1
|
Scerrati A, Gozzi A, Cavallo MA, Mantovani G, Antenucci P, Angelini C, Capone JG, De Bonis P, Morgante F, Rispoli V, Sensi M. Thalamic ventral-Oralis complex/rostral zona incerta deep brain stimulation for midline tremor. J Neurol 2024; 271:6628-6638. [PMID: 39126514 PMCID: PMC11447151 DOI: 10.1007/s00415-024-12619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/20/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Midline Tremor is defined as an isolated or combined tremor that affects the neck, trunk, jaw, tongue, and/or voice and could be part of Essential Tremor (ET), or dystonic tremor. The clinical efficacy of deep brain stimulation for Midline Tremor has been rarely reported. The Ventral Intermediate Nucleus and Globus Pallidus Internus are the preferred targets, but with variable outcomes. Thalamic Ventral-Oralis (VO) complex and Zona Incerta (ZI) are emerging targets for tremor control in various etiologies. OBJECTIVE To report on neuroradiological, neurophysiological targeting and long-term efficacy of thalamic Ventral-Oralis complex and Zona Incerta deep brain stimulation in Midline Tremor. METHODS Three patients (two males and one female) with Midline Tremor in dystonic syndromes were recruited for this open-label study. Clinical, surgical, neurophysiological intraoperative testing and long-term follow-up data are reported. RESULTS Intraoperative testing and reconstruction of volume of tissue activated confirmed the position of the electrodes in the area stimulated between the thalamic Ventral-Oralis complex and Zona Incerta in all patients. All three patients showed optimal control of both tremor and dystonic features at short-term (6 months) and long-term follow-up (up to 6 years). No adverse events occurred. CONCLUSION In the syndromes of Midline Tremor of various origins, the best target for DBS might be difficult to identify. Our results showed that thalamic Ventral-Oralis complex/Zona Incerta may be a viable and safe option even in specific forms of tremor with axial distribution.
Collapse
Affiliation(s)
- Alba Scerrati
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Neurosurgery Department, S. Anna University Hospital of Ferrara, Ferrara, Italy
| | - Andrea Gozzi
- Neurology Department, S. Anna University Hospital of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy.
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy, via Aldo Moro 8, 44124.
| | - Michele Alessandro Cavallo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Neurosurgery Department, S. Anna University Hospital of Ferrara, Ferrara, Italy
| | - Giorgio Mantovani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Neurosurgery Department, S. Anna University Hospital of Ferrara, Ferrara, Italy
| | - Pietro Antenucci
- Neurology Department, S. Anna University Hospital of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy, via Aldo Moro 8, 44124
| | - Chiara Angelini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Neurosurgery Department, S. Anna University Hospital of Ferrara, Ferrara, Italy
| | - Jay Guido Capone
- Neurology Department, S. Anna University Hospital of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
| | - Pasquale De Bonis
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Neurosurgery Department, S. Anna University Hospital of Ferrara, Ferrara, Italy
| | - Francesca Morgante
- Neurosciences and Cell Biology Institute, Neuromodulation and Motor Control Section, St George's University of London, London, UK
| | - Vittorio Rispoli
- Neurology, Neuroscience Head Neck Department, University of Modena and Reggio Emilia, Modena, Italy
| | - Mariachiara Sensi
- Neurology Department, S. Anna University Hospital of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy
| |
Collapse
|
2
|
Peraio S, Mantovani G, Araceli T, Mongardi L, Noris A, Fino E, Formica F, Piccinini L, Melani F, Lenge M, Scalise R, Battini R, Di Rita A, D'Incerti L, Appleton T, Cavallo MA, Guerrini R, Giordano F. Unilateral deep brain stimulation (DBS) of nucleus ventralis intermedius thalami (Vim) for the treatment of post-traumatic tremor in children: a multicentre experience. Childs Nerv Syst 2024; 40:2457-2464. [PMID: 38573550 DOI: 10.1007/s00381-024-06380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
PURPOSE Deep brain stimulation (DBS) of nucleus ventralis intermedius thalami (Vim) is a validated technique for the treatment of essential tremor (ET) in adults. Conversely, its use for post traumatic tremor (PTT) and in paediatric patients is still debated. We evaluated the efficacy of Vim-DBS for lesional tremor in three paediatric patients with drug-resistant post-traumatic unilateral tremor. METHODS We retrospectively collected data regarding three patients with unilateral tremor due to severe head injury, with no MRI evidence of basal ganglia lesions. The three patients underwent stereotactic frame-based robot-assisted DBS of Vim contralateral to the tremor side. RESULTS Mean follow-up was 48 months (range: 36-60 months). Tremor was reduced in all patients with a better control of voluntary movements and improvement of functional status (mean FIM scale improvement + 7 points). No surgical complications occurred. CONCLUSION Unilateral contralateral DBS of Vim could be efficacious in post-traumatic tremor, even in paediatric patients and should be offered in PTT drug-resistant patients.
Collapse
Affiliation(s)
- Simone Peraio
- Department of Neurosurgery, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Giorgio Mantovani
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Tommaso Araceli
- Department of Neurosurgery, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Lorenzo Mongardi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Alice Noris
- Department of Neurosurgery, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Edoardo Fino
- Pediatric Neurology Clinic - Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Francesca Formica
- Istituto Medea "La Nostra Famiglia" IRCCS, Bosisio Parini, LC, Italy
| | - Luigi Piccinini
- Istituto Medea "La Nostra Famiglia" IRCCS, Bosisio Parini, LC, Italy
| | - Federico Melani
- Pediatric Neurology Clinic - Meyer Children's Hospital IRCCS, Florence, Italy
| | - Matteo Lenge
- Pediatric Neurology Clinic - Meyer Children's Hospital IRCCS, Florence, Italy.
| | - Roberta Scalise
- Istituto Stella Maris - IRCCS - University of Pisa, Pisa, Italy
| | - Roberta Battini
- Istituto Stella Maris - IRCCS - University of Pisa, Pisa, Italy
| | - Andrea Di Rita
- Department of Neurosurgery, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Ludovico D'Incerti
- Department of Radiology, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | | | - Renzo Guerrini
- Pediatric Neurology Clinic - Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| | - Flavio Giordano
- Department of Neurosurgery, Meyer Children's Hospital IRCCS, Florence, Italy
- University of Florence, Florence, Italy
| |
Collapse
|
3
|
Zhang M, Yang L, Li Z, Fei F, Zhou Y, Jiang D, Zheng Y, Cheng H, Wang Y, Xu C, Fang J, Wang S, Chen Z, Wang Y. Low-frequency stimulation in the zona incerta attenuates seizure via driving GABAergic neuronal activity. Neurobiol Dis 2024; 192:106424. [PMID: 38290566 DOI: 10.1016/j.nbd.2024.106424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Managing refractory epilepsy presents a significant a substantial clinical challenge. Deep brain stimulation (DBS) has emerged as a promising avenue for addressing refractory epilepsy. However, the optimal stimulation targets and effective parameters of DBS to reduce seizures remian unidentified. OBJECTIVES This study endeavors to scrutinize the therapeutic potential of DBS within the zona incerta (ZI) across diverse seizure models and elucidate the associated underlying mechanisms. METHODS We evaluated the therapeutic potential of DBS with different frequencies in the ZI on kainic acid (KA)-induced TLE model or M1-cortical seizures model, pilocarpine-induced M1-cortical seizure models, and KA-induced epilepsy model. Further, employing calcium fiber photometry combined with cell-specific ablation, we sought to clarified the causal role of ZI GABAergic neurons in mediating the therapeutic effects of DBS. RESULTS Our findings reveal that DBS in the ZI alleviated the severity of seizure activities in the KA-induced TLE model. Meanwhile, DBS attenuated seizure activities in KA- or pilocarpine-induced M1-cortical seizure model. In addition, DBS exerts a mitigating influence on KA induced epilepsy model. DBS in the ZI showed anti-seizure effects at low frequency spectrum, with 5 Hz exhibiting optimal efficacy. The low-frequency DBS significantly increased the calcium activities of ZI GABAergic neurons. Furthermore, selective ablation of ZI GABAergic neurons with taCasp3 blocked the anti-seizure effect of low-frequency DBS, indicating the anti-seizure effect of DBS is mediated by the activation of ZI GABAergic neurons. CONCLUSION Our results demonstrate that low-frequency DBS in the ZI attenuates seizure via driving GABAergic neuronal activity. This suggests that the ZI represents a potential DBS target for treating both hippocampal and cortical seizure through the activation of GABAergic neurons, thereby holding therapeutic significance for seizure treatment.
Collapse
Affiliation(s)
- Mengdi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yuan Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Dongxiao Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Hui Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jiajia Fang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Budnick HC, Schneider D, Zauber SE, Witt TC, Gupta K. Susceptibility-Weighted MRI Approximates Intraoperative Microelectrode Recording During Deep Brain Stimulation of the Subthalamic Nucleus for Parkinson's Disease. World Neurosurg 2024; 181:e346-e355. [PMID: 37839566 DOI: 10.1016/j.wneu.2023.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Deep brain stimulation of the subthalamic nucleus (STN-DBS) for Parkinson's disease can be performed with intraoperative neurophysiological and radiographic guidance. Conventional T2-weighted magnetic resonance imaging sequences, however, often fail to provide definitive borders of the STN. Novel magnetic resonance imaging sequences, such as susceptibility-weighted imaging (SWI), might better localize the STN borders and facilitate radiographic targeting. We compared the radiographic location of the dorsal and ventral borders of the STN using SWI with intraoperative microelectrode recording (MER) during awake STN-DBS for Parkinson's disease. METHODS Thirteen consecutive patients who underwent placement of 24 STN-DBS leads for Parkinson's disease were analyzed retrospectively. Preoperative targeting was performed with SWI, and MER data were obtained from intraoperative electrophysiology records. The boundaries of the STN on SWI were identified by a blinded investigator. RESULTS The final electrode position differed significantly from the planned coordinates in depth but not in length or width, indicating that MER guided the final electrode depth. When we compared the boundaries of the STN by MER and SWI, SWI accurately predicted the entry into the STN but underestimated the length and ventral boundary of the STN by 1.2 mm. This extent of error approximates the span of a DBS contact and could affect the placement of directional contacts within the STN. CONCLUSIONS MER might continue to have a role in STN-DBS. This could potentially be mitigated by further refinement of imaging protocols to better image the ventral boundary of the STN.
Collapse
Affiliation(s)
- Hailey C Budnick
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA
| | - Dylan Schneider
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - S Elizabeth Zauber
- Indiana University School of Medicine, Indianapolis, Indiana, USA; Department of Neurology, Indiana University, Indianapolis, Indiana, USA
| | - Thomas C Witt
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA; Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kunal Gupta
- Department of Neurological Surgery, Indiana University, Indianapolis, Indiana, USA; Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University, Indianapolis, Indiana, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University, Indianapolis, Indiana, USA; Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
5
|
Moon D. Disorders of Movement due to Acquired and Traumatic Brain Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2022; 10:311-323. [PMID: 36164499 PMCID: PMC9493170 DOI: 10.1007/s40141-022-00368-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 12/14/2022]
Abstract
Purpose of Review Both traumatic and acquired brain injury can result in diffuse multifocal injury affecting both the pyramidal and extrapyramidal tracts. Thus, these patients may exhibit signs of both upper motor neuron syndrome and movement disorder simultaneously which can further complicate diagnosis and management. We will be discussing movement disorders following acquired and traumatic brain injury. Recent Findings Multiple functions including speech, swallowing, posture, mobility, and activities of daily living can all be affected. Medical treatment and rehabilitation-based therapy can be especially challenging due to accompanying cognitive deficits and severity of the disorder which can involve multiple limbs in addition to muscles of the face and axial skeleton. Tremor and dystonia are the most reported movement disorders following traumatic brain injury. Dystonia and myoclonus are well documented following hypoxic ischemic brain injuries. Electrophysiological studies such as dynamic surface poly-electromyography can assist with identifying phenomenology, especially differentiating between jerk-like phenomenon and help guide further work up and management. Management with medications remains challenging due to potential adverse effects. Surgical interventions including stereotactic surgery, deep brain stimulation, and intrathecal baclofen pumps have been reported, but most of the evidence supporting them has been limited to primarily case reports except for post-traumatic tremor. Summary Brain injury can lead to motor disorders, movement disorders, visual (processing) deficits, and vestibular deficits which often coexist with cognitive deficits making it challenging to treat and rehabilitate these patients. Unfortunately, the evidence regarding the medical management and rehabilitation of brain injury patients with movement disorders is sparse and leaves much to be desired.
Collapse
Affiliation(s)
- Daniel Moon
- grid.421874.c0000 0001 0016 6543Moss Rehabilitation Hospital, Elkins Park, PA USA
| |
Collapse
|
6
|
Phillips A, Sami S, Adamson M. Sex Differences in Neuromodulation Treatment Approaches for Traumatic Brain Injury: A Scoping Review. J Head Trauma Rehabil 2021; 35:412-429. [PMID: 33165154 DOI: 10.1097/htr.0000000000000631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Neuromodulatory brain stimulation interventions for traumatic brain injury (TBI)-related health sequelae, such as psychiatric, cognitive, and pain disorders, are on the rise. Because of disproportionate recruitment and epidemiological reporting of TBI-related research in men, there is limited understanding of TBI development, pathophysiology, and treatment intervention outcomes in women. With data suggesting sex-related variances in treatment outcomes, it is important that these gaps are addressed in emerging, neuromodulatory treatment approaches for TBI populations. METHODS Four research databases (PubMED, EMBASE, CINAHL, and PsycINFO) were electronically searched in February 2020. DESIGN This PRISMA Scoping Review (PRISMA-ScR)-guided report contextualizes the importance of reporting sex differences in TBI + neuromodulatory intervention studies and summarizes the current state of reporting sex differences when investigating 3 emerging interventions for TBI outcomes. RESULTS Fifty-four studies were identified for the final review including 12 controlled trials, 16 single or case series reports, and 26 empirical studies. Across all studies reviewed, 68% of participants were male, and only 7 studies reported sex differences as a part of their methodological approach, analysis, or discussion. CONCLUSION This review is hoped to update the TBI community on the current state of evidence in reporting sex differences across these 3 neuromodulatory treatments of post-TBI sequelae. The proposed recommendations aim to improve future research and clinical treatment of all individuals suffering from post-TBI sequelae.
Collapse
Affiliation(s)
- Angela Phillips
- Department of Rehabilitation, Veterans Affairs Palo Alto Health Care System, Palo Alto, California (Drs Phillips and Adamson and Mr Sami); and Departments of Psychiatry & Behavioral Sciences (Dr Phillips) and Neurosurgery (Dr Adamson), Stanford School of Medicine, Stanford, California
| | | | | |
Collapse
|
7
|
Bagatti D, D'Ammando A, Franzini A, Messina G. Deep Brain Stimulation of the Caudal Zona Incerta and Motor Thalamus for Postischemic Dystonic Tremor of the Left Upper Limb: Case Report and Review of the Literature. World Neurosurg 2019; 125:191-197. [PMID: 30738935 DOI: 10.1016/j.wneu.2019.01.183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dystonic tremor is defined as a tremor occurring in a body region affected by dystonia. The pathophysiologic mechanisms behind dystonic tremor supposedly involve anomalies affecting the pallidothalamic-receiving area (for the dystonic component) and the ventralis intermedius-cortical loop (for the tremor component). Interest in posterior subthalamic area stimulation for various types of involuntary abnormal movements has arisen owing to positive results in patients affected by tremor refractory to ventralis intermedius deep brain stimulation. CASE DESCRIPTION A 23-year-old man, with a 15-year history of left upper limb dystonic tremor due to a stroke in the right thalamus, underwent deep brain stimulation with a single electrode passing through the right ventralis oralis anterior/ventralis oralis posterior nuclei and caudal zona incerta. Objective movement outcomes were assessed through the Unified Dystonia Rating Scale and Fahn-Tolosa-Marin Clinical Rating Scale for Tremor. The impact of tremor on activities of daily living was assessed with the ADL-T24 questionnaire, and quality of life was assessed with the Quality of Life Scale. All questionnaires were administered before deep brain stimulation and at 5-year follow-up. Unified Dystonia Rating Scale and Fahn-Tolosa-Marin Clinical Rating Scale for Tremor scores decreased from 14.5 to 4.5 and from 46 to 7, respectively. ADL-T24 score decreased from 19 to 3, whereas Quality of Life Scale score increased from 49 to 82. CONCLUSIONS Stimulation of motor thalamus and caudal zona incerta could be a viable treatment for patients affected by tremor of various origins, including dystonic tremor, refractory to medical therapy.
Collapse
Affiliation(s)
| | - Antonio D'Ammando
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Angelo Franzini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Messina
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
8
|
Deep brain stimulation for lesion-related tremors: A systematic review and meta-analysis. Parkinsonism Relat Disord 2018; 47:8-14. [DOI: 10.1016/j.parkreldis.2017.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 12/28/2022]
|
9
|
Roy HA, Green AL, Aziz TZ. State of the Art: Novel Applications for Deep Brain Stimulation. Neuromodulation 2017; 21:126-134. [DOI: 10.1111/ner.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 03/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Holly A. Roy
- Nuffield Department of Surgical Sciences; Oxford University; Oxford UK
- Neurosurgery Department; Oxford University Hospitals; Oxford UK
| | - Alexander L. Green
- Nuffield Department of Surgical Sciences; Oxford University; Oxford UK
- Neurosurgery Department; Oxford University Hospitals; Oxford UK
| | - Tipu Z. Aziz
- Nuffield Department of Surgical Sciences; Oxford University; Oxford UK
- Neurosurgery Department; Oxford University Hospitals; Oxford UK
| |
Collapse
|
10
|
Rojas-Medina LM, Esteban-Fernández L, Rodríguez-Berrocal V, Del Álamo de Pedro M, Ley Urzaiz L, Bailly-Baillere IR. Deep Brain Stimulation in Posttraumatic Tremor: A Series of Cases and Literature Review. Stereotact Funct Neurosurg 2016; 94:379-386. [PMID: 27846626 DOI: 10.1159/000448078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 06/29/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Posttraumatic tremor (PTT) is the most frequent movement disorder secondary to cranioencephalic trauma and can be persistent and disabling. OBJECTIVES We review and assess the efficacy of deep brain stimulation (DBS) at the VIM/VOP/ZI (ventralis intermedius/ventrooralis posterior/zona incerta) complex level for the treatment of PTT. METHODS During the period from 1999 to 2014, 5 patients diagnosed with PTT were selected who had experienced a major deterioration in their quality of life without improvement during medical treatment for more than 1 year. They underwent surgery for DBS at the VIM/VOP/ZI complex level, and the modified tremor scale before and after surgery was used for their follow-up. RESULTS Each patient showed improvements in their symptoms after DBS compared with baseline, which was moderate (II) in 2 cases and marked (III) in the other cases. All of the improvements were maintained with chronic DBS, without tremor rebound. CONCLUSIONS Stimulation of the contralateral VIM/VOP/ZI complex resulted in a noticeable improvement in tremor and recovery of independence in basic daily activities in patients with PTT.
Collapse
|
11
|
Boccard SGJ, Rebelo P, Cheeran B, Green A, FitzGerald JJ, Aziz TZ. Post-Traumatic Tremor and Thalamic Deep Brain Stimulation: Evidence for Use of Diffusion Tensor Imaging. World Neurosurg 2016; 96:607.e7-607.e11. [PMID: 27693821 DOI: 10.1016/j.wneu.2016.09.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a well-established treatment to reduce tremor, notably in Parkinson disease. DBS may also be effective in post-traumatic tremor, one of the most common movement disorders caused by head injury. However, the cohorts of patients often have multiple lesions that may impact the outcome depending on which fiber tracts are affected. CASE DESCRIPTION A 20-year-old man presented after road traffic accident with severe closed head injury and polytrauma. Computed tomography scan showed left frontal and basal ganglia hemorrhagic contusions and intraventricular hemorrhage. A disabling tremor evolved in step with motor recovery. Despite high-intensity signals in the intended thalamic target, a visual analysis of the preoperative diffusion tensor imaging revealed preservation of connectivity of the intended target, ventralis oralis posterior thalamic nucleus (VOP). This was confirmed by the postoperative tractography study presented here. DBS of the VOP/zona incerta was performed. Six months postimplant, marked improvement of action (postural, kinetic, and intention) tremor was achieved. CONCLUSIONS We demonstrated a strong connectivity between the VOP and the superior frontal gyrus containing the premotor cortex and other central brain areas responsible for movement control. In spite of an existing lesion in the target, the preservation of these tracts may be relevant to the improvement of the patient's symptoms by DBS.
Collapse
Affiliation(s)
- Sandra G J Boccard
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom.
| | - Pedro Rebelo
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom
| | - Binith Cheeran
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom
| | - Alexander Green
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom
| | - James J FitzGerald
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom
| | - Tipu Z Aziz
- Oxford Functional Neurosurgery and Experimental Neurology Group, Nuffield Departments of Clinical Neuroscience and Surgery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Ramirez-Zamora A, Smith H, Kumar V, Prusik J, Phookan S, Pilitsis JG. Evolving Concepts in Posterior Subthalamic Area Deep Brain Stimulation for Treatment of Tremor: Surgical Neuroanatomy and Practical Considerations. Stereotact Funct Neurosurg 2016; 94:283-297. [DOI: 10.1159/000449007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2016] [Indexed: 11/19/2022]
|
13
|
Fasano A, Deuschl G. Therapeutic advances in tremor. Mov Disord 2015; 30:1557-65. [DOI: 10.1002/mds.26383] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/29/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
- Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital-UHN, Division of Neurology, University of Toronto; Toronto Ontario Canada
| | - Günther Deuschl
- Department of Neurology; Christian-Albrechts-University Kiel; Germany
| |
Collapse
|
14
|
|
15
|
Abstract
Over the past few decades it has been recognized that traumatic brain injury may result in various movement disorders. In survivors of severe head injury, post-traumatic movement disorders were reported in about 20%, and they persisted in about 10% of patients. The most frequent persisting movement disorder in this population is kinetic cerebellar outflow tremor in about 9%, followed by dystonia in about 4%. While tremor is associated most frequently with cerebellar or mesencephalic lesions, patients with dystonia frequently have basal ganglia or thalamic lesions. Moderate or mild traumatic brain injury only rarely causes persistent post-traumatic movement disorders. It appears that the frequency of post-traumatic movement disorders overall has been declining which most likely is secondary to improved treatment of brain injury. In patients with disabling post-traumatic movement disorders which are refractory to medical treatment, stereotactic neurosurgery can provide long-lasting benefit. While in the past the primary option for severe kinetic tremor was thalamotomy and for dystonia thalamotomy or pallidotomy, today deep brain stimulation has become the preferred treatment. Parkinsonism is a rare consequence of single head injury, but repeated head injury such as seen in boxing can result in chronic encephalopathy with parkinsonian features. While there is still controversy whether or not head injury is a risk factor for the development of Parkinson's disease, recent studies indicate that genetic susceptibility might be relevant.
Collapse
Affiliation(s)
- Joachim K Krauss
- Department of Neurosurgery, Medical School Hannover, Hannover, Germany.
| |
Collapse
|
16
|
Hedera P. Treatment of Wilson's disease motor complications with deep brain stimulation. Ann N Y Acad Sci 2014; 1315:16-23. [DOI: 10.1111/nyas.12372] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peter Hedera
- Department of Neurology; Vanderbilt University; Nashville Tennessee
| |
Collapse
|