1
|
Kawashima N, Oyarbide U, Cipolli M, Bezzerri V, Corey SJ. Shwachman-Diamond syndromes: clinical, genetic, and biochemical insights from the rare variants. Haematologica 2023; 108:2594-2605. [PMID: 37226705 PMCID: PMC10543188 DOI: 10.3324/haematol.2023.282949] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Shwachman-Diamond syndrome is a rare inherited bone marrow failure syndrome characterized by neutropenia, exocrine pancreatic insufficiency, and skeletal abnormalities. In 10-30% of cases, transformation to a myeloid neoplasm occurs. Approximately 90% of patients have biallelic pathogenic variants in the SBDS gene located on human chromosome 7q11. Over the past several years, pathogenic variants in three other genes have been identified to cause similar phenotypes; these are DNAJC21, EFL1, and SRP54. Clinical manifestations involve multiple organ systems and those classically associated with the Shwachman-Diamond syndrome (bone, blood, and pancreas). Neurocognitive, dermatologic, and retinal changes may also be found. There are specific gene-phenotype differences. To date, SBDS, DNAJC21, and SRP54 variants have been associated with myeloid neoplasia. Common to SBDS, EFL1, DNAJC21, and SRP54 is their involvement in ribosome biogenesis or early protein synthesis. These four genes constitute a common biochemical pathway conserved from yeast to humans that involve early stages of protein synthesis and demonstrate the importance of this synthetic pathway in myelopoiesis.
Collapse
Affiliation(s)
- Nozomu Kawashima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | - Usua Oyarbide
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | | | | | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
2
|
Li J, Su Y, Chen L, Lin Y, Ru K. Identification of novel mutations in patients with Diamond-Blackfan anemia and literature review of RPS10 and RPS26 mutations. Int J Lab Hematol 2023; 45:766-773. [PMID: 37376976 DOI: 10.1111/ijlh.14126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure syndrome characterized by erythroid aplasia, physical malformation, and cancer predisposition. Twenty ribosomal protein genes and three non-ribosomal protein genes have been identified associated with DBA. METHODS To investigate the presence of novel mutations and gain a deeper understanding of the molecular mechanisms of disease, targeted next-generation sequencing was performed in 12 patients with clinically suspected DBA. Literatures were retrieved with complete clinical information published in English by November 2022. The clinical features, treatment, and RPS10/RPS26 mutations were analyzed. RESULTS Among the 12 patients, 11 mutations were identified and 5 of them were novel (RPS19, p.W52S; RPS10, p.P106Qfs*11; RPS26, p.R28*; RPL5, p.R35*; RPL11, p.T44Lfs*40). Including 2 patients in this study, 13 patients with RPS10 mutations and 38 patients with RPS26 mutations were reported from 4 and 6 countries, respectively. The incidences of physical malformation in patients with RPS10 and RPS26 mutations (22% and 36%, respectively) were lower than the overall incidence in DBA patients (~50%). Patients with RPS26 mutations had a worse response rate of steroid therapy than RPS10 (47% vs. 87.5%), but preferred RBC transfusions (67% vs. 44%, p = 0.0253). CONCLUSION Our findings add to the DBA pathogenic variant database and demonstrate the clinical presentations of the DBA patients with RPS10/RPS26 mutations. It shows that next-generation sequencing is a powerful tool for the diagnosis of genetic diseases such as DBA.
Collapse
Affiliation(s)
- Jing Li
- SINO-US Diagnostics, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, China
| | - Yongfeng Su
- Department of Hematology for Seniors, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Long Chen
- SINO-US Diagnostics, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, China
| | - Yani Lin
- SINO-US Diagnostics, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, China
| | - Kun Ru
- SINO-US Diagnostics, Tianjin Enterprise Key Laboratory of AI-aided Hematopathology Diagnosis, Tianjin, China
- Department of Pathology and Lab Medicine, Shandong Cancer Hospital, Jinan, Shandong, China
| |
Collapse
|
3
|
Kawashima N, Bezzerri V, Corey SJ. The Molecular and Genetic Mechanisms of Inherited Bone Marrow Failure Syndromes: The Role of Inflammatory Cytokines in Their Pathogenesis. Biomolecules 2023; 13:1249. [PMID: 37627314 PMCID: PMC10452082 DOI: 10.3390/biom13081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) include Fanconi anemia, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, dyskeratosis congenita, severe congenital neutropenia, and other rare entities such as GATA2 deficiency and SAMD9/9L mutations. The IBMFS monogenic disorders were first recognized by their phenotype. Exome sequencing has validated their classification, with clusters of gene mutations affecting DNA damage response (Fanconi anemia), ribosome structure (Diamond-Blackfan anemia), ribosome assembly (Shwachman-Diamond syndrome), or telomere maintenance/stability (dyskeratosis congenita). The pathogenetic mechanisms of IBMFSs remain to be characterized fully, but an overarching hypothesis states that different stresses elicit TP53-dependent growth arrest and apoptosis of hematopoietic stem, progenitor, and precursor cells. Here, we review the IBMFSs and propose a role for pro-inflammatory cytokines, such as TGF-β, IL-1β, and IFN-α, in mediating the cytopenias. We suggest a pathogenic role for cytokines in the transformation to myeloid neoplasia and hypothesize a role for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Nozomu Kawashima
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Seth J. Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
4
|
Thompson AS, Giri N, Gianferante DM, Jones K, Savage SA, Alter BP, McReynolds LJ. Shwachman Diamond syndrome: narrow genotypic spectrum and variable clinical features. Pediatr Res 2022; 92:1671-1680. [PMID: 35322185 PMCID: PMC9500118 DOI: 10.1038/s41390-022-02009-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Shwachman Diamond syndrome (SDS) is an inherited bone marrow failure syndrome (IBMFS) associated with pancreatic insufficiency, neutropenia, and skeletal dysplasia. Biallelic pathogenic variants (PV) in SBDS account for >90% of SDS. We hypothesized that the SDS phenotype varies based on genotype and conducted a genotype-phenotype correlation study to better understand these complexities. METHODS We reviewed records of all patients with SDS or SDS-like syndromes in the National Cancer Institute's (NCI) IBMFS study. Additional published SDS cohorts were reviewed and compared with the NCI cohort. RESULTS PVs in SBDS were present in 32/47 (68.1%) participants. Biallelic inheritance of SBDS c.258 + 2T > C and c.183_184TA > CT was the most common genotype in our study (25/32, 78.1%) and published cohorts. Most patients had the SDS hallmark features of neutropenia (45/45, 100%), pancreatic insufficiency (41/43, 95.3%), and/or bony abnormalities (29/36, 80.6%). Developmental delay was common (20/34, 58.8%). Increased risk of hematologic malignancies at young ages and the rarity of solid malignancies was observed in both the NCI cohort and published studies. CONCLUSIONS SDS is a complex childhood illness with a narrow genotypic spectrum. Patients may first present to primary care, gastroenterology, orthopedic, and/or hematology clinics. Coordinated multidisciplinary care is important for diagnosis and patient management. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00027274. IMPACT The clinical and genetic spectrum of Shwachman Diamond Syndrome was comprehensively evaluated, and the findings illustrate the importance of a multidisciplinary approach for these complex patients. Our work reveals: 1. a narrow genotypic spectrum in SDS; 2. a low risk of solid tumors in patients with SDS; 3. patients with SDS have clinical manifestations in multiple organ systems.
Collapse
Affiliation(s)
- Ashley S Thompson
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - D Matthew Gianferante
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
5
|
Dokal I, Tummala H, Vulliamy T. Inherited bone marrow failure in the pediatric patient. Blood 2022; 140:556-570. [PMID: 35605178 PMCID: PMC9373017 DOI: 10.1182/blood.2020006481] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/05/2022] Open
Abstract
Inherited bone marrow (BM) failure syndromes are a diverse group of disorders characterized by BM failure, usually in association with ≥1 extrahematopoietic abnormalities. BM failure, which can involve ≥1 cell lineages, often presents in the pediatric age group. Furthermore, some children initially labeled as having idiopathic aplastic anemia or myelodysplasia represent cryptic cases of inherited BM failure. Significant advances in the genetics of these syndromes have been made, identifying more than 100 disease genes, giving insights into normal hematopoiesis and how it is disrupted in patients with BM failure. They have also provided important information on fundamental biological pathways, including DNA repair: Fanconi anemia (FA) genes; telomere maintenance: dyskeratosis congenita (DC) genes; and ribosome biogenesis: Shwachman-Diamond syndrome and Diamond-Blackfan anemia genes. In addition, because these disorders are usually associated with extrahematopoietic abnormalities and increased risk of cancer, they have provided insights into human development and cancer. In the clinic, genetic tests stemming from the recent advances facilitate diagnosis, especially when clinical features are insufficient to accurately classify a disorder. Hematopoietic stem cell transplantation using fludarabine-based protocols has significantly improved outcomes, particularly in patients with FA or DC. Management of some other complications, such as cancer, remains a challenge. Recent studies have suggested the possibility of new and potentially more efficacious therapies, including a renewed focus on hematopoietic gene therapy and drugs [transforming growth factor-β inhibitors for FA and PAPD5, a human poly(A) polymerase, inhibitors for DC] that target disease-specific defects.
Collapse
Affiliation(s)
- Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, London, United Kingdom; and
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Hemanth Tummala
- Centre for Genomics and Child Health, Blizard Institute, London, United Kingdom; and
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| | - Tom Vulliamy
- Centre for Genomics and Child Health, Blizard Institute, London, United Kingdom; and
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Barts Health National Health Service (NHS) Trust, London, United Kingdom
| |
Collapse
|
6
|
Hiregange DG, Rivalta A, Yonath A, Zimmerman E, Bashan A, Yonath H. Mutations in RPS19 may affect ribosome function and biogenesis in Diamond Blackfan Anemia. FEBS Open Bio 2022; 12:1419-1434. [PMID: 35583751 PMCID: PMC9249338 DOI: 10.1002/2211-5463.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022] Open
Abstract
Ribosomes, the cellular organelles translating the genetic code to proteins, are assemblies of RNA chains and many proteins (RPs) arranged in precise fine-tuned interwoven structures. Mutated ribosomal genes cause ribosomopathies, including Diamond Blackfan Anemia (DBA, a rare heterogeneous red-cell aplasia connected to ribosome malfunction) or failed biogenesis. Combined bioinformatical, structural, and predictive analyses of potential consequences of possibly expressed mutations in eS19, the protein product of the highly mutated RPS19, suggests that mutations in its exposed surface could alter its positioning during assembly and consequently prevent biogenesis, implying a natural selective strategy to avoid malfunctions in ribosome assembly. A search for RPS19 pseudogenes indicated >90% sequence identity with the wild type, hinting at its expression in cases of absent or truncated gene products.
Collapse
Affiliation(s)
| | - Andre Rivalta
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ada Yonath
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Ella Zimmerman
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Anat Bashan
- The Department of Chemical and Structural Biology, Weizmann Institute of Science, Israel
| | - Hagith Yonath
- Internal Medicine A and Genetics Institute Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Israel
| |
Collapse
|
7
|
Wang L, Li J, Xiong Q, Zhou YA, Li P, Wu C. Case Report: A Missense Mutation in Dyskeratosis Congenita 1 Leads to a Benign Form of Dyskeratosis Congenita Syndrome With the Mucocutaneous Triad. Front Pediatr 2022; 10:834268. [PMID: 35463902 PMCID: PMC9019361 DOI: 10.3389/fped.2022.834268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Dyskeratosis congenita (DC) is a rare inheritable disorder characterized by bone marrow failure and mucocutaneous triad (reticular skin pigmentation, nail dystrophy, and oral leukoplakia). Dyskeratosis congenita 1 (DKC1) is responsible for 4.6% of the DC with an X-linked inheritance pattern. Almost 70 DKC1 variations causing DC have been reported in the Human Gene Mutation Database. RESULTS Here we described a 14-year-old boy in a Chinese family with a phenotype of abnormal skin pigmentation on the neck, oral leukoplakia, and nail dysplasia in his hands and feet. Genetic analysis and sequencing revealed hemizygosity for a recurrent missense mutation c.1156G > A (p.Ala386Thr) in DKC1 gene. The heterozygous mutation (c.1156G > A) from his mother and wild-type sequence from his father were obtained in the same site of DKC1. This mutation was determined as disease causing based on silico software, but the pathological phenotypes of the proband were milder than previously reported at this position (HGMDCM060959). Homology modeling revealed that the altered amino acid was located near the PUA domain, which might affect the affinity for RNA binding. CONCLUSION This DKC1 mutation (c.1156G > A, p.Ala386Thr) was first reported in a Chinese family with mucocutaneous triad phenotype. Our study reveals the pathogenesis of DKC1 c.1156G > A mutation to DC with a benign phenotype, which expands the disease variation database, the understanding of genotype-phenotype correlations, and facilitates the clinical diagnosis of DC in China.
Collapse
Affiliation(s)
- Liqing Wang
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Jianwei Li
- Bluttransfusion, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Qiuhong Xiong
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Yong-An Zhou
- Bluttransfusion, The Second Hospital, Shanxi Medical University, Taiyuan, China
| | - Ping Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education of China, Shanxi University, Taiyuan, China.,The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
8
|
Lim YJ, Arbiv OA, Kalbfleisch ME, Klaassen RJ, Fernandez C, Rayar M, Steele M, Lipton JH, Cuvelier G, Pastore YD, Silva M, Brossard J, Michon B, Abish S, Sinha R, Corriveau-Bourque C, Breakey VR, Tole S, Goodyear L, Sung L, Zlateska B, Cada M, Dror Y. Poor Outcome After Hematopoietic Stem Cell Transplantation Of Patients With Unclassified Inherited Bone Marrow Failure Syndromes. Eur J Haematol 2021; 108:278-287. [PMID: 34897809 DOI: 10.1111/ejh.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Classification of inherited bone marrow failure syndromes (IBMFSs) according to clinical and genetic diagnoses enables proper adjustment of treatment. Unfortunately, 30% of patients enrolled in the Canadian Inherited Marrow Failure Registry (CIMFR) with features suggesting hereditability could not be classified with a specific syndromic diagnosis. We analyzed the outcome of hematopoietic stem cell transplantation (HSCT) in unclassified IBMFSs (uIBMFSs) and the factors associated with outcome. Twenty-two patients with uIBMFSs and 70 patients with classified IBMFSs underwent HSCT. Five-year overall survival of uIBMFS patients after HSCT was inferior to that of patients with classified IBMFSs (56% vs 76.5%). The outcome of patients with uIBMFS who received cord blood was significantly lower than that of patients who received other stem cell sources (14.8% vs 90.9%). Engraftment failure was higher among patients with uIBMFS who received cord blood than those who received bone marrow. None of the following factors was significantly associated with poor survival: transfusion load, transplant indication, the intensity of conditioning regimen, human leukocyte antigen-identical sibling/alternative donor. We suggest that identifying the genetic diagnosis is essential to modulate the transplant procedure including conditioning agents and stem cell sources for better outcome and the standard CBT should be avoided in uIBMFS.
Collapse
Affiliation(s)
- Yeon Jung Lim
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Current Affiliation, Department of Pediatrics, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Omri A Arbiv
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melanie E Kalbfleisch
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | - Meera Rayar
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | | - Josee Brossard
- Centre U Sante de l'Estrie-Fleur, Sherbrooke, Québec, Canada
| | - Bruno Michon
- Centre Hospital University Quebec-Pav CHUL, Sainte-Foy, Québec, Canada
| | - Sharon Abish
- Montreal Children's Hospital, Montreal, Québec, Canada
| | - Roona Sinha
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Vicky R Breakey
- McMaster Children's Hospital/McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | - Soumitra Tole
- Children's Hospital, London Health Sciences Centre, London, Ontario, Canada
| | - Lisa Goodyear
- Janeway Child Health Centre, St. John's, Newfoundland, Canada
| | - Lillian Sung
- Child Health and Evaluative Sciences, .The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bozana Zlateska
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michaela Cada
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto
| | - Yigal Dror
- The Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, University of Toronto.,Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Chan SH, Ni Y, Li ST, Teo JX, Ishak NDB, Lim WK, Ngeow J. Spectrum of Germline Mutations Within Fanconi Anemia–Associated Genes Across Populations of Varying Ancestry. JNCI Cancer Spectr 2021; 5:6146409. [DOI: 10.1093/jncics/pkaa117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Fanconi anemia (FA) is a rare genetic disorder associated with hematological disorders and solid tumor predisposition. Owing to phenotypic heterogeneity, some patients remain undetected until adulthood, usually following cancer diagnoses. The uneven prevalence of FA cases with different underlying FA gene mutations worldwide suggests variable genetic distribution across populations. Here, we aim to assess the genetic spectrum of FA-associated genes across populations of varying ancestries and explore potential genotype–phenotype associations in cancer.
Methods
Carrier frequency and variant spectrum of potentially pathogenic germline variants in 17 FA genes (excluding BRCA1/FANCS, BRCA2/FANCD1, BRIP1/FANCJ, PALB2/FANCN, RAD51C/FANCO) were evaluated in 3523 Singaporeans and 7 populations encompassing Asian, European, African, and admixed ancestries from the Genome Aggregation Database. Germline and somatic variants of 17 FA genes in 7 cancer cohorts from The Cancer Genome Atlas were assessed to explore genotype–phenotype associations.
Results
Germline variants in FANCA were consistently more frequent in all populations. Similar trends in carrier frequency and variant spectrum were detected in Singaporeans and East Asians, both distinct from other ancestry groups, particularly in the lack of recurrent variants. Our exploration of The Cancer Genome Atlas dataset suggested higher germline and somatic mutation burden between FANCA and FANCC with head and neck and lung squamous cell carcinomas as well as FANCI and SLX4/FANCP with uterine cancer, but the analysis was insufficiently powered to detect any statistical significance.
Conclusion
Our findings highlight the diverse genetic spectrum of FA-associated genes across populations of varying ancestries, emphasizing the need to include all known FA-related genes for accurate molecular diagnosis of FA.
Collapse
Affiliation(s)
- Sock Hoai Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Ying Ni
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Shao-Tzu Li
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Jing Xian Teo
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
| | - Nur Diana Binte Ishak
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
| | - Weng Khong Lim
- SingHealth Duke-NUS Institute of Precision Medicine, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore
- SingHealth Duke-NUS Genomic Medicine Centre, Singapore
| | - Joanne Ngeow
- Division of Medical Oncology, National Cancer Centre Singapore, Cancer Genetics Service, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
10
|
Pediatric bone marrow failure: Clinical, hematological and targeted next generation sequencing data. Blood Cells Mol Dis 2020; 87:102510. [PMID: 33197791 DOI: 10.1016/j.bcmd.2020.102510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE In this study, clinico-hematological, genetic and outcome profile of children with BMF was evaluated to delineate the underlying genotype and phenotype. DESIGN Cases were evaluated as two groups: Group 1 (n = 56; DBA-23, FA-18, DC-2, UBMFS-13) included children with suspected IBMFS based on clinical phenotype and accessible lab investigations and Group 2 (n = 53) included children with IAA treated with IST. Targeted NGS was carried out in a subset of these children (n = 42) and supplemented with WES wherever required. RESULTS We identified causative mutation in overall 15 of 27 tested children (55.5%) in group 1 and 2 of 15 tested children (13.3%) in group 2. In DBA, a mutation was noted in 50% cases with involvement of RPS 19 (75%) and RPL5 (25%) genes. Phenotypic abnormalities were present in 69.5% and response to steroids in 68.4% of cases at a median follow up of 33 months. In children with IAA, overall response (complete + partial) was present in 51% at a median follow up of 23 months. The 3-year OS and FFS for the cohort of IAA were 68% and 48% respectively. Targeted sequencing could also pick up germline mutations in 50% of UBMFS cases and nearly 19% of IAA cases.
Collapse
|
11
|
Repczynska A, Pastorczak A, Babol-Pokora K, Skalska-Sadowska J, Drozniewska M, Mlynarski W, Haus O. Novel FANCA mutation in the first fully-diagnosed patient with Fanconi anemia in Polish population - case report. Mol Cytogenet 2020; 13:33. [PMID: 32793304 PMCID: PMC7418427 DOI: 10.1186/s13039-020-00503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/16/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Fanconi anemia is a rare genetic disorder caused by mutations in genes which protein products are involved in replication, cell cycle control and DNA repair. It is characterized by congenital malformations, bone marrow failure, and high risk of cancer. The diagnosis is based on morphological and hematological abnormalities such as pancytopenia, macrocytic anaemia and progressive bone marrow failure. Genetic examination, often very complex, includes chromosomal breakage testing and mutational analysis. CASE PRESENTATION We present a child with clinical diagnosis of Fanconi anemia. Although morphological abnormalities of skin and bones were present from birth, diagnosis was only suspected at the age of 8. Chromosome breakage test in patient's lymphocytes showed increased level of aberrations (gaps, chromatid breaks, chromosome breaks, radial figures and rearrangements) compared to control. Next generation sequencing revealed presence of two pathogenic variants in FANCA gene, one of which was not previously reported. CONCLUSIONS The article provides additional supportive evidence that compound biallelic mutations of FANCA are associated with Fanconi anemia. It also illustrates the utility of combination of cytogenetic and molecular tests, together with detailed clinical evaluation in providing accurate diagnosis of Fanconi anemia. This report, to the best of our knowledge, describes the first fully diagnosed FA patient in Polish population.
Collapse
Affiliation(s)
- Anna Repczynska
- Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Agata Pastorczak
- Laboratory of Immunopathology and Genetics, Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738 Lodz, Poland
| | - Katarzyna Babol-Pokora
- Laboratory of Immunopathology and Genetics, Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738 Lodz, Poland
| | - Jolanta Skalska-Sadowska
- Department of Oncology, Hematology and Pediatric Transplantology, Medical University in Poznan, ul. Szpitalna 27/33, 60-572 Poznan, Poland
| | - Malgorzata Drozniewska
- West Midlands Regional Genetics Laboratory, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Mindelsohn Way, B15 2TG Birmingham, UK
| | - Wojciech Mlynarski
- Laboratory of Immunopathology and Genetics, Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, ul. Sporna 36/50, 91-738 Lodz, Poland
| | - Olga Haus
- Department of Clinical Genetics, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, ul. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
12
|
Nonsense Suppression Therapy: New Hypothesis for the Treatment of Inherited Bone Marrow Failure Syndromes. Int J Mol Sci 2020; 21:ijms21134672. [PMID: 32630050 PMCID: PMC7369780 DOI: 10.3390/ijms21134672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a group of cancer-prone genetic diseases characterized by hypocellular bone marrow with impairment in one or more hematopoietic lineages. The pathogenesis of IBMFS involves mutations in several genes which encode for proteins involved in DNA repair, telomere biology and ribosome biogenesis. The classical IBMFS include Shwachman–Diamond syndrome (SDS), Diamond–Blackfan anemia (DBA), Fanconi anemia (FA), dyskeratosis congenita (DC), and severe congenital neutropenia (SCN). IBMFS are associated with high risk of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. Unfortunately, no specific pharmacological therapies have been highly effective for IBMFS. Hematopoietic stem cell transplantation provides a cure for aplastic or myeloid neoplastic complications. However, it does not affect the risk of solid tumors. Since approximately 28% of FA, 24% of SCN, 21% of DBA, 20% of SDS, and 17% of DC patients harbor nonsense mutations in the respective IBMFS-related genes, we discuss the use of the nonsense suppression therapy in these diseases. We recently described the beneficial effect of ataluren, a nonsense suppressor drug, in SDS bone marrow hematopoietic cells ex vivo. A similar approach could be therefore designed for treating other IBMFS. In this review we explain in detail the new generation of nonsense suppressor molecules and their mechanistic roles. Furthermore, we will discuss strengths and limitations of these molecules which are emerging from preclinical and clinical studies. Finally we discuss the state-of-the-art of preclinical and clinical therapeutic studies carried out for IBMFS.
Collapse
|
13
|
Incidence of Severe Chronic Neutropenia in South Korea and Related Clinical Manifestations: A National Health Insurance Database Study. ACTA ACUST UNITED AC 2020; 56:medicina56060262. [PMID: 32471206 PMCID: PMC7353846 DOI: 10.3390/medicina56060262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/20/2020] [Accepted: 05/25/2020] [Indexed: 11/08/2022]
Abstract
Background and objectives: Severe chronic neutropenia (SCN) is a condition in which absolute neutrophil counts remain at a low level (under 500/µL) over months or years. Because of the rare onset of SCN, its epidemiology, prognosis, and clinical manifestations have not yet been fully understood. In particular, large-cohort studies in Asian countries are still insufficient. Therefore, in this study, national health insurance data was used to investigate the epidemiologic features and prognosis of SCN in South Korea. Materials and Methods: The data from the Health Insurance Review and Assessment database recorded between 1 January 2011 and 31 December 2015 were explored. SCN was defined based on the ICD-10 code, registry of benefit extension policy, and inclusion criteria of the study. After identifying patients with SCN, annual incidence and their co-morbidities were analyzed. Results: Among the initially identified patients with severe neutropenia (N = 2145), a total of 367 patients had SCN and were enrolled. The annual incidence rate of SCN ranged from 0.12 to 0.17 per 100,000 person-year (PY) during the study period. The highest incidence was observed in pediatric patients aged between 0 to 9 years (N = 156), followed by women in their fifties (N = 43). The total incidence rate was 0.17 in females and 0.12 in males (Relative risk (RR): 1.43, 95%, CI: 1.16–1.76). The most common accompanying condition was mild respiratory infection, but about 3.2% of patients progressed to hematologic malignancy after an average of 2.4 years. Conclusions: This nationwide population-based epidemiological study showed that incidence of SCN is higher in pediatrics and middle-aged women. As progression to hematologic malignancy was significantly higher in the age of in 45–49 years old, careful follow-up is necessary in this group. However, since this study lacks the molecular information, these finding need to be interpreted with great caution.
Collapse
|
14
|
Miller PC, Ren M, Schlame M, Toth MJ, Phoon CKL. A Bayesian Analysis to Determine the Prevalence of Barth Syndrome in the Pediatric Population. J Pediatr 2020; 217:139-144. [PMID: 31732128 DOI: 10.1016/j.jpeds.2019.09.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/30/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To determine the prevalence of Barth syndrome in the pediatric population. STUDY DESIGN Data were collected from the Barth Syndrome Foundation Registry and relevant literature. With the advent of genetic testing and whole-exome sequencing, a multipronged Bayesian analysis was used to estimate the prevalence of Barth syndrome based on published data on the incidence and prevalence of cardiomyopathy and neutropenia, and the respective subpopulations of patients with Barth syndrome indicated in these publications. RESULTS Based on 7 published studies of cardiomyopathy and 2 published studies of neutropenia, the estimated prevalence of Barth syndrome is approximately 1 case per million male population. This contrasts with 99 cases in the Barth Syndrome Foundation Registry, 58 of which indicate a US location, and only 230-250 cases known worldwide. CONCLUSIONS It appears that Barth syndrome is greatly underdiagnosed. There is a need for better education and awareness of this rare disease to move toward early diagnosis and treatment.
Collapse
Affiliation(s)
- Paighton C Miller
- Division of Pediatric Cardiology, Department of Pediatrics, New York University School of Medicine, New York, NY
| | - Mindong Ren
- Department of Anesthesiology, New York University School of Medicine, New York, NY; Department of Cell Biology, New York University School of Medicine, New York, NY
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, NY; Department of Cell Biology, New York University School of Medicine, New York, NY
| | | | - Colin K L Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University School of Medicine, New York, NY.
| |
Collapse
|
15
|
Lauhasurayotin S, Cuvelier GD, Klaassen RJ, Fernandez CV, Pastore YD, Abish S, Rayar M, Steele M, Jardine L, Breakey VR, Brossard J, Sinha R, Silva M, Goodyear L, Lipton JH, Michon B, Corriveau-Bourque C, Sung L, Shabanova I, Li H, Zlateska B, Dhanraj S, Cada M, Scherer SW, Dror Y. Reanalysing genomic data by normalized coverage values uncovers CNVs in bone marrow failure gene panels. NPJ Genom Med 2019; 4:30. [PMID: 31839986 PMCID: PMC6901453 DOI: 10.1038/s41525-019-0104-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/04/2019] [Indexed: 11/09/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are genetically heterogeneous disorders with cytopenia. Many IBMFSs also feature physical malformations and an increased risk of cancer. Point mutations can be identified in about half of patients. Copy number variation (CNVs) have been reported; however, the frequency and spectrum of CNVs are unknown. Unfortunately, current genome-wide methods have major limitations since they may miss small CNVs or may have low sensitivity due to low read depths. Herein, we aimed to determine whether reanalysis of NGS panel data by normalized coverage value could identify CNVs and characterize them. To address this aim, DNA from IBMFS patients was analyzed by a NGS panel assay of known IBMFS genes. After analysis for point mutations, heterozygous and homozygous CNVs were searched by normalized read coverage ratios and specific thresholds. Of the 258 tested patients, 91 were found to have pathogenic point variants. NGS sample data from 165 patients without pathogenic point mutations were re-analyzed for CNVs; 10 patients were found to have deletions. Diamond Blackfan anemia genes most commonly exhibited heterozygous deletions, and included RPS19, RPL11, and RPL5. A diagnosis of GATA2-related disorder was made in a patient with myelodysplastic syndrome who was found to have a heterozygous GATA2 deletion. Importantly, homozygous FANCA deletion were detected in a patient who could not be previously assigned a specific syndromic diagnosis. Lastly, we identified compound heterozygousity for deletions and pathogenic point variants in RBM8A and PARN genes. All deletions were validated by orthogonal methods. We conclude that careful analysis of normalized coverage values can detect CNVs in NGS panels and should be considered as a standard practice prior to do further investigations.
Collapse
Affiliation(s)
- Supanun Lauhasurayotin
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada.,2Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON Canada
| | - Geoff D Cuvelier
- 3Pediatric Hematology-Oncology-Bone Marrow Transplantation, University of Manitoba, Cancer Care Manitoba, Winnipeg, MB Canada
| | - Robert J Klaassen
- 4Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON Canada
| | | | | | - Sharon Abish
- 7Pediatric Hematology Oncology, Montreal Children's Hospital, Montreal, QC Canada
| | - Meera Rayar
- 8Division of Hematology/Oncology, UBC & B.C. Children's Hospital, Vancouver, BC Canada
| | | | - Lawrence Jardine
- 10Children's Hospital, London Health Sciences Centre, London, ON Canada
| | - Vicky R Breakey
- 11Department of Pediatrics, McMaster University, Hamilton, ON Canada
| | - Josee Brossard
- 12Centre hospitalier universitaire, Sherbrooke, QC Canada
| | - Roona Sinha
- 13Royal University Hospital, Saskatoon, SK Canada
| | | | - Lisa Goodyear
- 15Pediatric Hematology/Oncology, Janeway Child Health Centre, St. John's, NF Canada
| | - Jeffrey H Lipton
- 16Allogeneic Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON Canada
| | - Bruno Michon
- 17Centre Hospitalier Universitaire de Quebec, Sainte-Foy, QC Canada
| | | | - Lillian Sung
- 19Population Health Sciences, Research Institute, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON Canada
| | - Iren Shabanova
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada
| | - Hongbing Li
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada
| | - Bozana Zlateska
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada
| | - Santhosh Dhanraj
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada.,20Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Michaela Cada
- 2Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON Canada
| | - Stephen W Scherer
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada.,21McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Yigal Dror
- 1Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON Canada.,2Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON Canada.,20Institute of Medical Science, University of Toronto, Toronto, ON Canada
| |
Collapse
|
16
|
Steinberg-Shemer O, Goldberg TA, Yacobovich J, Levin C, Koren A, Revel-Vilk S, Ben-Ami T, Kuperman AA, Zemer VS, Toren A, Kapelushnik J, Ben-Barak A, Miskin H, Krasnov T, Noy-Lotan S, Dgany O, Tamary H. Characterization and genotype-phenotype correlation of patients with Fanconi anemia in a multi-ethnic population. Haematologica 2019; 105:1825-1834. [PMID: 31558676 PMCID: PMC7327661 DOI: 10.3324/haematol.2019.222877] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Fanconi anemia (FA), an inherited bone marrow failure (BMF) syndrome, caused by mutations in DNA repair genes, is characterized by congenital anomalies, aplastic anemia, high risk of malignancies and extreme sensitivity to alkylating agents. We aimed to study the clinical presentation, molecular diagnosis and genotype-phenotype correlation among patients with FA from the Israeli inherited BMF registry. Overall, 111 patients of Arab (57%) and Jewish (43%) descent were followed for a median of 15 years (range: 0.1-49); 63% were offspring of consanguineous parents. One-hundred patients (90%) had at least one congenital anomaly; over 80% of the patients developed bone marrow failure; 53% underwent hematopoietic stem-cell transplantation; 33% of the patients developed cancer; no significant association was found between hematopoietic stem-cell transplant and solid tumor development. Nearly 95% of the patients tested had confirmed mutations in the Fanconi genes FANCA (67%), FANCC (13%), FANCG (14%), FANCJ (3%) and FANCD1 (2%), including twenty novel mutations. Patients with FANCA mutations developed cancer at a significantly older age compared to patients with mutations in other Fanconi genes (mean 18.5 and 5.2 years, respectively, P=0.001); however, the overall survival did not depend on the causative gene. We hereby describe a large national cohort of patients with FA, the vast majority genetically diagnosed. Our results suggest an older age for cancer development in patients with FANCA mutations and no increased incidence of solid tumors following hematopoietic stem-cell transplant. Further studies are needed to guide individual treatment and follow-up programs.
Collapse
Affiliation(s)
- Orna Steinberg-Shemer
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv.,Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Tracie A Goldberg
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | - Ariel Koren
- Pediatric Hematology Unit, Emek Medical Center, Afula.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa
| | - Shoshana Revel-Vilk
- Pediatric Hematology/Oncology Unit, Shaare Zedek Medical Center, Jerusalem, affiliated with Hadassah- Hebrew University Medical School, Jerusalem
| | - Tal Ben-Ami
- Pediatric Hematology Unit, Kaplan Medical Center, Rehovot
| | - Amir A Kuperman
- Blood Coagulation Service and Pediatric Hematology Clinic, Galilee Medical Center, Nahariya.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed
| | - Vered Shkalim Zemer
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv
| | - Amos Toren
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv.,Department of Pediatric Hemato-Oncology, Children's Hospital (Edmond and Lily), Sheba Medical Center, Tel-Hashomer
| | - Joseph Kapelushnik
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva
| | - Ayelet Ben-Barak
- Pediatric Hematology-Oncology Department, Rambam Medical Center, Haifa, Israel
| | - Hagit Miskin
- Pediatric Hematology/Oncology Unit, Shaare Zedek Medical Center, Jerusalem, affiliated with Hadassah- Hebrew University Medical School, Jerusalem
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Sharon Noy-Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| | - Hannah Tamary
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva .,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv.,Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petach Tikva
| |
Collapse
|
17
|
Cohen CT, Bergstrom KL, Xiao R, Elghetany MT, Iacobas I, Sasa G. First case of neutropenia and thrombocytopenia in the setting of cerebral cavernous malformation 3. Int J Hematol 2019; 110:95-101. [PMID: 30904992 DOI: 10.1007/s12185-019-02626-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/25/2022]
Abstract
Cerebral cavernous malformation 3 (CCM3) is a vascular malformation disorder causing brain slow-flow vascular parenchymal lesions. These lesions are the result of variants in the Programmed Cell Death Protein 10 (PDCD10) gene, located on 3q26.1. We report an 8-month-old patient who was presented with seizures and intracranial abscesses and was found to have a variant of PDCD10 on whole exome sequencing, representing, to our knowledge, the youngest case of CCM3 described in the literature. Her clinical course was complicated by the development of neutropenia, requiring granulocyte colony-stimulating factor, and thrombocytopenia, requiring intermittent platelet transfusions, with later development of B acute lymphoblastic leukemia 2 years after initial presentation. This case represents the first description in the literature of hematologic complications in the setting of CCM3. We hypothesize that these hematological manifestations are the result of alterations in the actin and microtubule cytoskeleton, affecting the process of hematopoiesis in a similar fashion to the documented effect of the PDCD10 variant on neuronal migration.
Collapse
Affiliation(s)
- Clay Travis Cohen
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Texas Children's Hospital, 1102 Bates St. Ste. C1025, Houston, TX, 77030, USA.
| | - Katie Lee Bergstrom
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Texas Children's Hospital, 1102 Bates St. Ste. C1025, Houston, TX, 77030, USA
| | - Rui Xiao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mohamed Tarek Elghetany
- Department of Pathology and Immunology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Ionela Iacobas
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Texas Children's Hospital, 1102 Bates St. Ste. C1025, Houston, TX, 77030, USA
| | - Ghadir Sasa
- Department of Pediatrics, Section of Hematology-Oncology, Texas Children's Cancer and Hematology Center, Baylor College of Medicine, Texas Children's Hospital, 1102 Bates St. Ste. C1025, Houston, TX, 77030, USA
| |
Collapse
|
18
|
Li Y, Peng GX, Gao QY, Li Y, Ye L, Li JP, Song L, Fan HH, Yang Y, Xiong YZ, Wu ZJ, Yang WR, Zhou K, Zhao X, Jing LP, Zhang FK, Zhang L. [Using target next-generation sequencing assay in diagnosing of 46 patients with suspected congenital anemias]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 39:414-419. [PMID: 29779353 PMCID: PMC7342894 DOI: 10.3760/cma.j.issn.0253-2727.2018.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
目的 评估靶向二代基因测序(NGS)在先天性贫血诊断中的价值。 方法 设计含217个先天性贫血相关致病基因的NGS基因组合——BDHAP-2014,对2014年8月至2017年7月连续就诊的临床怀疑诊断先天性贫血的患者进行NGS检测和亲代验证。 结果 共纳入46例患者,临床疑诊分别为范可尼贫血(FA)11例、先天性红细胞生成异常性贫血(CDA)8例、先天性铁粒幼红细胞性贫血(CSA)6例、先天性溶血性贫血(CHA)12例、先天性角化不良(DC)1例、铁剂难治性缺铁性贫血(IR-IDA)4例及未明原因的血细胞减少(Uc)4例。经靶向NGS检测,28例(60.9%)患者明确了诊断和(或)分型,累及12个基因共44种致病性突变。其中26例(56.5%)基因诊断结果与临床疑诊相符,包括FA(5/11,45.5%)、CSA(6/6,100.0%)、CDA(3/8, 37.5%)及CHA(12/12,100.0%);2例(4.3%)患者的基因诊断结果与临床疑诊不一致,依据NGS纠正了诊断,包括1例DC和1例家族性噬血细胞性淋巴组织细胞增生症(FHL);12例CHA依据基因检查结果进一步明确了溶血类型。18例(39.1%)患者未明确致病基因,最终未能明确诊断。 结论 NGS对临床疑诊先天性贫血患者具有重要的诊断价值,可为临床治疗选择提供依据。
Collapse
Affiliation(s)
- Y Li
- Anemia Therapeutic Center, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vives Corrons JL, Mañú Pereira MDM, Trujillo JP, Surrallés J, Sevilla J. Anemias raras y fallos medulares hereditarios. ACTA ACUST UNITED AC 2018. [DOI: 10.3989/arbor.2018.789n3005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Las anemias raras y los fallos medulares hereditarios son enfermedades hematológicas caracterizadas, respectivamente, por una disminución de la concentración de hemoglobina o por diversos grados de defectos en la producción de células hematopoyéticas que conducen desde una citopenia de un solo linaje hasta una de múltiples linajes. Son enfermedades raras y difíciles de diagnosticar debido a la heterogeneidad clínica, citológica y genética. En este artículo abordaremos en primer lugar el diagnóstico de las anemias raras y sus causas principales: fallos medulares, defectos del hematíe y trastornos del metabolismo de los factores de maduración eritrocitario. Seguidamente introduciremos los fallos medulares hereditarios y su patología asociada, como son las malformaciones congénitas y la predisposición tumoral, haciendo especial hincapié en los más frecuentes: la anemia de Fanconi, la disqueratosis congénitca, la anemia de Diamond-Blackfan y el síndrome de Shwachman-Diamond.
Collapse
|
20
|
Aspesi A, Betti M, Sculco M, Actis C, Olgasi C, Wlodarski MW, Vlachos A, Lipton JM, Ramenghi U, Santoro C, Follenzi A, Ellis SR, Dianzani I. A functional assay for the clinical annotation of genetic variants of uncertain significance in Diamond-Blackfan anemia. Hum Mutat 2018; 39:1102-1111. [PMID: 29766597 PMCID: PMC6055729 DOI: 10.1002/humu.23551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/21/2018] [Accepted: 05/09/2018] [Indexed: 12/03/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare genetic hypoplasia of erythroid progenitors characterized by mild to severe anemia and associated with congenital malformations. Clinical manifestations in DBA patients are quite variable and genetic testing has become a critical factor in establishing a diagnosis of DBA. The majority of DBA cases are due to heterozygous loss-of-function mutations in ribosomal protein (RP) genes. Causative mutations are fairly straightforward to identify in the case of large deletions and frameshift and nonsense mutations found early in a protein coding sequence, but diagnosis becomes more challenging in the case of missense mutations and small in-frame indels. Our group recently characterized the phenotype of lymphoblastoid cell lines established from DBA patients with pathogenic lesions in RPS19 and observed that defective pre-rRNA processing, a hallmark of the disease, was rescued by lentiviral vectors expressing wild-type RPS19. Here, we use this complementation assay to determine whether RPS19 variants of unknown significance are capable of rescuing pre-rRNA processing defects in these lymphoblastoid cells as a means of assessing the effects of these sequence changes on the function of the RPS19 protein. This approach will be useful in differentiating pathogenic mutations from benign polymorphisms in identifying causative genes in DBA patients.
Collapse
Affiliation(s)
- Anna Aspesi
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| | - Marta Betti
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| | - Marika Sculco
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| | - Chiara Actis
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| | - Cristina Olgasi
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| | - Marcin W. Wlodarski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Adrianna Vlachos
- Feinstein Institute for Medical ResearchManhassetNew York
- Division of Hematology/Oncology and Stem Cell TransplantationCohen Children's Medical Center of New YorkNew Hyde ParkNew York
| | - Jeffrey M. Lipton
- Feinstein Institute for Medical ResearchManhassetNew York
- Division of Hematology/Oncology and Stem Cell TransplantationCohen Children's Medical Center of New YorkNew Hyde ParkNew York
| | - Ugo Ramenghi
- Department of Public Health and Pediatric SciencesUniversity of TorinoTorinoItaly
| | - Claudio Santoro
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| | - Antonia Follenzi
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| | - Steven R. Ellis
- Department of Biochemistry and Molecular GeneticsUniversity of LouisvilleLouisvilleKentucky
| | - Irma Dianzani
- Department of Health SciencesUniversità del Piemonte OrientaleNovaraItaly
| |
Collapse
|
21
|
DeZern AE, Brodsky RA. Genetic panels in young patients with bone marrow failure: are they clinically relevant? Haematologica 2018; 101:1275-1276. [PMID: 27799343 DOI: 10.3324/haematol.2016.152389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Amy E DeZern
- Division of Hematologic Malignancies; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, MD, USA
| | - Robert A Brodsky
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Dimishkovska M, Kotori VM, Gucev Z, Kocheva S, Polenakovic M, Plaseska-Karanfilska D. Novel Founder Mutation in FANCA Gene (c.3446_3449dupCCCT) Among Romani Patients from the Balkan Region. Balkan Med J 2018; 35:108-111. [PMID: 29400309 PMCID: PMC5820438 DOI: 10.4274/balkanmedj.2017.0618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: Fanconi anemia is a rare autosomal recessive or X-linked disorder characterised by clinical and genetic heterogeneity. Most fanconi anemia patients harbour homozygous or double heterozygous mutations in the FANCA (60-65%), FANCC (10-15%), FANCG (~10%) or FANCD2 (3-6%) genes. We have already reported the FANCA variant c.190–256_283+1680del2040dupC as a founder mutation among Macedonian fanconi anemia patients of Gypsy-like ethnic origin. Here, we present a novel FANCA mutation in two patients from Macedonia and Kosovo. Case Report: The novel FANCA mutation c.3446_3449dupCCCT was identified in two fanconi anemia patients with Romany ethnicity; a 2-year-old girl from Macedonia who is a compound heterozygote for a previously reported FANCA c.190-256_283+1680del2040dupC and the novel mutation and a 10-year-old girl from Kosovo who is a homozygote for the novel FANCA c.3446_3449dupCCCT mutation. The novel mutation is located in exon 35 in the FAAP20-binding domain which plays a crucial role in the FANCA-FAAP20 interaction and is required for integrity of the fanconi anemia pathway. Conclusion: The finding of the FANCA c.3446_3449dupCCCT mutation in two unrelated FA patients with Romani ethnicity from Macedonia and Kosovo suggests it is a founder mutation in the Romani population living in the Balkan region.
Collapse
Affiliation(s)
- Marija Dimishkovska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Science and Arts, Skopje, Macedonia
| | - Vjosa Mulliqi Kotori
- Department of Endocrinology, Pediatric Clinic, University Clinical Center, Prishtina, Republic of Kosovo
| | - Zoran Gucev
- Department of Pediatrics, St. Cyril and Methodius University, Skopje, Macedonia
| | - Svetlana Kocheva
- Department of Pediatrics, St. Cyril and Methodius University, Skopje, Macedonia
| | - Momir Polenakovic
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Science and Arts, Skopje, Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Science and Arts, Skopje, Macedonia
| |
Collapse
|
23
|
|
24
|
Arbiv OA, Cuvelier G, Klaassen RJ, Fernandez CV, Robitaille N, Steele M, Breakey V, Abish S, Wu J, Sinha R, Silva M, Goodyear L, Jardine L, Lipton JH, Corriveau-Bourque C, Brossard J, Michon B, Ghemlas I, Waespe N, Zlateska B, Sung L, Cada M, Dror Y. Molecular analysis and genotype-phenotype correlation of Diamond-Blackfan anemia. Clin Genet 2017; 93:320-328. [PMID: 29044489 DOI: 10.1111/cge.13158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/03/2023]
Abstract
Diamond-Blackfan anemia (DBA) features hypoplastic anemia and congenital malformations, largely caused by mutations in various ribosomal proteins. The aim of this study was to characterize the spectrum of genetic lesions causing DBA and identify genotypes that correlate with phenotypes of clinical significance. Seventy-four patients with DBA from across Canada were included. Nucleotide-level mutations or large deletions were identified in 10 ribosomal genes in 45 cases. The RPS19 mutation group was associated with higher requirement for chronic treatment for anemia than other DBA groups. Patients with RPS19 mutations, however, were more likely to maintain long-term corticosteroid response without requirement for further chronic transfusions. Conversely, patients with RPL11 mutations were less likely to need chronic treatment. Birth defects, including cardiac, skeletal, hand, cleft lip or palate and genitourinary malformations, also varied among the various genetic groups. Patients with RPS19 mutations had the fewest number of defects, while patients with RPL5 had the greatest number of birth defects. This is the first study to show differences between DBA genetic groups with regards to treatment. Previously unreported differences in the rate and types of birth defects were also identified. These data allow better patient counseling, a more personalized monitoring plan, and may also suggest differential functions of DBA genes on ribosome and extra-ribosomal functions.
Collapse
Affiliation(s)
- O A Arbiv
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - G Cuvelier
- Division of Haematology/Oncology, CancerCare Manitoba, Winnipeg, Canada
| | - R J Klaassen
- Division of Haematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - C V Fernandez
- Division of Haematology/Oncology, IWK Health Centre, Halifax, Canada
| | - N Robitaille
- Division of Haematology/Oncology, CHU Sainte Justine, Montreal, Canada
| | - M Steele
- Division of Haematology/Oncology, Alberta Children's Hospital, Calgary, Canada
| | - V Breakey
- Division of Haematology/Oncology, McMaster Children's Hospital, Hamilton, Canada
| | - S Abish
- Division of Haematology/Oncology, Montreal Children's Hospital, Montreal, Canada
| | - J Wu
- Division of Haematology/Oncology, British Columbia Children's Hospital, Vancouver, Canada
| | - R Sinha
- Division of Haematology/Oncology, University of Saskatchewan, Saskatoon, Canada
| | - M Silva
- Division of Haematology/Oncology, Queen's University, Kingston, Canada
| | - L Goodyear
- Division of Haematology/Oncology, Janeway Child Health Centre, St. John's, Canada
| | - L Jardine
- Division of Haematology/Oncology, Children's Hospital of Western Ontario, London, Canada
| | - J H Lipton
- Department of Haematology and Internal Medicine, Princess Margaret Hospital, Toronto, Canada
| | - C Corriveau-Bourque
- Division of Haematology/Oncology, University of Alberta Health Sciences Centre, Edmonton, Canada
| | - J Brossard
- Division of Haematology/Oncology, Centre Y Sante L'Estrie-Fleur, Sherbrooke, Canada
| | - B Michon
- Division of Haematology/Oncology, Centre Hospitalier de l'Université Laval, Quebec City, Canada
| | - I Ghemlas
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Division of Haematology/Oncology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - N Waespe
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - B Zlateska
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - L Sung
- Program in Child Health and Evaluative Medicine, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Lymphoma Leukemia Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - M Cada
- The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada
| | - Y Dror
- Program in Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Canada.,The Marrow Failure and Myelodysplasia Program, Haematology Section, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Foglesong JS, Bannon SA, DiNardo CD. Inherited Bone Failure Syndromes, Focus on the Haematological Manifestations: A Review. EUROPEAN MEDICAL JOURNAL 2017. [DOI: 10.33590/emj/10310433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The purpose of this review is to provide the haematologist with a working knowledge of the common inherited bone marrow failure syndromes (iBMFS) diagnosed in early childhood to young adulthood. Although these disorders are heterogeneous, this article discusses their common features, pathophysiology, and management. Each of these syndromes has a spectrum of clinical variation and can cause both haematological and non-haematological manifestations. Most pathogenic mutations responsible are in genes important to a progenitor cell’s ability to maintain genomic integrity, which accounts for the clinical phenotypes often affecting multiple tissues. Furthermore, all of these syndromes predispose not only to aplastic anaemia but also to myelodysplastic syndrome/acute myeloid leukaemia. Since iBMFS only account for a small percentage of childhood leukaemia cases, it is important that the clinician maintains a high clinical suspicion as appropriate diagnosis impacts treatment, health screening, and family members. Identification of iBMFS is critically important for appropriate donor selection and transplant regimens, as haematopoietic stem cell transplantation is curative for the haematological manifestations of these diseases, but treatment-related mortality can be excessive if modifications are not made to conditioning.
Collapse
Affiliation(s)
- Jessica S. Foglesong
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah A. Bannon
- Department of Clinical Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Courtney D. DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
Li Q, Luo C, Luo C, Wang J, Li B, Ding L, Chen J. Disease-specific hematopoietic stem cell transplantation in children with inherited bone marrow failure syndromes. Ann Hematol 2017; 96:1389-1397. [PMID: 28623394 DOI: 10.1007/s00277-017-3041-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/30/2017] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) using an optimized conditioning regimen is essential for the long-term survival of patients with inherited bone marrow failure syndromes (IBMFS). We report HSCT in 24 children with Fanconi anemia (FA, n = 12), Diamond-Blackfan anemia (DBA, n = 7), and dyskeratosis congenita (DC, n = 5) from a single HSCT center. The graft source was peripheral blood stem cells (n = 19) or cord blood stem cells (n = 5). FA and DC patients received reduced-intensity conditioning, while DBA patients had myeloablative conditioning. The median numbers of infused mononuclear cells and CD34+ cells were 14.20 × 108/kg and 4.3 × 106/kg, respectively. The median time for neutrophil and platelet recovery was 12 and 18 days, respectively. Complete donor engraftment was achieved in 23 of 24 patients. There was one primary graft failure. During a median follow-up of 27.5 months (range, 2-130 months), the overall survival in all patients was 95.8%. The incidence of grade II-III acute graft versus host disease (GvHD) and chronic GvHD was 29.2% and 16.7%, respectively. We conclude that HSCT can be a curative option for patients with IBMFS. Modification of the conditioning regimen based on the type of disease may lead to encouraging long-term outcomes.
Collapse
Affiliation(s)
- Qian Li
- Shanghai Children's Medical Center, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Changying Luo
- Shanghai Children's Medical Center, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Chengjuan Luo
- Shanghai Children's Medical Center, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jianmin Wang
- Shanghai Children's Medical Center, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Benshang Li
- Shanghai Children's Medical Center, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lixia Ding
- Shanghai Children's Medical Center, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jing Chen
- Shanghai Children's Medical Center, Affiliated Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
27
|
Aymun U, Iram S, Aftab I, Khaliq S, Nadir A, Nisar A, Mohsin S. Screening for mutations in two exons of FANCG gene in Pakistani population. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017. [PMID: 28627524 DOI: 10.5507/bp.2017.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Fanconi anemia is a rare autosomal recessive disorder of genetic instability. It is both molecularly and clinically, a heterogeneous disorder. Its incidence is 1 in 129,000 births and relatively high in some ethnic groups. Sixteen genes have been identified among them mutations in FANCG gene are most common after FANCA and FANCC gene mutations. OBJECTIVE To study mutations in exon 3 and 4 of FANCG gene in Pakistani population. METHODS Thirty five patients with positive Diepoxybutane test were included in the study. DNA was extracted and amplified for exons 3 and 4. Thereafter Sequencing was done and analyzed for the presence of mutations. RESULTS No mutation was detected in exon 3 whereas a carrier of known mutation c.307+1 G>T was found in exon 4 of the FANCG gene. CONCLUSION Absence of any mutation in exon 3 and only one heterozygous mutation in exon 4 of FANCG gene points to a different spectrum of FA gene pool in Pakistan that needs extensive research in this area.
Collapse
Affiliation(s)
- Ujala Aymun
- Department of Hematology, University of Health Sciences, Lahore, Pakistan.,Department of Pathology, Avicenna Medical College, Lahore, Pakistan
| | - Saima Iram
- Department of Hematology, University of Health Sciences, Lahore, Pakistan.,Department of Pathology, Bolan Medical College, Quetta, Pakistan
| | - Iram Aftab
- Department of Hematology, University of Health Sciences, Lahore, Pakistan
| | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Ali Nadir
- Department of Hematology, Armed Forces institute of Pathology, Rawalpindi, Pakistan
| | - Ahmed Nisar
- Department of Hematology, Children Hospital Lahore, Pakistan
| | - Shahida Mohsin
- Department of Hematology, University of Health Sciences, Lahore, Pakistan
| |
Collapse
|
28
|
Waespe N, Dhanraj S, Wahala M, Tsangaris E, Enbar T, Zlateska B, Li H, Klaassen RJ, Fernandez CV, Cuvelier GDE, Wu JK, Pastore YD, Silva M, Lipton JH, Brossard J, Michon B, Abish S, Steele M, Sinha R, Belletrutti MJ, Breakey VR, Jardine L, Goodyear L, Kofler L, Cada M, Sung L, Shago M, Scherer SW, Dror Y. The clinical impact of copy number variants in inherited bone marrow failure syndromes. NPJ Genom Med 2017; 2. [PMID: 28690869 PMCID: PMC5498150 DOI: 10.1038/s41525-017-0019-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inherited bone marrow failure syndromes comprise a genetically heterogeneous group of diseases with hematopoietic failure and a wide array of physical malformations. Copy number variants were reported in some inherited bone marrow failure syndromes. It is unclear what impact copy number variants play in patients evaluated for a suspected diagnosis of inherited bone marrow failure syndromes. Clinical and genetic data of 323 patients from the Canadian Inherited Marrow Failure Registry from 2001 to 2014, who had a documented genetic work-up, were analyzed. Cases with pathogenic copy number variants (at least 1 kilobasepairs) were compared to cases with other mutations. Genotype-phenotype correlations were performed to assess the impact of copy number variants. Pathogenic nucleotide-level mutations were found in 157 of 303 tested patients (51.8%). Genome-wide copy number variant analysis by single-nucleotide polymorphism arrays or comparative genomic hybridization arrays revealed pathogenic copy number variants in 11 of 67 patients tested (16.4%). In four of these patients, identification of copy number variant was crucial for establishing the correct diagnosis as their clinical presentation was ambiguous. Eight additional patients were identified to harbor pathogenic copy number variants by other methods. Of the 19 patients with pathogenic copy number variants, four had compound-heterozygosity of a copy number variant with a nucleotide-level mutation. Pathogenic copy number variants were associated with more extensive non-hematological organ system involvement (p = 0.0006), developmental delay (p = 0.006) and short stature (p = 0.04) compared to nucleotide-level mutations. In conclusion, a significant proportion of patients with inherited bone marrow failure syndromes harbor pathogenic copy number variants which were associated with a more extensive non-hematological phenotype in this cohort. Patients with a phenotype suggestive of inherited bone marrow failure syndromes but without identification of pathogenic nucleotide-level mutations should undergo specific testing for copy number variants. Copy number variation in patients with inherited bone marrow failure syndromes (IBMFSs) is associated with more severe clinical symptoms. In addition to persistently low levels of red blood cells, white blood cells and/ or platelets, patients with IBMFSs also present varying degrees of physical malformations. Most cases are associated with single base-pair mutations in the DNA sequence, but Canadian researchers led by Yigal Dror at The Hospital for Sick Children in Toronto, have found that whole sections of the genome are deleted or repeated in an important proportion of patients. Those carrying copy number variants (CNV) presented more commonly with developmental delay, short stature and defects in more organ systems, than patients with point mutations. CNV analysis of patients with suspected IBMFSs could aid early disease evaluation and management.
Collapse
Affiliation(s)
- Nicolas Waespe
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Santhosh Dhanraj
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Manju Wahala
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elena Tsangaris
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tom Enbar
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bozana Zlateska
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Hongbing Li
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Robert J Klaassen
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | | | - Geoff D E Cuvelier
- Pediatric Hematology/Oncology, University of Manitoba, CancerCare Manitoba, Winnipeg, MB, Canada
| | - John K Wu
- Division of Hematology/Oncology, UBC & B.C. Children's Hospital, Vancouver, BC, Canada
| | | | | | - Jeffrey H Lipton
- Allogeneic Blood and Marrow Transplant Program, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Joseé Brossard
- Centre Hospitalier Universitaire, Sherbrooke, QC, Canada
| | - Bruno Michon
- Centre Hospitalier Universitaire, Québec, QC, Canada
| | - Sharon Abish
- Pediatric Hematology Oncology, Montreal Children's Hospital, Montreal, QC, Canada
| | | | - Roona Sinha
- Royal University Hospital, Saskatoon, SK, Canada
| | | | - Vicky R Breakey
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Lawrence Jardine
- Children's Hospital, London Health Sciences Centre, London, ON, Canada
| | - Lisa Goodyear
- Pediatric Hematology/Oncology, Janeway Child Health Centre, St. John's, NF, Canada
| | - Liat Kofler
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michaela Cada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Lillian Sung
- Population Health Sciences, Research Institute, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mary Shago
- Cytogenetics Laboratory, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephen W Scherer
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yigal Dror
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.,Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Alabbas F, Weitzman S, Grant R, Bouffet E, Malkin D, Abla O, Dror Y. Underlying undiagnosed inherited marrow failure syndromes among children with cancer. Pediatr Blood Cancer 2017; 64:302-305. [PMID: 27577695 DOI: 10.1002/pbc.26120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
Abstract
To study the prevalence of pediatric cancer patients who have underlying inherited bone marrow failure syndrome (IBMFS), we retrospectively reviewed the medical records of newly diagnosed pediatric cancer patients at The Hospital for Sick Children from June 2009 to May 2010, focusing on clinical, laboratory, and treatment-related findings which may indicate underlying IBMFS. We found five (1.8%) patients out of 276 who had two or more findings suggestive of IBMFS. We conclude that a small fraction of patients with cancer have clinical features that indicate investigations to rule out underlying IBMFSs. A prospective study is needed to determine their prevalence.
Collapse
Affiliation(s)
- Fahad Alabbas
- Marrow Failure and Myelodysplasia Program, Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Sheila Weitzman
- Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ronald Grant
- Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Genetic and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Oussama Abla
- Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Yigal Dror
- Marrow Failure and Myelodysplasia Program, Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Division of Haematology and Oncology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.,Genetic and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Scott J, Chan G, Roy N, Ruskova A, Crosier K. Congenital dyserythropoietic anaemia: an unexpected diagnosis in an adult referred with elevated serum ferritin. Pathology 2016; 48:503-6. [PMID: 27364981 DOI: 10.1016/j.pathol.2016.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Joanne Scott
- LabPLUS, New Zealand; Department of Haematology, Auckland District Health Board, Auckland, New Zealand
| | - George Chan
- LabPLUS, New Zealand; Department of Haematology, Auckland District Health Board, Auckland, New Zealand
| | - Noemi Roy
- Department of Haematology, John Radcliffe Hospital, Oxford, United Kingdom
| | | | - Kathryn Crosier
- Department of Haematology, Auckland District Health Board, Auckland, New Zealand; Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
31
|
Dhanraj S, Gunja SMR, Deveau AP, Nissbeck M, Boonyawat B, Coombs AJ, Renieri A, Mucciolo M, Marozza A, Buoni S, Turner L, Li H, Jarrar A, Sabanayagam M, Kirby M, Shago M, Pinto D, Berman JN, Scherer SW, Virtanen A, Dror Y. Bone marrow failure and developmental delay caused by mutations in poly(A)-specific ribonuclease (PARN). J Med Genet 2015; 52:738-48. [DOI: 10.1136/jmedgenet-2015-103292] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
|
32
|
Gondek LP, DeZern AE. I walk the line: how to tell MDS from other bone marrow failure conditions. Curr Hematol Malig Rep 2015; 9:389-99. [PMID: 25079655 DOI: 10.1007/s11899-014-0224-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders characterized by peripheral cytopenias and ineffective hematopoiesis. MDS is an example of an age-related malignancy and its increasing prevalence and incidence can be attributed to a greater life expectancy in developed countries. Although frequently encountered in hematology/oncology clinics, MDS may constitute a diagnostic challenge especially with equivocal bone marrow morphology. Certain syndromes of bone marrow failure (BMF) may mimic MDS and formulating a correct diagnosis is vital for adequate prognostication as well as therapeutic approaches. Metaphase karyotyping (MK) is a very important diagnostic tool and marker of prognosis and can be an indicator of response to certain therapies. Unfortunately, chromosomal abnormalities may only be found in approximately 50 % of patients with MDS. In this review, we discuss the diagnostic approaches to patients with pancytopenia with a particular focus on the growing number of somatic mutations through new molecular testing.
Collapse
Affiliation(s)
- Lukasz P Gondek
- Department of Oncology, Division of Hematological Malignancies, Johns Hopkins University, 1650 Orleans St, CRB1-290, Baltimore, MD, 21231, USA,
| | | |
Collapse
|
33
|
Ghemlas I, Li H, Zlateska B, Klaassen R, Fernandez CV, Yanofsky RA, Wu J, Pastore Y, Silva M, Lipton JH, Brossard J, Michon B, Abish S, Steele M, Sinha R, Belletrutti M, Breakey VR, Jardine L, Goodyear L, Sung L, Dhanraj S, Reble E, Wagner A, Beyene J, Ray P, Meyn S, Cada M, Dror Y. Improving diagnostic precision, care and syndrome definitions using comprehensive next-generation sequencing for the inherited bone marrow failure syndromes. J Med Genet 2015; 52:575-84. [PMID: 26136524 DOI: 10.1136/jmedgenet-2015-103270] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/07/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND Phenotypic overlap among the inherited bone marrow failure syndromes (IBMFSs) frequently limits the ability to establish a diagnosis based solely on clinical features. >70 IBMFS genes have been identified, which often renders genetic testing prolonged and costly. Since correct diagnosis, treatment and cancer surveillance often depend on identifying the mutated gene, strategies that enable timely genotyping are essential. METHODS To overcome these challenges, we developed a next-generation sequencing assay to analyse a panel of 72 known IBMFS genes. Cases fulfilling the clinical diagnostic criteria of an IBMFS but without identified causal genotypes were included. RESULTS The assay was validated by detecting 52 variants previously found by Sanger sequencing. A total of 158 patients with unknown mutations were studied. Of 75 patients with known IBMFS categories (eg, Fanconi anaemia), 59% had causal mutations. Among 83 patients with unclassified IBMFSs, we found causal mutations and established the diagnosis in 18% of the patients. The assay detected mutant genes that had not previously been reported to be associated with the patient phenotypes. In other cases, the assay led to amendments of diagnoses. In 20% of genotype cases, the results indicated a cancer surveillance programme. CONCLUSIONS The novel assay is efficient, accurate and has a major impact on patient care.
Collapse
Affiliation(s)
- Ibrahim Ghemlas
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hongbing Li
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada
| | - Bozana Zlateska
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada
| | - Robert Klaassen
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | | | - John Wu
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | | | - Jeff H Lipton
- Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Josee Brossard
- Centre hospitalier universitaire, Sherbrooke, Quebec, Canada
| | - Bruno Michon
- Centre Hospital University Quebec-Pav CHUL, Sainte-Foy, Quebec, Canada
| | - Sharon Abish
- Montreal Children's Hospital, Montreal, Québec, Canada
| | | | - Roona Sinha
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mark Belletrutti
- Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Vicky R Breakey
- McMaster Children's Hospital, McMaster University, Hamilton, Ontario, Canada
| | - Lawrence Jardine
- Children's Hospital at London Health Sciences Centre, London, Ontario, Canada
| | - Lisa Goodyear
- Janeway Child Health Centre, St. John's, Newfoundland, Canada
| | - Lillian Sung
- Population Health Sciences, Research Institute, The Hospital For Sick Children, Toronto, Ontario, Canada
| | - Santhosh Dhanraj
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada Faculty of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Emma Reble
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada
| | - Amanda Wagner
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joseph Beyene
- Program in Population Genomics, Department of Clinical Epidemiology & Biostatistics, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Peter Ray
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada Molecular Genetic Laboratory, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen Meyn
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada
| | - Michaela Cada
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Yigal Dror
- Program in Genetics and Genome Biology, Research Institute, Toronto, Ontario, Canada Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada Faculty of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Cada M, Segbefia CI, Klaassen R, Fernandez CV, Yanofsky RA, Wu J, Pastore Y, Silva M, Lipton JH, Brossard J, Michon B, Abish S, Steele M, Sinha R, Belletrutti M, Breakey V, Jardine L, Goodyear L, Sung L, Shago M, Beyene J, Sharma P, Zlateska B, Dror Y. The impact of category, cytopathology and cytogenetics on development and progression of clonal and malignant myeloid transformation in inherited bone marrow failure syndromes. Haematologica 2015; 100:633-42. [PMID: 25682607 DOI: 10.3324/haematol.2014.117457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/10/2015] [Indexed: 01/13/2023] Open
Abstract
Inherited bone marrow failure syndromes are a group of rare, heterogeneous genetic disorders with a risk of clonal and malignant myeloid transformation including clonal marrow cytogenetic abnormalities, myelodysplastic syndrome and acute myeloid leukemia. The clinical characteristics, risk classification, prognostic factors and outcome of clonal and malignant myeloid transformation associated with inherited bone marrow failure syndromes are largely unknown. The aims of this study were to determine the impact of category, cytopathology and cytogenetics, the three components of the "Category Cytology Cytogenetics" classification of pediatric myelodysplastic syndrome, on the outcome of clonal and malignant myeloid transformation associated with inherited bone marrow failure. We used data from the Canadian Inherited Marrow Failure Registry. Among 327 patients with inherited bone marrow failure syndrome enrolled in the registry, the estimated risk of clonal and malignant myeloid transformation by the age of 18 years was 37%. The risk of clonal and malignant myeloid transformation varied according to the type of inherited bone marrow failure syndrome but was highest in Fanconi anemia. The development of clonal and malignant myeloid transformation significantly affected overall survival. Mortality varied based on cytopathological group. The largest group of patients had refractory cytopenia. Clonal marrow cytogenetic abnormalities were identified in 87% of patients with clonal and malignant myeloid transformation, and different cytogenetic groups had different impacts on disease progression. We conclude that category, cytopathology and cytogenetics in cases of clonal and malignant myeloid transformation associated with inherited bone marrow failure syndromes have an important impact on outcome and that the classification of such cases should incorporate these factors.
Collapse
Affiliation(s)
- Michaela Cada
- Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics and the Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children and the University of Toronto, Ontario, Canada
| | - Catherin I Segbefia
- Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics and the Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children and the University of Toronto, Ontario, Canada
| | - Robert Klaassen
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | | | - John Wu
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | | | | | - Josee Brossard
- Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Bruno Michon
- Centre Hospital University Quebec-Pav CHUL, Sainte-Foy, Quebec, Canada
| | - Sharon Abish
- Montreal Children's Hospital, Montreal, Québec, Canada
| | | | - Roona Sinha
- University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mark Belletrutti
- University of Alberta/Health Sciences Centre, Edmonton, Alberta, Canada
| | - Vicky Breakey
- McMaster Children's Hospital/McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | | - Lisa Goodyear
- Janeway Child Health Centre, St. John's, Newfoundland, Canada
| | - Lillian Sung
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mary Shago
- Division of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joseph Beyene
- Program in Population Genomics, Department of Clinical Epidemiology & Biostatistics, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Preeti Sharma
- Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics and the Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children and the University of Toronto, Ontario, Canada
| | - Bozana Zlateska
- Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics and the Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children and the University of Toronto, Ontario, Canada
| | - Yigal Dror
- Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics and the Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children and the University of Toronto, Ontario, Canada
| |
Collapse
|
35
|
Yu QH, Wang SY, Wu Z. Advances in genetic studies of inherited bone marrow failure syndromes and their associated malignancies. Transl Pediatr 2014; 3:305-9. [PMID: 26835351 PMCID: PMC4728835 DOI: 10.3978/j.issn.2224-4336.2014.07.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The inherited bone marrow failure syndromes (IBMFS) are a rare group of heterogeneous genetic disorders characterised by bone marrow failure, commonly associated with one or more congenital anomalies found in patients which have a familiar predisposition. Genetic detection of IBMFS disease types is not only to benefit to affected patients but also of help to relatives unaffected phenotypically. Patients with IBMFS have a high risk of hematologic malignancies, commonly myelodyspastic syndrome (MDS), acute myeloid leukemia (AML) and specific types solid tumours. These malignancies may require different treatment strategies due to the underlying gene defects. Studies demonstrate that over 40 genes mutations are associated with IBMFS. Recently studies using next generation sequencing have increased our understanding of the etiology and classification of IBMFS, particularly the link between the defects and the biological mechanism leading to malignancies.
Collapse
Affiliation(s)
- Qi-Hong Yu
- 1 Department of Gastroenterology, Chang Hai Hospital, Second Military Medical University, Shanghai 200433, China ; 2 Department of Hematology, The first Affiliated Hospital of Harbin Medical University, Harbin 150001, China ; 3 Western Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, NSW, 2014, Australia
| | - Shu-Ye Wang
- 1 Department of Gastroenterology, Chang Hai Hospital, Second Military Medical University, Shanghai 200433, China ; 2 Department of Hematology, The first Affiliated Hospital of Harbin Medical University, Harbin 150001, China ; 3 Western Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, NSW, 2014, Australia
| | - Zhanhe Wu
- 1 Department of Gastroenterology, Chang Hai Hospital, Second Military Medical University, Shanghai 200433, China ; 2 Department of Hematology, The first Affiliated Hospital of Harbin Medical University, Harbin 150001, China ; 3 Western Sydney Genome Diagnostics, Western Sydney Genetics Program, The Children's Hospital at Westmead, NSW, 2014, Australia
| |
Collapse
|
36
|
DeZern AE, Sekeres MA. The challenging world of cytopenias: distinguishing myelodysplastic syndromes from other disorders of marrow failure. Oncologist 2014; 19:735-45. [PMID: 24899643 DOI: 10.1634/theoncologist.2014-0056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Over the past decade, our understanding of bone marrow failure has advanced considerably. Marrow failure encompasses multiple overlapping diseases, and there is increasing availability of diagnostic tools to distinguish among the subtypes. Identification of genetic alterations that underlie marrow failure has also greatly expanded, especially for myelodysplastic syndromes. Molecular markers are increasingly used to guide the management of myelodysplasia and may distinguish this diagnosis from other marrow failure disorders. This review summarizes the current state of distinguishing among causes of marrow failure and discusses the potential uses of multiple diagnostic and prognostic indicators in the management of myelodysplastic syndromes and other bone marrow failure disorders.
Collapse
Affiliation(s)
- Amy E DeZern
- The Sidney Kimmel Comprehensive Cancer Center and Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mikkael A Sekeres
- The Sidney Kimmel Comprehensive Cancer Center and Division of Hematology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Leukemia Program, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
37
|
Madjunkova S, Kocheva SA, Plaseska-Karanfilska D. Fanconi anemia founder mutation in Macedonian patients. Acta Haematol 2013; 132:15-21. [PMID: 24356203 DOI: 10.1159/000355191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/05/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND Fanconi anemia (FA) is a rare autosomal recessive disorder clinically characterized by developmental abnormalities, progressive bone marrow failure (BMF) and profound cancer predisposition. Approximately 65% of all affected individuals have mutation in the FANCA (Fanconi anemia complementation group A) gene. The mutation spectrum of the FANCA gene is highly heterogeneous. FA-A is usually associated with private FANCA mutations in individual families. METHODS We describe 3 unrelated patients with FA with a similar clinical presentation: BMF, renal anomalies and café-au-lait pigmentation without major skeletal abnormality. The molecular analysis of the FANCA gene using the FA MLPA kit P031-A2/P032 FANCA, showed homozygous deletion of exon 3 in all 3 patients. Molecular analysis of the flanking regions of exon 3 precisely defined unique deletion of 2,040 bp and duplication of C (1788_3828dupC). DISCUSSION/CONCLUSIONS These are the first 3 patients homozygous for deletion of FANCA exon 3 described to date. Although not related, the patients originated from the same Gypsy-like ethnic population. We conclude that c.190-256_283 + 1680del2040 dupC mutation in the FANCA gene is a founder mutation in Macedonian FA patients of Gypsy-like ethnic origin. Our finding has very strong implications for these patients in formulating diagnostic and carrier-screening strategy for BMF and FA and to enable comprehensive genetic counseling.
Collapse
Affiliation(s)
- Svetlana Madjunkova
- Research Center for Genetic Engineering and Biotechnology 'Georgi D. Efremov', Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| | | | | |
Collapse
|
38
|
Donadieu J, Beaupain B, Mahlaoui N, Bellanné-Chantelot C. Epidemiology of congenital neutropenia. Hematol Oncol Clin North Am 2013; 27:1-17, vii. [PMID: 23351985 DOI: 10.1016/j.hoc.2012.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Epidemiologic investigations of congenital neutropenia aim to determine several important indicators related to the disease, such as incidence at birth, prevalence, and outcome in the population, including the rate of severe infections, leukemia, and survival. Genetic diagnosis is an important criterion for classifying patients and reliably determining the epidemiologic indicators. Patient registries were developed in the 1990s. The prevalence today is probably more than 10 cases per million inhabitants. The rate of infection and leukemia risk can now be calculated. Risk factors for leukemia seem to depend on both the genetic background and cumulative dose of granulocyte colony stimulating factor.
Collapse
Affiliation(s)
- Jean Donadieu
- Service d'Hémato Oncologie Pédiatrique Registre des neutropénies congénitales, Assistance Publique-Hôpitaux de Paris, Hopital Trousseau 26 Avenue du Dr Netter, Paris F 75012, France.
| | | | | | | |
Collapse
|
39
|
Tulpule A, Kelley JM, Lensch MW, McPherson J, Park IH, Hartung O, Nakamura T, Schlaeger TM, Shimamura A, Daley GQ. Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction. Cell Stem Cell 2013; 12:727-36. [PMID: 23602541 DOI: 10.1016/j.stem.2013.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 02/24/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022]
Abstract
Shwachman-Diamond syndrome (SDS), a rare autosomal-recessive disorder characterized by exocrine pancreatic insufficiency and hematopoietic dysfunction, is caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. We created human pluripotent stem cell models of SDS through knockdown of SBDS in human embryonic stem cells (hESCs) and generation of induced pluripotent stem cell (iPSC) lines from two patients with SDS. SBDS-deficient hESCs and iPSCs manifest deficits in exocrine pancreatic and hematopoietic differentiation in vitro, enhanced apoptosis, and elevated protease levels in culture supernatants, which could be reversed by restoring SBDS protein expression through transgene rescue or by supplementing culture media with protease inhibitors. Protease-mediated autodigestion provides a mechanistic link between the pancreatic and hematopoietic phenotypes in SDS, highlighting the utility of hESCs and iPSCs in obtaining novel insights into human disease.
Collapse
Affiliation(s)
- Asmin Tulpule
- Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Peters LL, Paw BH, Blanc L. The scat mouse model highlights RASA3, a GTPase activating protein, as a key regulator of vertebrate erythropoiesis and megakaryopoiesis. Small GTPases 2012; 4:47-50. [PMID: 23221813 DOI: 10.4161/sgtp.23013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although significant progress has been made in the past decades in our understanding of bone marrow failure syndromes and anemia, many pathological conditions of unknown origin remain. Mouse models have significantly contributed to our understanding of normal erythropoiesis and the pathogenesis of erythroid disorders. Recently, we identified in the scat (severe combined anemia and thrombocytopenia) mouse model a missense mutation (G125V) in the Rasa3 gene, encoding a Ras GTPase activating protein (GAP). RASA3 is lost during reticulocyte maturation through the exosomal pathway and is therefore absent in mature erythrocytes. In wild-type reticulocytes, RASA3 is bound to the plasma membrane, a prerequisite for its GAP activity, but is mislocalized to the cytosol in scat. This mislocalization leads to RASA3 loss of function and higher levels of Ras-GTP, the active form of Ras, are consistently found in scat mature red cells. Finally, RASA3 function is conserved among vertebrates, since erythropoiesis and thrombopoiesis are impaired in zebrafish in which rasa3 is knocked-down by morpholinos, and RASA3 is expressed in human erythroleukemia cells as well as in primary cells. In this commentary, we highlight the critical, conserved and non-redundant function of RASA3 in the context of vertebrate erythropoiesis and megakaryopoiesis. We notably discuss the mechanism of RASA3 downregulation and speculate on the most intriguing part of the phenotype observed in scat; the transient remission period.
Collapse
|
41
|
Abstract
Mutations in the coding region of telomerase complex genes can result in accelerated telomere attrition and human disease. Manifestations of telomere disease include the bone marrow failure syndromes dyskeratosis congenita and aplastic anemia, acute myeloid leukemia, liver cirrhosis, and pulmonary fibrosis. Here, we describe a mutation in the CCAAT box (GCAAT) of the TERC gene promoter in a family in which multiple members had typical features of telomeropathy. The genetic alteration in this critical regulatory sequence resulted in reduced reporter gene activity and absent binding of transcription factor NF-Y, likely responsible for reduced TERC levels, decreased telomerase activity, and short telomeres. This is the first description of a pathogenic mutation in the highly conserved CCAAT box and the first instance of a mutation in the promoter region of TERC producing a telomeropathy. We propose that current mutation-screening strategies should include gene promoter regions for the diagnosis of telomere diseases. This clinical trial was registered at www.clinicaltrials.gov as #NCT00071045.
Collapse
|
42
|
Perobelli S, Nicolis E, Assael BM, Cipolli M. Further characterization of Shwachman-Diamond syndrome: Psychological functioning and quality of life in adult and young patients. Am J Med Genet A 2012; 158A:567-73. [DOI: 10.1002/ajmg.a.35211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 11/17/2011] [Indexed: 11/07/2022]
|