1
|
Hong Z, Yi S, Deng M, Zhong Y, Zhao Y, Li L, Zhou H, Xiao Y, Hu X, Niu L. Transcranial Focused Ultrasound Modifies Disease Progression in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2025; 72:191-201. [PMID: 40030850 DOI: 10.1109/tuffc.2024.3525143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressively worsening neurodegenerative condition with very few treatment options available. Ultrasound neuromodulation offers promising benefits for treating neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. However, the effects and underlying mechanisms of ultrasound neuromodulation on ALS remain unclear. A head-mounted ultrasound neuromodulation system was developed to noninvasively stimulate the motor cortex of symptomatic mice carrying the G93A human SOD1 mutation (SOD $1^{\text {G93A}}$ ) for four weeks. Motor performance was assessed through the rotarod locomotor test, grip strength test, and open field test. In addition, the effect of ultrasound stimulation on the elastic modulus of gastrocnemius muscle atrophy was measured using real-time shear wave elastography (SWE). Subsequently, the brain tissues of the mice were harvested. Gastrocnemius morphology was examined using hematoxylin-eosin and Gomori aldehyde-fuchsin (GAF) staining. The number of neurons and the phenotype of microglia in the motor cortex were observed by immunohistochemical analysis. Ultrasound therapy delayed disease onset by 10.7% and increased the lifespan by 6.7% in SOD $1^{\text {G93A}}$ mice by reduction of neuronal loss and enhancement of M2 microglia in the motor cortex. Furthermore, we found significant improvements in motor function for ultrasound-treated mice. More importantly, ultrasound stimulation ameliorated gastrocnemius muscle atrophy in the SOD $1^{\text {G93A}}$ mice. These results revealed the neuroprotective effects of ultrasound against the disease pathogenesis of SOD $1^{\text {G93A}}$ mice. Transcranial ultrasound neuromodulation provides an innovative tool for the intervention and treatment of neurodegenerative diseases.
Collapse
|
2
|
Stephani C, Krämer H, Chakalov I, Bähr M, Paulus W, Antal A, Koch JC. Static transcranial magnetic stimulation does not alter cortical excitability in patients with amyotrophic lateral sclerosis on riluzole. Brain Stimul 2024; 17:1244-1246. [PMID: 39486621 DOI: 10.1016/j.brs.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024] Open
Affiliation(s)
- Caspar Stephani
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Helena Krämer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ivan Chakalov
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Department of Anesthesiology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Walter Paulus
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Department of Neurology, Ludwig Maximilians University, Munich, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Liu Z, Zhang H, Lu K, Chen L, Zhang Y, Xu Z, Zhou H, Sun J, Xu M, Ouyang Q, Thompson GJ, Yang Y, Su N, Cai X, Cao L, Zhao Y, Jiang L, Zheng Y, Zhang X. Low-intensity pulsed ultrasound modulates disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Cell Rep 2024; 43:114660. [PMID: 39180748 DOI: 10.1016/j.celrep.2024.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/01/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord, and there are no effective drug treatments. Low-intensity pulsed ultrasound (LIPUS) has garnered attention as a promising noninvasive neuromodulation method. In this study, we investigate its effects on the motor cortex and underlying mechanisms using the SOD1G93A mouse model of ALS. Our results show that LIPUS treatment delays disease onset and prolongs lifespan in ALS mice. LIPUS significantly increases cerebral blood flow in the motor cortex by preserving vascular endothelial cell integrity and increasing microvascular density, which may be mediated via the ion channel TRPV4. RNA sequencing analysis reveals that LIPUS substantially reduces the expression of genes associated with neuroinflammation. These findings suggest that LIPUS applied to the motor cortex may represent a potentially effective therapeutic tool for the treatment of ALS.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Huan Zhang
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Kaili Lu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Chen
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yueqi Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhouwei Xu
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hongsheng Zhou
- Institute of Advanced Ultrasonic Technology, National Innovation Center par Excellence, Shanghai 201203, China
| | - Junfeng Sun
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mengyang Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qi Ouyang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Garth J Thompson
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ni Su
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojun Cai
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China; Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai 200233, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lixian Jiang
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Yuanyi Zheng
- Department of Ultrasonography, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
4
|
Officer L, Armon C, Barkhaus P, Beauchamp M, Benatar M, Bertorini T, Bowser R, Bromberg M, Brown A, Carbunar OM, Carter GT, Crayle J, Denson K, Feldman E, Fullam T, Heiman-Patterson T, Jackson C, Jhooty S, Levinson D, Li X, Linares A, Mallon E, Mascias Cadavid J, Mcdermott C, Mushannen T, Ostrow L, Patel R, Pattee G, Ratner D, Sun Y, Sladky J, Wicks P, Bedlack R. ALSUntangled #75: Portable neuromodulation stimulator therapy. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:648-652. [PMID: 38666601 DOI: 10.1080/21678421.2024.2346825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 07/25/2024]
Abstract
Spurred by patient interest, ALSUntangled herein examines the potential of the Portable Neuromodulation Stimulator (PoNS™) in treating amyotrophic lateral sclerosis (ALS). The PoNS™ device, FDA-approved for the treatment of gait deficits in adult patients with multiple sclerosis, utilizes translingual neurostimulation to stimulate trigeminal and facial nerves via the tongue, aiming to induce neuroplastic changes. While there are early, promising data for PoNS treatment to improve gait and balance in multiple sclerosis, stroke, and traumatic brain injury, no pre-clinical or clinical studies have been performed in ALS. Although reasonably safe, high costs and prescription requirements will limit PoNS accessibility. At this time, due to the lack of ALS-relevant data, we cannot endorse the use of PoNS as an ALS treatment.
Collapse
Affiliation(s)
- Laurel Officer
- Department of Neurology, Brooke Army Medical Center, San Antonio, TX, USA
| | - Carmel Armon
- Department of Neurology, Shamir Medical Center, Tzrifin, Israel
| | - Paul Barkhaus
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Tulio Bertorini
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark Bromberg
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Andrew Brown
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | - Gregory T Carter
- Department of Rehabilitation, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, USA
| | - Jesse Crayle
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Keelie Denson
- Department of Neurology, Houston Methodist Hospital, Houston, TX, USA
| | - Eva Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Timothy Fullam
- Department of Neurology, Brooke Army Medical Center, San Antonio, TX, USA
| | | | - Carlayne Jackson
- Department of Neurology, UT Health San Antonio, San Antonio, Texas, USA
| | - Sartaj Jhooty
- Department of Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Xiaoyan Li
- Department of Neurology, Duke University, Durham, NC, USA
| | | | | | - Javier Mascias Cadavid
- ALS Unit, Neurology Department, Hospital La Paz Institute for Health Research, Madrid, Spain
| | | | | | - Lyle Ostrow
- Department of Neurology, Temple Health, Philadelphia, PA, USA
| | - Ronak Patel
- Department of Neurology, Brooke Army Medical Center, San Antonio, TX, USA
| | - Gary Pattee
- Department of Neurology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dylan Ratner
- Undergraduate, Tulane University, New Orleans, LA, USA
| | - Yuyao Sun
- Department of Neurology, University of Kentucky, Lexington, KY, USA, and
| | - John Sladky
- Department of Neurology, Brooke Army Medical Center, San Antonio, TX, USA
| | - Paul Wicks
- Independent Consultant, Lichfield, England, UK
| | | |
Collapse
|
5
|
Benussi A, Cantoni V, Grassi M, Libri I, Cotelli MS, Tarantino B, Datta A, Thomas C, Huber N, Kärkkäinen S, Herukka SK, Haapasalo A, Filosto M, Padovani A, Borroni B. Cortico-spinal tDCS in amyotrophic lateral sclerosis: A randomized, double-blind, sham-controlled trial followed by an open-label phase. Brain Stimul 2023; 16:1666-1676. [PMID: 37977335 DOI: 10.1016/j.brs.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a progressive disease for which no curative treatment is currently available. OBJECTIVE This study aimed to investigate whether cortico-spinal transcranial direct current stimulation (tDCS) could mitigate symptoms in ALS patients via a randomized, double-blind, sham-controlled trial, followed by an open-label phase. METHODS Thirty-one participants were randomized into two groups for the initial controlled phase. At baseline (T0), Group 1 received placebo stimulation (sham tDCS), while Group 2 received cortico-spinal stimulation (real tDCS) for five days/week for two weeks (T1), with an 8-week (T2) follow-up (randomized, double-blind, sham-controlled phase). At the 24-week follow-up (T3), all participants (Groups 1 and 2) received a second treatment of anodal bilateral motor cortex and cathodal spinal stimulation (real tDCS) for five days/week for two weeks (T4). Follow-up evaluations were performed at 32-weeks (T5) and 48-weeks (T6) (open-label phase). At each time point, clinical assessment, blood sampling, and intracortical connectivity measures using transcranial magnetic stimulation (TMS) were evaluated. Additionally, we evaluated survival rates. RESULTS Compared to sham stimulation, cortico-spinal tDCS significantly improved global strength, caregiver burden, and quality of life scores, which correlated with the restoration of intracortical connectivity measures. Serum neurofilament light levels decreased among patients who underwent real tDCS but not in those receiving sham tDCS. The number of completed 2-week tDCS treatments significantly influenced patient survival. CONCLUSIONS Cortico-spinal tDCS may represent a promising therapeutic and rehabilitative approach for patients with ALS. Further larger-scale studies are necessary to evaluate whether tDCS could potentially impact patient survival. CLINICAL TRIAL REGISTRATION NCT04293484.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Ilenia Libri
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Barbara Tarantino
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Abhishek Datta
- Research & Development, Soterix Medical, Inc., New York, USA
| | - Chris Thomas
- Research & Development, Soterix Medical, Inc., New York, USA
| | - Nadine Huber
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sari Kärkkäinen
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Sanna-Kaisa Herukka
- Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland; Department of Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Massimiliano Filosto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; NeMo-Brescia Clinical Center for Neuromuscular Diseases, Gussago, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
6
|
Shibuya K, Otani R, Suzuki YI, Kuwabara S, Kiernan MC. Neuronal Hyperexcitability and Free Radical Toxicity in Amyotrophic Lateral Sclerosis: Established and Future Targets. Pharmaceuticals (Basel) 2022; 15:ph15040433. [PMID: 35455429 PMCID: PMC9025031 DOI: 10.3390/ph15040433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease with evidence of degeneration involving upper and lower motor neuron compartments of the nervous system. Presently, two drugs, riluzole and edaravone, have been established as being useful in slowing disease progression in ALS. Riluzole possesses anti-glutamatergic properties, while edaravone eliminates free radicals (FRs). Glutamate is the excitatory neurotransmitter in the brain and spinal cord and binds to several inotropic receptors. Excessive activation of these receptors generates FRs, inducing neurodegeneration via damage to intracellular organelles and upregulation of proinflammatory mediators. FRs bind to intracellular structures, leading to cellular impairment that contributes to neurodegeneration. As such, excitotoxicity and FR toxicities have been considered as key pathophysiological mechanisms that contribute to the cascade of degeneration that envelopes neurons in ALS. Recent advanced technologies, including neurophysiological, imaging, pathological and biochemical techniques, have concurrently identified evidence of increased excitability in ALS. This review focuses on the relationship between FRs and excitotoxicity in motor neuronal degeneration in ALS and introduces concepts linked to increased excitability across both compartments of the human nervous system. Within this cellular framework, future strategies to promote therapeutic development in ALS, from the perspective of neuronal excitability and function, will be critically appraised.
Collapse
Affiliation(s)
- Kazumoto Shibuya
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Ryo Otani
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Yo-ichi Suzuki
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan; (K.S.); (R.O.); (Y.-i.S.); (S.K.)
| | - Matthew C. Kiernan
- Brain and Mind Centre, Department of Neurology, University of Sydney, Royal Prince Alfred Hospital, Sydney 2050, Australia
- Correspondence:
| |
Collapse
|
7
|
Sever B, Ciftci H, DeMirci H, Sever H, Ocak F, Yulug B, Tateishi H, Tateishi T, Otsuka M, Fujita M, Başak AN. Comprehensive Research on Past and Future Therapeutic Strategies Devoted to Treatment of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:2400. [PMID: 35269543 PMCID: PMC8910198 DOI: 10.3390/ijms23052400] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly debilitating fatal neurodegenerative disorder, causing muscle atrophy and weakness, which leads to paralysis and eventual death. ALS has a multifaceted nature affected by many pathological mechanisms, including oxidative stress (also via protein aggregation), mitochondrial dysfunction, glutamate-induced excitotoxicity, apoptosis, neuroinflammation, axonal degeneration, skeletal muscle deterioration and viruses. This complexity is a major obstacle in defeating ALS. At present, riluzole and edaravone are the only drugs that have passed clinical trials for the treatment of ALS, notwithstanding that they showed modest benefits in a limited population of ALS. A dextromethorphan hydrobromide and quinidine sulfate combination was also approved to treat pseudobulbar affect (PBA) in the course of ALS. Globally, there is a struggle to prevent or alleviate the symptoms of this neurodegenerative disease, including implementation of antisense oligonucleotides (ASOs), induced pluripotent stem cells (iPSCs), CRISPR-9/Cas technique, non-invasive brain stimulation (NIBS) or ALS-on-a-chip technology. Additionally, researchers have synthesized and screened new compounds to be effective in ALS beyond the drug repurposing strategy. Despite all these efforts, ALS treatment is largely limited to palliative care, and there is a strong need for new therapeutics to be developed. This review focuses on and discusses which therapeutic strategies have been followed so far and what can be done in the future for the treatment of ALS.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey;
| | - Hilal Sever
- Ministry of Health, Istanbul Training and Research Hospital, Physical Medicine and Rehabilitation Clinic, Istanbul 34098, Turkey;
| | - Firdevs Ocak
- Faculty of Medicine, Kocaeli University, Kocaeli 41001, Turkey;
| | - Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alaaddin Keykubat University, Alanya 07425, Turkey;
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Takahisa Tateishi
- Division of Respirology, Neurology and Rheumatology, Department of Medicine, Kurume University School of Medicine, Fukuoka 830-0011, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan; (H.C.); (H.T.); (M.O.)
| | - Ayşe Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (KUTTAM-NDAL), Koc University, Istanbul 34450, Turkey
| |
Collapse
|
8
|
Di Lazzaro V, Musumeci G, Boscarino M, De Liso A, Motolese F, Di Pino G, Capone F, Ranieri F. Transcranial static magnetic field stimulation can modify disease progression in amyotrophic lateral sclerosis. Brain Stimul 2020; 14:51-54. [PMID: 33186779 DOI: 10.1016/j.brs.2020.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy.
| | - Gabriella Musumeci
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Marilisa Boscarino
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Alfredo De Liso
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Francesco Motolese
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Giovanni Di Pino
- Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction (NeXTlab), Università Campus Bio-Medico di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro Del Portillo 21, 00128, Rome, Italy
| | - Federico Ranieri
- Unit of Neurology, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, P.le L.A. Scuro 10, 37134, Verona, Italy
| |
Collapse
|
9
|
Turner MR, Al-Chalabi A. REM sleep physiology and selective neuronal vulnerability in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2020; 91:789-790. [PMID: 32354769 DOI: 10.1136/jnnp-2020-323100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ammar Al-Chalabi
- Neurology and Genetics, Institute of Psychiatry, Psychology & Neuroscience, London, UK
| |
Collapse
|