, Pirogov Russian Medical University, Moscow, Russia
| | - Roser Torra
- Inherited Kidney Disorders, Nephrology Department, Fundacio Puigvert, Instituto de Investigacion Carlos III, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory, Fundacio Puigvert, Instituto de Investigacion Carlos III, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Julia Hoefele
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Guido Garosi
- Nephrology, Dialysis and Transplantation, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | |
Collapse
|
34
|
Wang Y, Sun Y, Liu M, Zhang X, Jiang T. Functional Characterization of Argininosuccinate Lyase Gene Variants by Mini-Gene Splicing Assay. Front Genet 2019; 10:436. [PMID: 31156699 PMCID: PMC6533879 DOI: 10.3389/fgene.2019.00436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Objective Argininosuccinate lyase (ASL) gene mutations account for argininosuccinic aciduria (ASA). This study aimed to design a minigene construct of ASL gene in order to investigate the impact of variants on splicing. Methods The peripheral blood samples were collected from the family members, and genomic DNA was extracted for gene diagnosis using the total exon sequencing method. The novel mutation gene was cloned into pEGFP-C1 vector, and the pathogenicity of the mutation was examined in cultured cells in vitro. Results The clinical diagnosis of the proband as ASA was clear. Two pathogenic mutations, c.281G>T (p.Arg94Leu) and c.208-15 T>A were detected in the ASL gene, and the two mutations had not been reported. The minigene expression in vitro confirmed that c.208-15 T>A could cause aberrant splicing, resulting in the retention of 13 bp in intron 2 to exon 3. Conclusion Two new pathogenic mutations of ASL gene, c.208-15 T>A and c.281G>T, were found in an ASA family, which enriches the mutational profile of the ASL gene and provides a basis for genetic diagnosis of ASA. Minigenes are optimal approaches to determine whether the intron mutation can cause aberrant splicing.
Collapse
Affiliation(s)
- Yanyun Wang
- Center of Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yun Sun
- Center of Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ming Liu
- Center of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaojuan Zhang
- Center of Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Tao Jiang
- Center of Genetic Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
35
|
Li D, Harlan-Williams LM, Kumaraswamy E, Jensen RA. BRCA1-No Matter How You Splice It. Cancer Res 2019; 79:2091-2098. [PMID: 30992324 PMCID: PMC6497576 DOI: 10.1158/0008-5472.can-18-3190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/09/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
BRCA1 (breast cancer 1, early onset), a well-known breast cancer susceptibility gene, is a highly alternatively spliced gene. BRCA1 alternative splicing may serve as an alternative regulatory mechanism for the inactivation of the BRCA1 gene in both hereditary and sporadic breast cancers, and other BRCA1-associated cancers. The alternative transcripts of BRCA1 can mimic known functions, possess unique functions compared with the full-length BRCA1 transcript, and in some cases, appear to function in opposition to full-length BRCA1 In this review, we will summarize the functional "naturally occurring" alternative splicing transcripts of BRCA1 and then discuss the latest next-generation sequencing-based detection methods and techniques to detect alternative BRCA1 splicing patterns and their potential use in cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Dan Li
- The University of Kansas Cancer Center, Kansas City, Kansas
| | - Lisa M Harlan-Williams
- The University of Kansas Cancer Center, Kansas City, Kansas
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
| | - Easwari Kumaraswamy
- The University of Kansas Cancer Center, Kansas City, Kansas
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Roy A Jensen
- The University of Kansas Cancer Center, Kansas City, Kansas.
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| |
Collapse
|
36
|
Fraile-Bethencourt E, Valenzuela-Palomo A, Díez-Gómez B, Goina E, Acedo A, Buratti E, Velasco EA. Mis-splicing in breast cancer: identification of pathogenic BRCA2 variants by systematic minigene assays. J Pathol 2019; 248:409-420. [PMID: 30883759 DOI: 10.1002/path.5268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/21/2019] [Accepted: 03/11/2019] [Indexed: 12/21/2022]
Abstract
Splicing disruption is a common mechanism of gene inactivation associated with germline variants of susceptibility genes. To study the role of BRCA2 mis-splicing in hereditary breast/ovarian cancer (HBOC), we performed a comprehensive analysis of variants from BRCA2 exons 2-9, as well as the initial characterization of the regulatory mechanisms of such exons. A pSAD-based minigene with exons 2-9 was constructed and validated in MCF-7 cells, producing the expected transcript (1016-nt/V1-BRCA2_exons_2-9-V2). DNA variants from mutational databases were analyzed by NNSplice and Human Splicing Finder softwares. To refine ESE-variant prediction, we mapped the regulatory regions through a functional strategy whereby 26 exonic microdeletions were introduced into the minigene and tested in MCF-7 cells. Thus, we identified nine spliceogenic ESE-rich intervals where ESE-variants may be located. Combining bioinformatics and microdeletion assays, 83 variants were selected and genetically engineered in the minigene. Fifty-three changes impaired splicing: 28 variants disrupted the canonical sites, four created new ones, 10 abrogated enhancers, eight created silencers and three caused a double-effect. Notably, nine spliceogenic-ESE variants were located within ESE-containing intervals. Capillary electrophoresis and sequencing revealed more than 23 aberrant transcripts, where exon skipping was the most common event. Interestingly, variant c.67G>A triggered the usage of a noncanonical GC-donor 4-nt upstream. Thirty-six variants that induced severe anomalies (>60% aberrant transcripts) were analyzed according to the ACMG guidelines. Thus, 28 variants were classified as pathogenic, five as likely pathogenic and three as variants of uncertain significance. Interestingly, 13 VUS were reclassified as pathogenic or likely pathogenic variants. In conclusion, a large fraction of BRCA2 variants (∼64%) provoked splicing anomalies lending further support to the high prevalence of this disease-mechanism. The low accuracy of ESE-prediction algorithms may be circumvented by functional ESE-mapping that represents an optimal strategy to identify spliceogenic ESE-variants. Finally, systematic functional assays by minigenes depict a valuable tool for the initial characterization of splicing anomalies and the clinical interpretation of variants. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Elisa Goina
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Alberto Acedo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular (CSIC-UVa), Valladolid, Spain
| |
Collapse
|
37
|
Usefulness and Limitations of Comprehensive Characterization of mRNA Splicing Profiles in the Definition of the Clinical Relevance of BRCA1/2 Variants of Uncertain Significance. Cancers (Basel) 2019; 11:cancers11030295. [PMID: 30832263 PMCID: PMC6468917 DOI: 10.3390/cancers11030295] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Highly penetrant variants of BRCA1/2 genes are involved in hereditary predisposition to breast and ovarian cancer. The detection of pathogenic BRCA variants has a considerable clinical impact, allowing appropriate cancer-risk management. However, a major drawback is represented by the identification of variants of uncertain significance (VUS). Many VUS potentially affect mRNA splicing, making transcript analysis an essential step for the definition of their pathogenicity. Here, we characterize the impact on splicing of ten BRCA1/2 variants. Aberrant splicing patterns were demonstrated for eight variants whose alternative transcripts were fully characterized. Different events were observed, including exon skipping, intron retention, and usage of de novo and cryptic splice sites. Transcripts with premature stop codons or in-frame loss of functionally important residues were generated. Partial/complete splicing effect and quantitative contribution of different isoforms were assessed, leading to variant classification according to Evidence-based Network for the Interpretation of Mutant Alleles (ENIGMA) consortium guidelines. Two variants could be classified as pathogenic and two as likely benign, while due to a partial splicing effect, six variants remained of uncertain significance. The association with an undefined tumor risk justifies caution in recommending aggressive risk-reduction treatments, but prevents the possibility of receiving personalized therapies with potential beneficial effect. This indicates the need for applying additional approaches for the analysis of variants resistant to classification by gene transcript analyses.
Collapse
|
38
|
Brandão RD, Mensaert K, López‐Perolio I, Tserpelis D, Xenakis M, Lattimore V, Walker LC, Kvist A, Vega A, Gutiérrez‐Enríquez S, Díez O, de la Hoya M, Spurdle AB, De Meyer T, Blok MJ. Targeted RNA-seq successfully identifies normal and pathogenic splicing events in breast/ovarian cancer susceptibility and Lynch syndrome genes. Int J Cancer 2019; 145:401-414. [PMID: 30623411 PMCID: PMC6635756 DOI: 10.1002/ijc.32114] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/27/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
Abstract
A subset of genetic variants found through screening of patients with hereditary breast and ovarian cancer syndrome (HBOC) and Lynch syndrome impact RNA splicing. Through target enrichment of the transcriptome, it is possible to perform deep-sequencing and to identify the different and even rare mRNA isoforms. A targeted RNA-seq approach was used to analyse the naturally-occurring splicing events for a panel of 8 breast and/or ovarian cancer susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, PTEN, STK11, CDH1, TP53), 3 Lynch syndrome genes (MLH1, MSH2, MSH6) and the fanconi anaemia SLX4 gene, in which monoallelic mutations were found in non-BRCA families. For BRCA1, BRCA2, RAD51C and RAD51D the results were validated by capillary electrophoresis and were compared to a non-targeted RNA-seq approach. We also compared splicing events from lymphoblastoid cell-lines with those from breast and ovarian fimbriae tissues. The potential of targeted RNA-seq to detect pathogenic changes in RNA-splicing was validated by the inclusion of samples with previously well characterized BRCA1/2 genetic variants. In our study, we update the catalogue of normal splicing events for BRCA1/2, provide an extensive catalogue of normal RAD51C and RAD51D alternative splicing, and list splicing events found for eight other genes. Additionally, we show that our approach allowed the identification of aberrant splicing events due to the presence of BRCA1/2 genetic variants and distinguished between complete and partial splicing events. In conclusion, targeted-RNA-seq can be very useful to classify variants based on their putative pathogenic impact on splicing.
Collapse
Affiliation(s)
- Rita D. Brandão
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Klaas Mensaert
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
| | - Irene López‐Perolio
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Demis Tserpelis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| | - Markos Xenakis
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
- Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
| | - Vanessa Lattimore
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Logan C. Walker
- Department of Pathology and Biomedical ScienceUniversity of OtagoChristchurchNew Zealand
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical SciencesLund UniversityLundSweden
| | - Ana Vega
- Fundación Pública Galega de Medicina Xenómica‐Servicio Galgo de SaúdeGrupo de Medicina Xenómica‐USC, CIBERER, IDISSantiago de CompostelaSpain
| | | | - Orland Díez
- Oncogenetics GroupVall d'Hebron Institute of Oncology (VHIO)BarcelonaSpain
- Area of Clinical and Molecular GeneticsUniversity Hospital of Vall d'HebronBarcelonaSpain
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONCHospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbaneQLDAustralia
| | - Tim De Meyer
- Department of Data Analysis and Mathematical Modelling and Bioinformatics Institute Ghent N2NGhent UniversityGhentBelgium
- CRIG (Cancer Research Institute Ghent)Ghent UniversityGhentBelgium
| | - Marinus J. Blok
- Department of Clinical GeneticsMaastricht University Medical Centre+, GROW‐ School for Oncology and Developmental BiologyMaastrichtThe Netherlands
| |
Collapse
|
39
|
Lord J, Gallone G, Short PJ, McRae JF, Ironfield H, Wynn EH, Gerety SS, He L, Kerr B, Johnson DS, McCann E, Kinning E, Flinter F, Temple IK, Clayton-Smith J, McEntagart M, Lynch SA, Joss S, Douzgou S, Dabir T, Clowes V, McConnell VPM, Lam W, Wright CF, FitzPatrick DR, Firth HV, Barrett JC, Hurles ME. Pathogenicity and selective constraint on variation near splice sites. Genome Res 2018; 29:159-170. [PMID: 30587507 PMCID: PMC6360807 DOI: 10.1101/gr.238444.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022]
Abstract
Mutations that perturb normal pre-mRNA splicing are significant contributors to human disease. We used exome sequencing data from 7833 probands with developmental disorders (DDs) and their unaffected parents, as well as more than 60,000 aggregated exomes from the Exome Aggregation Consortium, to investigate selection around the splice sites and quantify the contribution of splicing mutations to DDs. Patterns of purifying selection, a deficit of variants in highly constrained genes in healthy subjects, and excess de novo mutations in patients highlighted particular positions within and around the consensus splice site of greater functional relevance. By using mutational burden analyses in this large cohort of proband–parent trios, we could estimate in an unbiased manner the relative contributions of mutations at canonical dinucleotides (73%) and flanking noncanonical positions (27%), and calculate the positive predictive value of pathogenicity for different classes of mutations. We identified 18 patients with likely diagnostic de novo mutations in dominant DD-associated genes at noncanonical positions in splice sites. We estimate 35%–40% of pathogenic variants in noncanonical splice site positions are missing from public databases.
Collapse
Affiliation(s)
- Jenny Lord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Giuseppe Gallone
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Patrick J Short
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Jeremy F McRae
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Holly Ironfield
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Elizabeth H Wynn
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sebastian S Gerety
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Liu He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Diana S Johnson
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, OPD2, Northern General Hospital, Sheffield S5 7AU, United Kingdom
| | - Emma McCann
- Liverpool Women's Hospital Foundation Trust, Liverpool L8 7SS, United Kingdom
| | - Esther Kinning
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Institute of Medical Genetics, Yorkhill Hospital, Glasgow G3 8SJ, United Kingdom
| | - Frances Flinter
- South East Thames Regional Genetics Centre, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London SE1 9RT, United Kingdom
| | - I Karen Temple
- Faculty of Medicine, University of Southampton, Institute of Developmental Sciences, Southampton SO16 6YD, United Kingdom.,Wessex Clinical Genetics Service, University Hospital Southampton, Princess Anne Hospital, Southampton SO16 5YA, United Kingdom
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Meriel McEntagart
- South West Thames Regional Genetics Centre, St. George's Healthcare NHS Trust, St. George's, University of London, London SW17 0RE, United Kingdom
| | | | - Shelagh Joss
- West of Scotland Regional Genetics Service, NHS Greater Glasgow and Clyde, Queen Elizabeth University Hospital, Glasgow G51 4TF, United Kingdom
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, United Kingdom.,Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, United Kingdom
| | - Tabib Dabir
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast BT9 7AB, United Kingom
| | - Virginia Clowes
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Northwick Park and St. Mark's Hospitals, Harrow HA1 3UJ, United Kingdom
| | - Vivienne P M McConnell
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Belfast BT9 7AB, United Kingom
| | - Wayne Lam
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Caroline F Wright
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, United Kingdom
| | - David R FitzPatrick
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.,MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.,East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jeffrey C Barrett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Matthew E Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
40
|
Duran-Lozano L, Montalban G, Bonache S, Moles-Fernández A, Tenés A, Castroviejo-Bermejo M, Carrasco E, López-Fernández A, Torres-Esquius S, Gadea N, Stjepanovic N, Balmaña J, Gutiérrez-Enríquez S, Diez O. Alternative transcript imbalance underlying breast cancer susceptibility in a family carrying PALB2 c.3201+5G>T. Breast Cancer Res Treat 2018; 174:543-550. [DOI: 10.1007/s10549-018-05094-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022]
|
41
|
A novel LRAT mutation affecting splicing in a family with early onset retinitis pigmentosa. Hum Genomics 2018; 12:35. [PMID: 29973277 PMCID: PMC6033202 DOI: 10.1186/s40246-018-0165-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023] Open
Abstract
Background and purpose Retinitis pigmentosa is an important cause of severe visual dysfunction. This study reports a novel splicing mutation in the lecithin retinol acyltransferase (LRAT) gene associated with early onset retinitis pigmentosa and characterizes the effects of this mutation on mRNA splicing and structure. Methods Genome-wide linkage analysis followed by dideoxy sequencing of the linked candidate gene LRAT was performed in a consanguineous Pakistani family with autosomal recessive retinitis pigmentosa. In silico prediction and minigene assays were used to investigate the effects of the presumptive splicing mutation. Results ARRP in this family was linked to chromosome 4q31.21-q32.1 with a maximum LOD score of 5.40. A novel homozygous intronic mutation (NM_004744.4: c.541-15T>G) was detected in LRAT. In silico tools predicted that the AG-creating mutation would activate an intronic cryptic acceptor site, but cloning fragments of wild-type and mutant sequences of LRAT into Exontrap Cloning Vector pET01 and Expression Cloning Vector pCMV-(DYKD4K)-C showed that the primary effect of the sequence change was to weaken the nearby authentic acceptor site and cause exon skipping, with only a small fraction of transcripts utilizing the acceptor site producing the reference transcript. Conclusions The c.541-15T>G mutation in LRAT results in aberrant splicing and is therefore predicted to be causal for the early onset retinitis pigmentosa in this family. In addition, this work suggests that minigenes adapted to the specific gene and exon may need to be designed for variants in the first and last exon and intron to mimic the authentic splicing mechanism in vivo. Electronic supplementary material The online version of this article (10.1186/s40246-018-0165-3) contains supplementary material, which is available to authorized users.
Collapse
|
42
|
Pajares B, Porta J, Porta JM, Sousa CFD, Moreno I, Porta D, Durán G, Vega T, Ortiz I, Muriel C, Alba E, Márquez A. Hereditary breast and ovarian cancer in Andalusian families: a genetic population study. BMC Cancer 2018; 18:647. [PMID: 29884136 PMCID: PMC5994127 DOI: 10.1186/s12885-018-4537-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 05/21/2018] [Indexed: 11/24/2022] Open
Abstract
Background The BRCA1/2 mutation profile varies in Spain according to the geographical area studied. The mutational profile of BRCA1/2 in families at risk for hereditary breast and ovarian cancer has not so far been reported in Andalusia (southern Spain). Methods We analysed BRCA1/2 germline mutations in 562 high-risk cases with breast and/or ovarian cancer from Andalusian families from 2010 to 2015. Results Among the 562 cases, 120 (21.4%) carried a germline pathogenic mutation in BRCA1/2; 50 in BRCA1 (41.7%) and 70 in BRCA2 (58.3%). We detected 67 distinct mutations (29 in BRCA1 and 38 in BRCA2), of which 3 in BRCA1 (c.845C > A, c.1222_1223delAC, c.2527delA) and 5 in BRCA2 (c.293 T > G, c.5558_5559delGT, c.6034delT, c.6650_6654delAAGAT, c.6652delG) had not been previously described. The most frequent mutations in BRCA1 were c.5078_5080delCTG (10%) and c.5123C > A (10%), and in BRCA2 they were c.9018C > A (14%) and c.5720_5723delCTCT (8%). We identified 5 variants of unknown significance (VUS), all in BRCA2 (c.5836 T > C, c.6323G > T, c.9501 + 3A > T, c.8022_8030delGATAATGGA, c.10186A > C). We detected 76 polymorphisms (31 in BRCA1, 45 in BRCA2) not associated with breast cancer risk. Conclusions This is the first study reporting the mutational profile of BRCA1/2 in Andalusia. We identified 21.4% of patients harbouring BRCA1/2 mutations, 58.3% of them in BRCA2. We also characterized the clinical data, mutational profile, VUS and haplotype profile. Electronic supplementary material The online version of this article (10.1186/s12885-018-4537-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bella Pajares
- Clinical Oncology Unit Hospitales Universitarios Regional y Virgen de la Victoria. Instituto de Investigación Biomédica de Málaga (IBIMA), Campus Teatinos s/n. 29010, Malaga, Spain.
| | - Javier Porta
- Genologica, Paseo de la Farola 16, 29016, Malaga, Spain
| | | | - Cristina Fernández-de Sousa
- Clinical Oncology Unit Hospitales Universitarios Regional y Virgen de la Victoria. Instituto de Investigación Biomédica de Málaga (IBIMA), Campus Teatinos s/n. 29010, Malaga, Spain
| | - Ignacio Moreno
- Clinical Oncology Unit Hospitales Universitarios Regional y Virgen de la Victoria. Instituto de Investigación Biomédica de Málaga (IBIMA), Campus Teatinos s/n. 29010, Malaga, Spain
| | - Daniel Porta
- Genologica, Paseo de la Farola 16, 29016, Malaga, Spain
| | - Gema Durán
- Clinical Oncology Unit Hospitales Universitarios Regional y Virgen de la Victoria. Instituto de Investigación Biomédica de Málaga (IBIMA), Campus Teatinos s/n. 29010, Malaga, Spain
| | - Tamara Vega
- Genologica, Paseo de la Farola 16, 29016, Malaga, Spain
| | | | - Carolina Muriel
- Clinical Oncology Unit Hospitales Universitarios Regional y Virgen de la Victoria. Instituto de Investigación Biomédica de Málaga (IBIMA), Campus Teatinos s/n. 29010, Malaga, Spain
| | - Emilio Alba
- Clinical Oncology Unit Hospitales Universitarios Regional y Virgen de la Victoria. Instituto de Investigación Biomédica de Málaga (IBIMA), Campus Teatinos s/n. 29010, Malaga, Spain
| | - Antonia Márquez
- Clinical Oncology Unit Hospitales Universitarios Regional y Virgen de la Victoria. Instituto de Investigación Biomédica de Málaga (IBIMA), Campus Teatinos s/n. 29010, Malaga, Spain
| |
Collapse
|
43
|
Fraile-Bethencourt E, Valenzuela-Palomo A, Díez-Gómez B, Acedo A, Velasco EA. Identification of Eight Spliceogenic Variants in BRCA2 Exon 16 by Minigene Assays. Front Genet 2018; 9:188. [PMID: 29881398 PMCID: PMC5977032 DOI: 10.3389/fgene.2018.00188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
Genetic testing of BRCA1 and BRCA2 identifies a large number of variants of uncertain clinical significance whose functional and clinical interpretations pose a challenge for genetic counseling. Interestingly, a relevant fraction of DNA variants can disrupt the splicing process in cancer susceptibility genes. We have tested more than 200 variants throughout 19 BRCA2 exons mostly by minigene assays, 54% of which displayed aberrant splicing, thus confirming the utility of this assay to check genetic variants in the absence of patient RNA. Our goal was to investigate BRCA2 exon 16 with a view to characterizing spliceogenic variants recorded at the mutational databases. Seventy-two different BIC and UMD variants were analyzed with NNSplice and Human Splicing Finder, 12 of which were selected because they were predicted to disrupt essential splice motifs: canonical splice sites (ss; eight variants) and exonic/intronic splicing enhancers (four variants). These 12 candidate variants were introduced into the BRCA2 minigene with seven exons (14–20) by site-directed mutagenesis and then transfected into MCF-7 cells. Seven variants (six intronic and one missense) induced complete abnormal splicing patterns: c.7618-2A>T, c.7618-2A>G, c.7618-1G>C, c.7618-1G>A, c.7805G>C, c.7805+1G>A, and c.7805+3A>C, as well as a partial anomalous outcome by c.7802A>G. They generated at least 10 different transcripts: Δ16p44 (alternative 3’ss 44-nt downstream; acceptor variants), Δ16 (exon 16-skipping; donor variants), Δ16p55 (alternative 3’ss 55-nt downstream), Δ16q4 (alternative 5’ss 4-nt upstream), Δ16q100 (alternative 5’ss 4-nt upstream), ▾16q20 (alternative 5’ss 20-nt downstream), as well as minor (Δ16p93 and Δ16,17p69) and uncharacterized transcripts of 893 and 954 nucleotides. Isoforms Δ16p44, Δ16, Δ16p55, Δ16q4, Δ16q100, and ▾16q20 introduced premature termination codons which presumably inactivate BRCA2. According to the guidelines the American College of Medical Genetics and Genomics these eight variants could be classified as pathogenic or likely pathogenic whereas the Evidence-based Network for the Interpretation of Germline Mutant Alleles rules suggested seven class 4 and one class 3 variants. In conclusion, our study highlights the relevance of splicing functional assays by hybrid minigenes for the clinical classification of genetic variations. Hence, we provide new data about spliceogenic variants of BRCA2 exon 16 that are directly correlated with breast cancer susceptibility.
Collapse
Affiliation(s)
- Eugenia Fraile-Bethencourt
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Alberto Valenzuela-Palomo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Beatriz Díez-Gómez
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| | - Alberto Acedo
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain.,Biome Makers Inc., San Francisco, CA, United States
| | - Eladio A Velasco
- Splicing and Genetic Susceptibility to Cancer, Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas, Universidad de Valladolid, Valladolid, Spain
| |
Collapse
|
44
|
Colombo M, Lòpez‐Perolio I, Meeks HD, Caleca L, Parsons MT, Li H, De Vecchi G, Tudini E, Foglia C, Mondini P, Manoukian S, Behar R, Garcia EBG, Meindl A, Montagna M, Niederacher D, Schmidt AY, Varesco L, Wappenschmidt B, Bolla MK, Dennis J, Michailidou K, Wang Q, Aittomäki K, Andrulis IL, Anton‐Culver H, Arndt V, Beckmann MW, Beeghly‐Fadel A, Benitez J, Boeckx B, Bogdanova NV, Bojesen SE, Bonanni B, Brauch H, Brenner H, Burwinkel B, Chang‐Claude J, Conroy DM, Couch FJ, Cox A, Cross SS, Czene K, Devilee P, Dörk T, Eriksson M, Fasching PA, Figueroa J, Fletcher O, Flyger H, Gabrielson M, García‐Closas M, Giles GG, González‐Neira A, Guénel P, Haiman CA, Hall P, Hamann U, Hartman M, Hauke J, Hollestelle A, Hopper JL, Jakubowska A, Jung A, Kosma V, Lambrechts D, Le Marchand L, Lindblom A, Lubinski J, Mannermaa A, Margolin S, Miao H, Milne RL, Neuhausen SL, Nevanlinna H, Olson JE, Peterlongo P, Peto J, Pylkäs K, Sawyer EJ, Schmidt MK, Schmutzler RK, Schneeweiss A, Schoemaker MJ, See MH, Southey MC, Swerdlow A, Teo SH, Toland AE, Tomlinson I, Truong T, van Asperen CJ, van den Ouweland AM, van der Kolk LE, Winqvist R, Yannoukakos D, Zheng W, Dunning AM, Easton DF, Henderson A, et alColombo M, Lòpez‐Perolio I, Meeks HD, Caleca L, Parsons MT, Li H, De Vecchi G, Tudini E, Foglia C, Mondini P, Manoukian S, Behar R, Garcia EBG, Meindl A, Montagna M, Niederacher D, Schmidt AY, Varesco L, Wappenschmidt B, Bolla MK, Dennis J, Michailidou K, Wang Q, Aittomäki K, Andrulis IL, Anton‐Culver H, Arndt V, Beckmann MW, Beeghly‐Fadel A, Benitez J, Boeckx B, Bogdanova NV, Bojesen SE, Bonanni B, Brauch H, Brenner H, Burwinkel B, Chang‐Claude J, Conroy DM, Couch FJ, Cox A, Cross SS, Czene K, Devilee P, Dörk T, Eriksson M, Fasching PA, Figueroa J, Fletcher O, Flyger H, Gabrielson M, García‐Closas M, Giles GG, González‐Neira A, Guénel P, Haiman CA, Hall P, Hamann U, Hartman M, Hauke J, Hollestelle A, Hopper JL, Jakubowska A, Jung A, Kosma V, Lambrechts D, Le Marchand L, Lindblom A, Lubinski J, Mannermaa A, Margolin S, Miao H, Milne RL, Neuhausen SL, Nevanlinna H, Olson JE, Peterlongo P, Peto J, Pylkäs K, Sawyer EJ, Schmidt MK, Schmutzler RK, Schneeweiss A, Schoemaker MJ, See MH, Southey MC, Swerdlow A, Teo SH, Toland AE, Tomlinson I, Truong T, van Asperen CJ, van den Ouweland AM, van der Kolk LE, Winqvist R, Yannoukakos D, Zheng W, Dunning AM, Easton DF, Henderson A, Hogervorst FB, Izatt L, Offitt K, Side LE, van Rensburg EJ, EMBRACE S, HEBON S, McGuffog L, Antoniou AC, Chenevix‐Trench G, Spurdle AB, Goldgar DE, de la Hoya M, Radice P. The BRCA2 c.68-7T > A variant is not pathogenic: A model for clinical calibration of spliceogenicity. Hum Mutat 2018; 39:729-741. [PMID: 29460995 PMCID: PMC5947288 DOI: 10.1002/humu.23411] [Show More Authors] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 02/06/2018] [Accepted: 02/10/2018] [Indexed: 12/12/2022]
Abstract
Although the spliceogenic nature of the BRCA2 c.68-7T > A variant has been demonstrated, its association with cancer risk remains controversial. In this study, we accurately quantified by real-time PCR and digital PCR (dPCR), the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636 individuals. Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon 3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an exclusion rate for the c.68-7T > A allele of approximately 20%. The posterior probability of pathogenicity was 7.44 × 10-115 . There was neither evidence for increased risk of breast cancer (OR 1.03; 95% CI 0.86-1.24) nor for a deleterious effect of the variant when co-occurring with pathogenic variants. Our data provide for the first time robust evidence of the nonpathogenicity of the BRCA2 c.68-7T > A. Genetic and quantitative transcript analyses together inform the threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal cell function. These findings might be exploited to assess the relevance for cancer risk of other BRCA2 spliceogenic variants.
Collapse
Affiliation(s)
- Mara Colombo
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Irene Lòpez‐Perolio
- Molecular Oncology Laboratory CIBERONCHospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Huong D. Meeks
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| | - Laura Caleca
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Michael T. Parsons
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbane, QLD 4006Australia
| | - Hongyan Li
- Huntsman Cancer InstituteUniversity of UtahSalt Lake CityUtah
| | - Giovanna De Vecchi
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Emma Tudini
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbane, QLD 4006Australia
| | - Claudia Foglia
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Patrizia Mondini
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Siranoush Manoukian
- Unit of Medical GeneticsDepartment of Medical Oncology and HematologyFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| | - Raquel Behar
- Molecular Oncology Laboratory CIBERONCHospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Encarna B. Gómez Garcia
- Department of Clinical Genetics and GROWSchool for Oncology and Developmental BiologyMUMCMaastrichtThe Netherlands
| | - Alfons Meindl
- Department of Obstetrics and GynecologyUniversity HospitalLMU MunichGermany
| | - Marco Montagna
- Immunology and Molecular Oncology UnitVeneto Institute of Oncology IOV ‐ IRCCSPaduaItaly
| | - Dieter Niederacher
- Department of Gynaecology and ObstetricsUniversity Hospital DüsseldorfHeinrich‐Heine UniversityDuesseldorfGermany
| | - Ane Y. Schmidt
- Center for Genomic MedicineRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | | | - Barbara Wappenschmidt
- Center for Hereditary Breast and Ovarian CancerUniversity Hospital of CologneCologneGermany
- Center for Integrated Oncology (CIO)Medical FacultyUniversity Hospital of CologneCologneGermany
| | - Manjeet K. Bolla
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Joe Dennis
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Kyriaki Michailidou
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- Department of Electron Microscopy/Molecular PathologyThe Cyprus Institute of Neurology and GeneticsNicosiaCyprus
| | - Qin Wang
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Kristiina Aittomäki
- Department of Clinical GeneticsHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Irene L. Andrulis
- Fred A. Litwin Center for Cancer GeneticsLunenfeld‐Tanenbaum Research Institute of Mount Sinai HospitalTorontoOntario
- Department of Molecular GeneticsUniversity of TorontoTorontoCanada
| | - Hoda Anton‐Culver
- Department of EpidemiologyUniversity of California IrvineIrvineCalifornia
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Matthias W. Beckmann
- Department of Gynaecology and ObstetricsUniversity Hospital Erlangen, Friedrich‐Alexander University Erlangen‐NurembergComprehensive Cancer Center Erlangen‐EMNErlangenGermany
| | - Alicia Beeghly‐Fadel
- Division of EpidemiologyDepartment of MedicineVanderbilt Epidemiology CenterVanderbilt‐Ingram Cancer CenterVanderbilt University School of MedicineNashvilleTennessee
| | - Javier Benitez
- Human Cancer Genetics ProgramSpanish National Cancer Research CentreMadridSpain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER)ValenciaSpain
| | - Bram Boeckx
- VIB Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory for Translational GeneticsDepartment of Human GeneticsUniversity of LeuvenLeuvenBelgium
| | - Natalia V. Bogdanova
- Department of Radiation OncologyHannover Medical SchoolHannoverGermany
- Gynaecology Research UnitHannover Medical SchoolHannoverGermany
- N.N. Alexandrov Research Institute of Oncology and Medical RadiologyMinskBelarus
| | - Stig E. Bojesen
- Copenhagen General Population StudyHerlevand Gentofte HospitalCopenhagen University HospitalHerlevDenmark
- Department of Clinical BiochemistryHerlev and Gentofte HospitalCopenhagen University HospitalHerlevDenmark
- Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Bernardo Bonanni
- Division of Cancer Prevention and GeneticsIstituto Europeo di OncologiaMilanItaly
| | - Hiltrud Brauch
- Dr. Margarete Fischer‐Bosch‐Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
- Division of Preventive OncologyGerman Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT)HeidelbergGermany
| | - Barbara Burwinkel
- Department of Obstetrics and GynecologyUniversity of HeidelbergHeidelbergGermany
- Molecular Epidemiology GroupC080German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Jenny Chang‐Claude
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Research Group Genetic Cancer EpidemiologyUniversity Cancer Center Hamburg (UCCH)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Don M. Conroy
- Centre for Cancer Genetic EpidemiologyDepartment of OncologyUniversity of CambridgeCambridgeUK
| | - Fergus J. Couch
- Department of Laboratory Medicine and PathologyMayo ClinicRochesterNew York
| | - Angela Cox
- Sheffield Institute for Nucleic Acids (SInFoNiA)Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Simon S. Cross
- Academic Unit of PathologyDepartment of NeuroscienceUniversity of SheffieldSheffieldUK
| | - Kamila Czene
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Peter Devilee
- Department of PathologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Thilo Dörk
- Gynaecology Research UnitHannover Medical SchoolHannoverGermany
| | - Mikael Eriksson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Peter A. Fasching
- Department of Gynaecology and ObstetricsUniversity Hospital Erlangen, Friedrich‐Alexander University Erlangen‐NurembergComprehensive Cancer Center Erlangen‐EMNErlangenGermany
- David Geffen School of MedicineDepartment of Medicine Division of Hematology and OncologyUniversity of California at Los AngelesLos AngelesCalifornia
| | - Jonine Figueroa
- Usher Institute of Population Health Sciences and InformaticsThe University of Edinburgh Medical SchoolEdinburghUK
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleMaryland
| | - Olivia Fletcher
- The Breast Cancer Now Toby Robins Research CentreThe Institute of Cancer ResearchLondonUK
| | - Henrik Flyger
- Department of Breast SurgeryHerlev and Gentofte HospitalCopenhagen University HospitalHerlevDenmark
| | - Marike Gabrielson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | | | - Graham G. Giles
- Cancer Epidemiology & Intelligence DivisionCancer Council VictoriaMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global healthThe University of MelbourneMelbourneAustralia
| | - Anna González‐Neira
- Human Cancer Genetics ProgramSpanish National Cancer Research CentreMadridSpain
| | - Pascal Guénel
- Cancer & Environment GroupCenter for Research in Epidemiology and Population Health (CESP)INSERMUniversity Paris‐SudUniversity Paris‐SaclayVillejuifFrance
| | - Christopher A. Haiman
- Department of Preventive MedicineKeck School of MedicineUniversity of Southern CaliforniaLos AngelesCalifornia
| | - Per Hall
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Ute Hamann
- Molecular Genetics of Breast CancerDeutsches Krebsforschungszentrum (DKFZ)HeidelbergGermany
| | - Mikael Hartman
- Saw Swee Hock School of Public HealthNational University of SingaporeSingaporeSingapore
- Department of SurgeryNational University Health SystemSingaporeSingapore
| | - Jan Hauke
- Center for Hereditary Breast and Ovarian CancerUniversity Hospital of CologneCologneGermany
- Center for Integrated Oncology (CIO)Medical FacultyUniversity Hospital of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Antoinette Hollestelle
- Department of Medical OncologyFamily Cancer ClinicErasmus MC Cancer InstituteRotterdamThe Netherlands
| | - John L. Hopper
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global healthThe University of MelbourneMelbourneAustralia
| | - Anna Jakubowska
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Audrey Jung
- Division of Cancer EpidemiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Veli‐Matti Kosma
- Translational Cancer Research AreaUniversity of Eastern FinlandKuopioFinland
- Institute of Clinical MedicinePathology and Forensic MedicineUniversity of Eastern FinlandKuopioFinland
- Imaging CenterDepartment of Clinical PathologyKuopio University HospitalKuopioFinland
| | - Diether Lambrechts
- VIB Center for Cancer BiologyVIBLeuvenBelgium
- Laboratory for Translational GeneticsDepartment of Human GeneticsUniversity of LeuvenLeuvenBelgium
| | - Loid Le Marchand
- Epidemiology ProgramUniversity of Hawaii Cancer CenterHonoluluHawaii
| | - Annika Lindblom
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Jan Lubinski
- Department of Genetics and PathologyPomeranian Medical UniversitySzczecinPoland
| | - Arto Mannermaa
- Translational Cancer Research AreaUniversity of Eastern FinlandKuopioFinland
- Institute of Clinical MedicinePathology and Forensic MedicineUniversity of Eastern FinlandKuopioFinland
- Imaging CenterDepartment of Clinical PathologyKuopio University HospitalKuopioFinland
| | - Sara Margolin
- Department of Clinical Science and Education SödersjukhusetKarolinska InstitutetStockholmSweden
| | - Hui Miao
- Saw Swee Hock School of Public HealthNational University of SingaporeSingaporeSingapore
| | - Roger L. Milne
- Cancer Epidemiology & Intelligence DivisionCancer Council VictoriaMelbourneAustralia
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global healthThe University of MelbourneMelbourneAustralia
| | - Susan L. Neuhausen
- Department of Population SciencesBeckman Research Institute of City of HopeDuarteCalifornia
| | - Heli Nevanlinna
- Department of Obstetrics and GynecologyHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland
| | - Janet E. Olson
- Department of Health Sciences ResearchMayo ClinicRochesterNew York
| | - Paolo Peterlongo
- IFOMThe FIRC (Italian Foundation for Cancer Research) Institute of Molecular OncologyMilanItaly
| | - Julian Peto
- Department of Non‐Communicable Disease EpidemiologyLondon School of Hygiene and Tropical MedicineLondonUK
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor BiologyCancer and Translational Medicine Research UnitBiocenter OuluUniversity of OuluOuluFinland
- Laboratory of Cancer Genetics and Tumor BiologyNorthern Finland Laboratory Centre OuluOuluFinland
| | | | - Marjanka K. Schmidt
- Division of Molecular PathologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek HospitalAmsterdamThe Netherlands
- Division of Psychosocial Research and EpidemiologyThe Netherlands Cancer Institute – Antoni van Leeuwenhoek hospitalAmsterdamThe Netherlands
| | - Rita K. Schmutzler
- Center for Hereditary Breast and Ovarian CancerUniversity Hospital of CologneCologneGermany
- Center for Integrated Oncology (CIO)Medical FacultyUniversity Hospital of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| | - Andreas Schneeweiss
- Department of Obstetrics and GynecologyUniversity of HeidelbergHeidelbergGermany
- National Center for Tumor DiseasesUniversity of HeidelbergHeidelbergGermany
| | | | - Mee Hoong See
- Breast Cancer Research UnitCancer Research InstituteUniversity Malaya Medical CentreKuala LumpurMalaysia
| | | | - Anthony Swerdlow
- Division of Genetics and EpidemiologyThe Institute of Cancer ResearchLondonUK
- Division of Breast Cancer ResearchThe Institute of Cancer ResearchLondonUK
| | - Soo H. Teo
- Breast Cancer Research UnitCancer Research InstituteUniversity Malaya Medical CentreKuala LumpurMalaysia
- Cancer Research MalaysiaSubang JayaSelangorMalaysia
| | - Amanda E. Toland
- Department of Molecular VirologyImmunology and Medical GeneticsComprehensive Cancer CenterThe Ohio State UniversityColumbusOhio
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Thérèse Truong
- Cancer & Environment GroupCenter for Research in Epidemiology and Population Health (CESP)INSERMUniversity Paris‐SudUniversity Paris‐SaclayVillejuifFrance
| | | | | | - Lizet E. van der Kolk
- Family Cancer ClinicThe Netherlands Cancer Institute ‐ Antoni van Leeuwenhoek hospitalAmsterdamThe Netherlands
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor BiologyCancer and Translational Medicine Research UnitBiocenter OuluUniversity of OuluOuluFinland
- Laboratory of Cancer Genetics and Tumor BiologyNorthern Finland Laboratory Centre OuluOuluFinland
| | - Drakoulis Yannoukakos
- Molecular Diagnostics LaboratoryINRASTESNational Centre for Scientific Research “Demokritos”AthensGreece
| | - Wei Zheng
- Division of EpidemiologyDepartment of MedicineVanderbilt Epidemiology CenterVanderbilt‐Ingram Cancer CenterVanderbilt University School of MedicineNashvilleTennessee
| | | | - Alison M. Dunning
- Centre for Cancer Genetic EpidemiologyDepartment of OncologyUniversity of CambridgeCambridgeUK
| | - Douglas F. Easton
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
- Centre for Cancer Genetic EpidemiologyDepartment of OncologyUniversity of CambridgeCambridgeUK
| | - Alex Henderson
- Institute of Genetic MedicineCentre for LifeNewcastle Upon Tyne Hospitals NHS TrustNewcastle upon TyneUK
| | - Frans B.L. Hogervorst
- Family Cancer ClinicThe Netherlands Cancer Institute ‐ Antoni van Leeuwenhoek hospitalAmsterdamThe Netherlands
| | - Louise Izatt
- Clinical GeneticsGuy's and St. Thomas’ NHS Foundation TrustLondonUK
| | - Kenneth Offitt
- Clinical Genetics Research LaboratoryDept. of MedicineCancer Biology and GeneticsMemorial Sloan‐Kettering Cancer CenterNew YorkNew York
| | - Lucy E. Side
- Wessex Clinical Genetics ServiceMailpoint 627, Princess Anne Hospital, Coxford Road, Southampton, SO16 5YA
| | | | - Study EMBRACE
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeStrangeways Research LaboratoryWorts CausewayCambridgeUK
| | - Study HEBON
- The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON)Coordinating center: Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Lesley McGuffog
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Antonis C. Antoniou
- Centre for Cancer Genetic EpidemiologyDepartment of Public Health and Primary CareUniversity of CambridgeCambridgeUK
| | - Georgia Chenevix‐Trench
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbane, QLD 4006Australia
| | - Amanda B. Spurdle
- Department of Genetics and Computational BiologyQIMR Berghofer Medical Research InstituteBrisbane, QLD 4006Australia
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory CIBERONCHospital Clinico San CarlosIdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos)MadridSpain
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic TestingDepartment of ResearchFondazione IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale dei Tumori (INT)MilanItaly
| |
Collapse
|
45
|
Caputo SM, Léone M, Damiola F, Ehlen A, Carreira A, Gaidrat P, Martins A, Brandão RD, Peixoto A, Vega A, Houdayer C, Delnatte C, Bronner M, Muller D, Castera L, Guillaud-Bataille M, Søkilde I, Uhrhammer N, Demontety S, Tubeuf H, Castelain G, Jensen UB, Petitalot A, Krieger S, Lefol C, Moncoutier V, Boutry-Kryza N, Nielsen HR, Sinilnikova O, Stoppa-Lyonnet D, Spurdle AB, Teixeira MR, Coulet F, Thomassen M, Rouleau E. Full in-frame exon 3 skipping of BRCA2 confers high risk of breast and/or ovarian cancer. Oncotarget 2018; 9:17334-17348. [PMID: 29707112 PMCID: PMC5915120 DOI: 10.18632/oncotarget.24671] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/24/2018] [Indexed: 12/18/2022] Open
Abstract
Germline pathogenic variants in the BRCA2 gene are associated with a cumulative high risk of breast/ovarian cancer. Several BRCA2 variants result in complete loss of the exon-3 at the transcript level. The pathogenicity of these variants and the functional impact of loss of exon 3 have yet to be established. As a collaboration of the COVAR clinical trial group (France), and the ENIGMA consortium for investigating breast cancer gene variants, this study evaluated 8 BRCA2 variants resulting in complete deletion of exon 3. Clinical information for 39 families was gathered from Portugal, France, Denmark and Sweden. Multifactorial likelihood analyses were conducted using information from 293 patients, for 7 out of the 8 variants (including 6 intronic). For all variants combined the likelihood ratio in favor of causality was 4.39*1025. These results provide convincing evidence for the pathogenicity of all examined variants that lead to a total exon 3 skipping, and suggest that other variants that result in complete loss of exon 3 at the molecular level could be associated with a high risk of cancer comparable to that associated with classical pathogenic variants in BRCA1 or BRCA2 gene. In addition, our functional study shows, for the first time, that deletion of exon 3 impairs the ability of cells to survive upon Mitomycin-C treatment, supporting lack of function for the altered BRCA2 protein in these cells. Finally, this study demonstrates that any variant leading to expression of only BRCA2 delta-exon 3 will be associated with an increased risk of breast and ovarian cancer.
Collapse
Affiliation(s)
| | - Mélanie Léone
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Asa Ehlen
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Pascaline Gaidrat
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Alexandra Martins
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Ana Vega
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Claude Houdayer
- Institut Curie, Service de Génétique, Paris, France.,Université Paris Descartes, Paris, France
| | | | | | - Danièle Muller
- Laboratoire d'Oncogénétique, Centre Paul Strauss, Strasbourg, France
| | - Laurent Castera
- Laboratoire de biologie et de génétique du cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, Caen, France
| | | | - Inge Søkilde
- Section of Molecular Diagnostics, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Nancy Uhrhammer
- Laboratoire de Biologie Médicale, CLCC Jean Perrin, Clermont-Ferrand, France
| | | | - Hélène Tubeuf
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France.,Interactive Biosoftware, Rouen, France
| | - Gaïa Castelain
- Inserm-U1245, UNIROUEN, Normandie University, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Uffe Birk Jensen
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Sophie Krieger
- Laboratoire de biologie et de génétique du cancer, CLCC François Baclesse, INSERM 1079 Centre Normand de Génomique et de Médecine Personnalisée, Caen, France
| | | | | | - Nadia Boutry-Kryza
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Olga Sinilnikova
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | | | - Amanda B Spurdle
- Genetics and Comp utational Biology Division, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Australia
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal.,Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Florence Coulet
- Laboratoire d'Oncogénétique et d'Angiogénétique Moléculaire, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | |
Collapse
|
46
|
Jayasinghe RG, Cao S, Gao Q, Wendl MC, Vo NS, Reynolds SM, Zhao Y, Climente-González H, Chai S, Wang F, Varghese R, Huang M, Liang WW, Wyczalkowski MA, Sengupta S, Li Z, Payne SH, Fenyö D, Miner JH, Walter MJ, Vincent B, Eyras E, Chen K, Shmulevich I, Chen F, Ding L. Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Rep 2018; 23:270-281.e3. [PMID: 29617666 PMCID: PMC6055527 DOI: 10.1016/j.celrep.2018.03.052] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases.
Collapse
Affiliation(s)
- Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Qingsong Gao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nam Sy Vo
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Héctor Climente-González
- Institut Curie, 75248 Paris Cedex, France; MINES ParisTech, PSL-Research University, CBIO-Centre for Computational Biology, 77300 Fontainebleau, France; INSERM U900, 75248 Paris Cedex, France
| | - Shengjie Chai
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rajees Varghese
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Division of Nephrology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Mo Huang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Wen-Wei Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Sohini Sengupta
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhi Li
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA
| | - Samuel H Payne
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Institute for Systems Genetics, New York University School of Medicine, New York, NY 10016, USA
| | - Jeffrey H Miner
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Division of Nephrology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Matthew J Walter
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Benjamin Vincent
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eduardo Eyras
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain; Computational RNA Biology Group, Pompeu Fabra University (UPF), 08003 Barcelona, Spain
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Division of Nephrology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Division of Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
47
|
Splicing Analysis of Exonic OCRL Mutations Causing Lowe Syndrome or Dent-2 Disease. Genes (Basel) 2018; 9:genes9010015. [PMID: 29300302 PMCID: PMC5793168 DOI: 10.3390/genes9010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 01/12/2023] Open
Abstract
Mutations in the OCRL gene are associated with both Lowe syndrome and Dent-2 disease. Patients with Lowe syndrome present congenital cataracts, mental disabilities and a renal proximal tubulopathy, whereas patients with Dent-2 disease exhibit similar proximal tubule dysfunction but only mild, or no additional clinical defects. It is not yet understood why some OCRL mutations cause the phenotype of Lowe syndrome, while others develop the milder phenotype of Dent-2 disease. Our goal was to gain new insights into the consequences of OCRL exonic mutations on pre-mRNA splicing. Using predictive bioinformatics tools, we selected thirteen missense mutations and one synonymous mutation based on their potential effects on splicing regulatory elements or splice sites. These mutations were analyzed in a minigene splicing assay. Results of the RNA analysis showed that three presumed missense mutations caused alterations in pre-mRNA splicing. Mutation c.741G>T; p.(Trp247Cys) generated splicing silencer sequences and disrupted splicing enhancer motifs that resulted in skipping of exon 9, while mutations c.2581G>A; p.(Ala861Thr) and c.2581G>C; p.(Ala861Pro) abolished a 5′ splice site leading to skipping of exon 23. Mutation c.741G>T represents the first OCRL exonic variant outside the conserved splice site dinucleotides that results in alteration of pre-mRNA splicing. Our results highlight the importance of evaluating the effects of OCRL exonic mutations at the mRNA level.
Collapse
|
48
|
Evaluation of reported pathogenic variants and their frequencies in a Japanese population based on a whole-genome reference panel of 2049 individuals. J Hum Genet 2017; 63:213-230. [PMID: 29192238 DOI: 10.1038/s10038-017-0347-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/25/2017] [Accepted: 08/29/2017] [Indexed: 01/07/2023]
Abstract
Clarifying allele frequencies of disease-related genetic variants in a population is important in genomic medicine; however, such data is not yet available for the Japanese population. To estimate frequencies of actionable pathogenic variants in the Japanese population, we examined the reported pathological variants in genes recommended by the American College of Medical Genetics and Genomics (ACMG) in our reference panel of genomic variations, 2KJPN, which was created by whole-genome sequencing of 2049 individuals of the resident cohort of the Tohoku Medical Megabank Project. We searched for pathogenic variants in 2KJPN for 57 autosomal ACMG-recommended genes responsible for 26 diseases and then examined their frequencies. By referring to public databases of pathogenic variations, we identified 143 reported pathogenic variants in 2KJPN for the 57 ACMG recommended genes based on a classification system. At the individual level, 21% of the individuals were found to have at least one reported pathogenic allele. We then conducted a literature survey to review the variants and to check for evidence of pathogenicity. Our results suggest that a substantial number of people have reported pathogenic alleles for the ACMG genes, and reviewing variants is indispensable for constructing the information infrastructure of genomic medicine for the Japanese population.
Collapse
|
49
|
Jarhelle E, Riise Stensland HMF, Mæhle L, Van Ghelue M. Characterization of BRCA1 and BRCA2 variants found in a Norwegian breast or ovarian cancer cohort. Fam Cancer 2017; 16:1-16. [PMID: 27495310 DOI: 10.1007/s10689-016-9916-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Germline mutations in BRCA1 and BRCA2 cause hereditary breast and ovarian cancer. Molecular screening of these two genes in patients with a family history of breast or ovarian cancer has revealed pathogenic variants as well as genetic variants of unknown significance (VUS). These VUS may cause a challenge in the genetic counseling process regarding clinical management of the patient and the family. We investigated 32 variants previously detected in 33 samples from patients with a family history of breast or ovarian cancer. cDNA was analyzed for alternative transcripts and selected missense variants located in the BRCT domains of BRCA1 were assessed for their trans-activation ability. Although an extensive cDNA analysis was done, only three of the 32 variants appeared to affect the splice-process (BRCA1 c.213-5T>A, BRCA1 c.5434C>G and BRCA2 c.68-7T>A). In addition, two variants located in the BRCT domains of BRCA1 (c.5075A>C p.Asp1692Ala and c.5513T>G p.Val1838Gly) were shown to abolish the BRCT domain trans-activation ability, whereas BRCA1 c.5125G>A p.Gly1709Arg exhibited equal trans-activation capability as the WT domain. These functional studies may offer further insights into the pathogenicity of certain identified variants; however, this assay is only applicable for a subset of missense variants.
Collapse
Affiliation(s)
- Elisabeth Jarhelle
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway.,Department of Clinical Medicine, University of Tromsø, Tromsø, Norway
| | - Hilde Monica Frostad Riise Stensland
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway.,Northern Norway Family Cancer Center, University Hospital of North Norway, Tromsø, Norway
| | - Lovise Mæhle
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway. .,Department of Clinical Medicine, University of Tromsø, Tromsø, Norway. .,Northern Norway Family Cancer Center, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
50
|
Alternative Splicing in Genetic Diseases: Improved Diagnosis and Novel Treatment Options. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 335:85-141. [PMID: 29305015 DOI: 10.1016/bs.ircmb.2017.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alternative splicing is an important mechanism to regulate gene expression and to expand the repertoire of gene products in order to accommodate an increase in complexity of multicellular organisms. It needs to be precisely regulated, which is achieved via RNA structure, splicing factors, transcriptional regulation, and chromatin. Changes in any of these factors can lead to disease. These may include the core spliceosome, splicing enhancer/repressor sequences and their interacting proteins, the speed of transcription by RNA polymerase II, and histone modifications. While the basic principle of splicing is well understood, it is still very difficult to predict splicing outcome, due to the multiple levels of regulation. Current molecular diagnostics mainly uses Sanger sequencing of exons, or next-generation sequencing of gene panels or the whole exome. Functional analysis of potential splicing variants is scarce, and intronic variants are often not considered. This likely results in underestimation of the percentage of splicing variants. Understanding how sequence variants may affect splicing is not only crucial for confirmation of diagnosis and for genetic counseling, but also for the development of novel treatment options. These include small molecules, transsplicing, antisense oligonucleotides, and gene therapy. Here we review the current state of molecular mechanisms of splicing regulation and how deregulation can lead to human disease, diagnostics to detect splicing variants, and novel treatment options based on splicing correction.
Collapse
|