1
|
Jiskoot LC, Gouw C, Coesmans M, Poos JM, Swartenbroekx T, de Houwer J, Dopper EGP, Donker Kaat L, Boesjes P, de Boer L, van den Berg E, Seelaar H. Assessing the Big Five personality traits in presymptomatic and symptomatic C9orf72-related frontotemporal dementia using the Dutch Personality Inventory for DSM-5 (PID-5-NL). J Neurol Sci 2025; 473:123502. [PMID: 40252388 DOI: 10.1016/j.jns.2025.123502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/14/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND C9orf72 is one of the leading causes of genetic FTD. Although neuropsychiatric symptoms are considered a distinctive hallmark, no studies into maladaptive premorbid personality traits have been performed in C9orf72-FTD thus far. METHODS We investigated differences in self-reported and informant-reported brief version of the Dutch Personality Inventory for the DSM (PID-5-NL) in symptomatic (n = 7) and presymptomatic C9orf72 repeat expansion carriers (C9orf72-REC) (n = 27), and controls (n = 18). We also explored relationships with cognitive performance and neuropsychiatric questionnaires (BDI-II-NL and NPI-Q). RESULTS Informants of symptomatic C9orf72-REC reported higher total, Disinhibition and Psychoticism scores on the PID-5-NL than presymptomatic C9orf72-REC and controls. No significant differences were found between presymptomatic C9orf72 repeat expansion carriers and controls. There were no significant correlations between the Mini-Mental State Examination and Frontal Assessment Battery total scores and the PID-5-NL scores. In presymptomatic C9orf72-REC, PID-5-BF-NL total, Negative Affect, and Antagonism scores correlated with the BDI-II-NL. PID-5-IBF-NL total and Negative Affect, Antagonism, and Disinhibition scores correlated with the NPI-Q, Disinhibition correlated with the Frontal-Behavioural cluster, and Negative Affect, Antagonism, and Disinhibition correlated with the Mood and Psychotic clusters. CONCLUSION Our findings suggests that the PID-5-BF-NL offers a valuable insight into the presence of maladaptive premorbid personality traits in the symptomatic phase of C9orf72-FTD.
Collapse
Affiliation(s)
- Lize C Jiskoot
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre, Rotterdam, the Netherlands; Dementia Research Centre, University College London, London, United Kingdom.
| | - Cornalijn Gouw
- Department of Psychiatry, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Michiel Coesmans
- Department of Psychiatry, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Jackie M Poos
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Tine Swartenbroekx
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Julie de Houwer
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Elise G P Dopper
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Pam Boesjes
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Liset de Boer
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Esther van den Berg
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Centre, Erasmus MC University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Ghezzi A, Gianferrari G, Baldassarri E, Zucchi E, Martinelli I, Vacchiano V, Bonan L, Zinno L, Nuredini A, Canali E, Gizzi M, Terlizzi E, Medici D, Sette E, Currò Dossi M, Morresi S, Santangelo M, Patuelli A, Longoni M, De Massis P, Ferro S, Fini N, Simonini C, Carra S, Zamboni G, Mandrioli J. Phenotypical Characterization of C9ALS Patients from the Emilia Romagna Registry of ALS: A Retrospective Case-Control Study. Genes (Basel) 2025; 16:309. [PMID: 40149460 PMCID: PMC11942173 DOI: 10.3390/genes16030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES C9ORF72 expansion is associated with significant phenotypic heterogeneity. This study aimed to characterize the clinical features of C9ALS patients from the Emilia Romagna ALS registry (ERRALS) and compare them with non-mutated ALS (nmALS) patients matched for sex, age at onset, and diagnostic delay, sourced from the same register. METHODS In total, 67 C9ALS patients were compared to 201 nmALS. Clinical data, phenotype, and prognostic factors were analyzed in the two groups and within the C9ALS group after stratification by sex. RESULTS C9ALS patients displayed a higher disease progression rate and shorter times to gastrostomy and invasive ventilation, despite no differences in overall survival. Female C9ALS had a more severe bulbar and upper motor neuron involvement compared to males. Cognitive and behavioral symptoms were more common in the C9ALS group, and the former was an independent prognostic factor. Prevalences of, autoimmune diseases, and dyslipidemia were significantly higher among C9ALS patients. CONCLUSIONS In our dataset, we show an overall increased disease progression rate in C9ALS patients and hint at sex-specific discrepancies in some phenotypical characteristics. We also suggest a possible clinically relevant involvement of C9ORF72 expansion in metabolism and autoimmunity.
Collapse
Affiliation(s)
- Andrea Ghezzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Elisa Baldassarri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
| | - Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Ilaria Martinelli
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bellaria Hospital, 40139 Bologna, Italy;
| | - Luigi Bonan
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, 40126 Bologna, Italy;
| | - Lucia Zinno
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (L.Z.); (A.N.)
| | - Andi Nuredini
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (L.Z.); (A.N.)
| | - Elena Canali
- Neurology Unit, Arcispedale Santa Maria Nuova, AUSL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Matteo Gizzi
- Department of Neurology, Faenza and Ravenna Hospital, 48121 Ravenna, Italy;
| | - Emilio Terlizzi
- Department of Neurology, G. Da Saliceto Hospital, 29121 Piacenza, Italy;
| | - Doriana Medici
- Department of Neurology, Fidenza Hospital, 43036 Fidenza, Italy;
| | - Elisabetta Sette
- Department of Neuroscience and Rehabilitation, St. Anna Hospital, 44124 Ferrara, Italy;
| | | | - Simonetta Morresi
- Department of Neurology and Stroke Unit, Bufalini Hospital, 47521 Cesena, Italy;
| | | | - Alberto Patuelli
- Department of Neurology and Stroke Unit, “Morgagni-Pierantoni” Hospital, 47121 Forlì, Italy; (A.P.); (M.L.)
| | - Marco Longoni
- Department of Neurology and Stroke Unit, “Morgagni-Pierantoni” Hospital, 47121 Forlì, Italy; (A.P.); (M.L.)
| | | | - Salvatore Ferro
- Department of Hospital Services, Emilia Romagna Regional Health Authority, 40127 Bologna, Italy;
| | - Nicola Fini
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Cecilia Simonini
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (A.G.); (E.B.); (E.Z.); (S.C.); (G.Z.); (J.M.)
- Neurology Unit, Azienda Ospedaliero Universitaria di Modena, 41126 Modena, Italy; (I.M.); (N.F.); (C.S.)
| |
Collapse
|
3
|
Lorke DE, Oz M. A review on oxidative stress in organophosphate-induced neurotoxicity. Int J Biochem Cell Biol 2025; 180:106735. [PMID: 39855621 DOI: 10.1016/j.biocel.2025.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Acetylcholinesterase inhibition, the principal mechanism of acute organophosphorus compound toxicity, cannot explain neuropsychiatric symptoms occurring after exposure to low organophosphate concentrations causing no cholinergic symptoms. Organophosphate-triggered oxidative stress has increasingly come into focus, occurring when the action of reactive oxygen species, generated from free radicals, is not compensated by antioxidant free radical scavengers. Being nucleophilic, organophosphates can easily accept an electron, thereby generating free radicals. Organophosphates inhibit the antioxidant paraoxonase, and reactive oxygen species are produced during organophosphate metabolism. Organophosphates disrupt the function of mitochondria, the principal source of free radicals. Organophosphates also induce neuroinflammation, which generates reactive oxygen species, and reactive oxygen species in turn stimulate neuroinflammation. Markers of reactive oxygen species are elevated in vitro and in vivo after exposure to organophosphates and in individuals professionally exposed to organophosphates. This most probably contributes to the pathogenesis of the intermediate syndrome, chronic organophosphate-induced neuropsychiatric disorders and neurodegeneration occurring in patients after organophosphate exposure. Evidence for beneficial effects of antioxidants in organophosphate poisoning is discussed.
Collapse
Affiliation(s)
- Dietrich E Lorke
- Department of Basic Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, United States; Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| |
Collapse
|
4
|
Olsen CG, Malmberg VN, Fahlström M, Alstadhaug KB, Bjørnå IK, Braathen GJ, Bråthen G, Demic N, Hallerstig E, Hogenesch I, Horn MA, Kampman MT, Kleveland G, Ljøstad U, Maniaol A, Morsund ÅH, Nakken O, Schlüter K, Schuler S, Seim E, Flemmen HØ, Tysnes OB, Holmøy T, Høyer H. Amyotrophic lateral sclerosis caused by the C9orf72 expansion in Norway - prevalence, ancestry, clinical characteristics and sociodemographic status. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:132-140. [PMID: 39316038 DOI: 10.1080/21678421.2024.2405118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
OBJECTIVE The most common genetic cause of amyotrophic lateral sclerosis (ALS) is the C9orf72 expansion. A high incidence of this expansion has been detected in Sweden and Finland. This Norwegian population-based study aimed to identify the prevalence, geographic distribution, ancestry, and relatedness of ALS patients with a C9orf72 expansion (C9pos). Further, we compared C9pos and C9neg patients' clinical presentation, family history of ALS and other neurodegenerative disorders, and sociodemographic status. METHODS We recruited ALS patients from all 17 Departments of neurology in Norway. Blood samples and questionnaires regarding clinical characteristics, sociodemographic status and family history of ALS, and other neurodegenerative disorders were collected. The C9orf72 expansion was examined for all patients. RESULTS The study enrolled 500 ALS patients, 8.8% of whom were C9pos, with half being sporadic ALS cases. The proportion of C9pos cases differed between regions, ranging from 17.9% in the Northern region to 1.9% in the Western region. The majority of C9pos patients had non-Finnish European descent and were not closely related. C9pos patients exhibited a significantly shorter mean survival time, had a higher frequency of relatives with ALS or dementia, and were more often unmarried/single and childless than C9neg patients. CONCLUSION C9pos patients constitute a large portion of the Norwegian ALS population. Ancestry and relatedness do not adequately explain regional differences. Relying on clinical information to identify C9pos patients has proven to be challenging. Half of C9pos patients were reported as having sporadic ALS, underlining the importance of carefully assessing family history and the need for genetic testing.
Collapse
Affiliation(s)
- Cathrine Goberg Olsen
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
- Institute of Clinical Medicine, University of Oslo, Nordbyhagen, Norway
| | - Vetle Nilsen Malmberg
- Institute of Clinical Medicine, University of Oslo, Nordbyhagen, Norway
- Department of Neurology, Telemark Hospital Trust, Skien, Norway
| | - Maria Fahlström
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | | | | | | | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Natasha Demic
- Department of Neurology, Vestfold Hospital Trust, Tønsberg, Norway
| | | | - Ineke Hogenesch
- Department of Neurology, Fonna Hospital Trust, Haugesund, Norway
| | | | - Margitta T Kampman
- Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Grethe Kleveland
- Department of Neurology, Innlandet Hospital Trust, Lillehammer, Norway
| | - Unn Ljøstad
- Department of Neurology, Sørlandet Hospital Trust, Kristiansand, Norway
- Department of Clinical Medicine, University of Bergen, Norway
| | | | - Åse Hagen Morsund
- Department of Neurology, Møre og Romsdal Hospital Trust, Molde, Norway
| | - Ola Nakken
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Katrin Schlüter
- Department of Neurology, Stavanger University Hospital, Stavanger, Norway
| | - Stephan Schuler
- Department of Neurology, Nord-Trøndelag Hospital Trust, Namsos, Norway
| | - Elin Seim
- Department of Neurology, Førde Hospital Trust, Førde, Norway, and
| | | | - Ole-Bjørn Tysnes
- Department of Clinical Medicine, University of Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Trygve Holmøy
- Institute of Clinical Medicine, University of Oslo, Nordbyhagen, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Helle Høyer
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
- Institute of Clinical Medicine, University of Oslo, Nordbyhagen, Norway
| |
Collapse
|
5
|
Udine E, Finch NA, DeJesus-Hernandez M, Jackson JL, Baker MC, Saravanaperumal SA, Wieben E, Ebbert MTW, Shah J, Petrucelli L, Rademakers R, Oskarsson B, van Blitterswijk M. Targeted long-read sequencing to quantify methylation of the C9orf72 repeat expansion. Mol Neurodegener 2024; 19:99. [PMID: 39709476 DOI: 10.1186/s13024-024-00790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The gene C9orf72 harbors a non-coding hexanucleotide repeat expansion known to cause amyotrophic lateral sclerosis and frontotemporal dementia. While previous studies have estimated the length of this repeat expansion in multiple tissues, technological limitations have impeded researchers from exploring additional features, such as methylation levels. METHODS We aimed to characterize C9orf72 repeat expansions using a targeted, amplification-free long-read sequencing method. Our primary goal was to determine the presence and subsequent quantification of observed methylation in the C9orf72 repeat expansion. In addition, we measured the repeat length and purity of the expansion. To do this, we sequenced DNA extracted from blood for 27 individuals with an expanded C9orf72 repeat. RESULTS For these individuals, we obtained a total of 7,765 on-target reads, including 1,612 fully covering the expanded allele. Our in-depth analysis revealed that the expansion itself is methylated, with great variability in total methylation levels observed, as represented by the proportion of methylated CpGs (13 to 66%). Interestingly, we demonstrated that the expanded allele is more highly methylated than the wild-type allele (P-Value = 2.76E-05) and that increased methylation levels are observed in longer repeat expansions (P-Value = 1.18E-04). Furthermore, methylation levels correlate with age at collection (P-Value = 3.25E-04) as well as age at disease onset (P-Value = 0.020). Additionally, we detected repeat lengths up to 4,088 repeats (~ 25 kb) and found that the expansion contains few interruptions in the blood. CONCLUSIONS Taken together, our study demonstrates robust ability to quantify methylation of the expanded C9orf72 repeat, capturing differences between individuals harboring this expansion and revealing clinical associations.
Collapse
Affiliation(s)
- Evan Udine
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - NiCole A Finch
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jazmyne L Jackson
- Fels Cancer Institute for Personalized Medicine, Temple University, Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Eric Wieben
- Genome Analysis Core, Mayo Clinic, Rochester, MN, USA
| | - Mark T W Ebbert
- Department of Neuroscience, University of Kentucky Sanders-Brown Center on Aging, Lexington, KY, USA
| | - Jaimin Shah
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- VIB Center for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
| | | | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
6
|
Frolov A, D'sa E, Henderson C, Guzman MA, Hayat G, Martin JR. Complex Genetic Framework in Familial Amyotrophic Lateral Sclerosis With a C9ORF72 Mutation: A Case Report. Cureus 2024; 16:e76027. [PMID: 39835009 PMCID: PMC11743604 DOI: 10.7759/cureus.76027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
A significantly diverse clinical presentation of amyotrophic lateral sclerosis (ALS), even in its best-studied familial form, continues to hinder current efforts to develop effective disease-modifying drugs for the cure of this rapidly progressive, fatal neuromuscular disease. We have previously shown that clinical heterogeneity of sporadic ALS (sALS) could be explained, at least in part, by its polygenic nature as well as by the presence of mutated genes linked to non-ALS neurological diseases and genes known to mediate ALS-related pathologies. We hypothesized that a similar genetic framework could also be present in patients with familial ALS (fALS). To test this hypothesis, we conducted post-mortem genetic screening of an individual with fALS and a mutation in the C9ORF72 gene. C9ORF72 mutations are highly penetrant and are present in the majority of fALS patients. Genetic screening by whole exome sequencing (WES) on the next generation sequencing (NGS) Illumina platform (San Diego, CA, USA) followed by examination of the respective rare (minor allele frequency (MAF) ≤ 0.01) pathological/deleterious genetic variants yielded results consistent with our hypothesis of the presence of a complex genetic framework in fALS. Additional members of this genetic framework were identified when the low-frequency (0.01 < MAF < 0.05) pathological/deleterious genetic variants were analyzed with the low-frequency biallelic AHNAK2, GLI3, PTIRM1, and ZNF254 variants, warranting a closer look at their potentially important role in fALS as C9ORF72 genetic modifiers as well as their link to both neuromuscular disorders/ALS and cancer. Therefore, in addition to the current genetic screening using a standard panel of ALS-related genes, a supplementary screening by WES could be very beneficial for the development of personalized treatment of ALS patients as well as in search of the respective efficient disease-modifying drugs.
Collapse
Affiliation(s)
- Andrey Frolov
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Elizabeth D'sa
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Camille Henderson
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| | - Miguel A Guzman
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, USA
| | - Ghazala Hayat
- Department of Neurology, Saint Louis University School of Medicine, St. Louis, USA
| | - John R Martin
- Department of Surgery - Center for Anatomical Science and Education, Saint Louis University School of Medicine, St. Louis, USA
| |
Collapse
|
7
|
Ibañez K, Jadhav B, Zanovello M, Gagliardi D, Clarkson C, Facchini S, Garg P, Martin-Trujillo A, Gies SJ, Galassi Deforie V, Dalmia A, Hensman Moss DJ, Vandrovcova J, Rocca C, Moutsianas L, Marini-Bettolo C, Walker H, Turner C, Shoai M, Long JD, Fratta P, Langbehn DR, Tabrizi SJ, Caulfield MJ, Cortese A, Escott-Price V, Hardy J, Houlden H, Sharp AJ, Tucci A. Increased frequency of repeat expansion mutations across different populations. Nat Med 2024; 30:3357-3368. [PMID: 39354197 PMCID: PMC11564083 DOI: 10.1038/s41591-024-03190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/11/2024] [Indexed: 10/03/2024]
Abstract
Repeat expansion disorders (REDs) are a devastating group of predominantly neurological diseases. Together they are common, affecting 1 in 3,000 people worldwide with population-specific differences. However, prevalence estimates of REDs are hampered by heterogeneous clinical presentation, variable geographic distributions and technological limitations leading to underascertainment. Here, leveraging whole-genome sequencing data from 82,176 individuals from different populations, we found an overall disease allele frequency of REDs of 1 in 283 individuals. Modeling disease prevalence using genetic data, age at onset and survival, we show that the expected number of people with REDs would be two to three times higher than currently reported figures, indicating underdiagnosis and/or incomplete penetrance. While some REDs are population specific, for example, Huntington disease-like 2 in Africans, most REDs are represented in all broad genetic ancestries (that is, Europeans, Africans, Americans, East Asians and South Asians), challenging the notion that some REDs are found only in specific populations. These results have worldwide implications for local and global health communities in the diagnosis and counseling of REDs.
Collapse
Affiliation(s)
- Kristina Ibañez
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Bharati Jadhav
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matteo Zanovello
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | - Delia Gagliardi
- William Harvey Research Institute, Queen Mary University of London, London, UK
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | | | - Stefano Facchini
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
- IRCCS Mondino Foundation, Pavia, Italy
| | - Paras Garg
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alejandro Martin-Trujillo
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Gies
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Davina J Hensman Moss
- St George's, University of London, London, UK
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | | | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Helen Walker
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Chris Turner
- Centre for Neuromuscular Disease, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Maryam Shoai
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
| | - Jeffrey D Long
- Departments of Psychiatry and Biostatistics, The University of Iowa, Iowa City, IA, USA
| | - Pietro Fratta
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
| | - Douglas R Langbehn
- Departments of Psychiatry and Biostatistics, The University of Iowa, Iowa City, IA, USA
| | - Sarah J Tabrizi
- UK Dementia Research Institute, UCL, London, UK
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
- Huntington's Disease Centre, UCL, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andrea Cortese
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK
- IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina Escott-Price
- Department of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - John Hardy
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
| | - Henry Houlden
- Department of Neurodegenerative Disorders, Queen Square Institute of Neurology, UCL, London, UK
- Neurogenetics Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, UK.
- Department of Neuromuscular Diseases, Institute of Neurology, UCL, London, UK.
| |
Collapse
|
8
|
Mirceta M, Schmidt MHM, Shum N, Prasolava TK, Meikle B, Lanni S, Mohiuddin M, Mckeever PM, Zhang M, Liang M, van der Werf I, Scheers S, Dion PA, Wang P, Wilson MD, Abell T, Philips EA, Sznajder ŁJ, Swanson MS, Mehkary M, Khan M, Yokoi K, Jung C, de Jong PJ, Freudenreich CH, McGoldrick P, Yuen RKC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau GA, Kooy RF, Pearson CE. C9orf72 expansion creates the unstable folate-sensitive fragile site FRA9A. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.26.620312. [PMID: 39569145 PMCID: PMC11577248 DOI: 10.1101/2024.10.26.620312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions ( C9orf72 Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72 Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immuno-stimulatory or damaged DNA is unknown. Here, we show C9orf72 Exp in pre-symptomatic and ALS-FTD patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33kb of C9orf72 as highly-compacted chromatin embedded in an 8.2Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72 Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72 Exp patient contained highly-rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72 Exp repeat instability and chromosomal fragility are sensitive to folate-deficiency. Age-dependent repeat instability, chromosomal fragility, and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72 Exp mice, implicating C9orf72 Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
|
9
|
Mirceta M, Schmidt MM, Shum N, Prasolava T, Meikle B, Lanni S, Mohiuddin M, McKeever P, Zhang M, Liang M, van der Werf I, Scheers S, Dion P, Wang P, Wilson M, Abell T, Philips E, Sznajder Ł, Swanson M, Mehkary M, Khan M, Yokoi K, Jung C, de Jong P, Freudenreich C, McGoldrick P, Yuen RC, Abrahão A, Keith J, Zinman L, Robertson J, Rogaeva E, Rouleau G, Kooy R, Pearson C. C9orf72 repeat expansion creates the unstable folate-sensitive fragile site FRA9A. NAR MOLECULAR MEDICINE 2024; 1:ugae019. [PMID: 39669124 PMCID: PMC11632612 DOI: 10.1093/narmme/ugae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
The hyper-unstable Chr9p21 locus, harbouring the interferon gene cluster, oncogenes and C9orf72, is linked to multiple diseases. C9orf72 (GGGGCC)n expansions (C9orf72Exp) are associated with incompletely penetrant amyotrophic lateral sclerosis, frontotemporal dementia and autoimmune disorders. C9orf72Exp patients display hyperactive cGAS-STING-linked interferon immune and DNA damage responses, but the source of immunostimulatory or damaged DNA is unknown. Here, we show C9orf72Exp in pre-symptomatic and amyotrophic lateral sclerosis-frontotemporal dementia patient cells and brains cause the folate-sensitive chromosomal fragile site, FRA9A. FRA9A centers on >33 kb of C9orf72 as highly compacted chromatin embedded in an 8.2 Mb fragility zone spanning 9p21, encompassing 46 genes, making FRA9A one of the largest fragile sites. C9orf72Exp cells show chromosomal instability, heightened global- and Chr9p-enriched sister-chromatid exchanges, truncated-Chr9s, acentric-Chr9s and Chr9-containing micronuclei, providing endogenous sources of damaged and immunostimulatory DNA. Cells from one C9orf72Exp patient contained a highly rearranged FRA9A-expressing Chr9 with Chr9-wide dysregulated gene expression. Somatic C9orf72Exp repeat instability and chromosomal fragility are sensitive to folate deficiency. Age-dependent repeat instability, chromosomal fragility and chromosomal instability can be transferred to CNS and peripheral tissues of transgenic C9orf72Exp mice, implicating C9orf72Exp as the source. Our results highlight unappreciated effects of C9orf72 expansions that trigger vitamin-sensitive chromosome fragility, adding structural variations to the disease-enriched 9p21 locus, and likely elsewhere.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Monika H M Schmidt
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Tanya K Prasolava
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Bryanna Meikle
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Stella Lanni
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Paul M McKeever
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ming Zhang
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200090, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Advanced Study, Tongji University, Shanghai, 200092, China
| | - Minggao Liang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | | | - Stefaan Scheers
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Patrick A Dion
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - Peixiang Wang
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Michael D Wilson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Theresa Abell
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Elliot A Philips
- Department of Biology, Tufts University, 200 Boston Avenue, Medford, MA 02155, USA
| | - Łukasz J Sznajder
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
- Department of Chemistry and Biochemistry, University of Nevada, 4003-4505 South Maryland Parkway, Las Vegas, NV 89154, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Mustafa Mehkary
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Mahreen Khan
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Katsuyuki Yokoi
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
| | - Christine Jung
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | - Pieter J de Jong
- BACPAC Resource Center, Children’s Hospital Oakland Research Institute, 25129 NE 42nd Pl, Redmond, WA 98053, USA
| | | | - Philip McGoldrick
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| | - Agessandro Abrahão
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Julia Keith
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, North York, Toronto, ON, M4N 3M5, Canada
| | - Janice Robertson
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research of Neurodegenerative Diseases, University of Toronto, 60 Leonard Avenue, Toronto, M5T 2S8, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute-Hospital, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Neurology and Neurosurgery, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
- Department of Human Genetics, McGill University, 3801 University Avenue, Montreal, Quebec, H3A 2B4, Canada
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Belgium
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, 686 Bay Street, Toronto, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON, M3S 1A8, Canada
| |
Collapse
|
10
|
Winroth I, Börjesson A, Andersen PM, Karlsson T. Cognitive deficits in ALS patients with SOD1 mutations. J Clin Exp Neuropsychol 2024; 46:669-682. [PMID: 39258714 DOI: 10.1080/13803395.2024.2393366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE Cognitive decline is common in patients with amyotrophic lateral sclerosis (ALS), especially in carriers of the mutation C9ORF72HRE. However, cognitive impairment is poorly understood in carriers of mutations in other genes causing ALS. We performed a comprehensive neuropsychological testing in patients with mutations in the SOD1 (mSOD1) gene. METHODS We examined 5 cognitive domains in 48 symptomatic patients with either hereditary or sporadic ALS. These were compared with 37 matched controls. RESULTS Carriers of SOD1-mutations and sporadic ALS had circumscribed deficits, but in a pattern different from C9ORF72HRE. All groups had deficits in working memory, although mSOD1-carriers significantly outperform sporadic ALS and C9ORF72HRE in an attention-driven visuospatial task involving copying a complex figure. Carriers of the D90A-SOD1 mutation overall performed as well as or better than carriers of other SOD1-mutations, except complex working memory. Bayesian analyses suggest (with evidence of moderate strength) that tasks involving the language domain did not differ between controls, mSOD1 and sporadic ALS. CONCLUSION Distinct cognitive impairments are prevalent in different ALS-syndromes and vary in patients with different pathogenic SOD1 mutations. The type and degree of impairment differed depending on genotype and was significantly least pronounced in patients homozygous for the D90A SOD1 mutation. The presence of cognitive deficits may influence optimal clinical management and intervention. We propose that cognitive assessment should be included in the routine examination of new patients suspected of ALS. Neuropsychological assessment is an under-recognized outcome parameter in clinical drug trials.
Collapse
Affiliation(s)
- Ivar Winroth
- Department of Clinical Sciences, Neuroscience, Umeå University, Umea, Sweden
| | | | - Peter M Andersen
- Department of Clinical Sciences, Neuroscience, Umeå University, Umea, Sweden
| | - Thomas Karlsson
- Department of Clinical Sciences, Neuroscience, Umeå University and Department of Behavioral Sciences and Learning, Linköping University, Umeå and Linköping, Sweden
| |
Collapse
|
11
|
Kojak N, Kuno J, Fittipaldi KE, Khan A, Wenger D, Glasser M, Donnianni RA, Tang Y, Zhang J, Huling K, Ally R, Mujica AO, Turner T, Magardino G, Huang PY, Kerk SY, Droguett G, Prissette M, Rojas J, Gomez T, Gagliardi A, Hunt C, Rabinowitz JS, Gong G, Poueymirou W, Chiao E, Zambrowicz B, Siao CJ, Kajimura D. Somatic and intergenerational G4C2 hexanucleotide repeat instability in a human C9orf72 knock-in mouse model. Nucleic Acids Res 2024; 52:5732-5755. [PMID: 38597682 PMCID: PMC11162798 DOI: 10.1093/nar/gkae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Expansion of a G4C2 repeat in the C9orf72 gene is associated with familial Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). To investigate the underlying mechanisms of repeat instability, which occurs both somatically and intergenerationally, we created a novel mouse model of familial ALS/FTD that harbors 96 copies of G4C2 repeats at a humanized C9orf72 locus. In mouse embryonic stem cells, we observed two modes of repeat expansion. First, we noted minor increases in repeat length per expansion event, which was dependent on a mismatch repair pathway protein Msh2. Second, we found major increases in repeat length per event when a DNA double- or single-strand break (DSB/SSB) was artificially introduced proximal to the repeats, and which was dependent on the homology-directed repair (HDR) pathway. In mice, the first mode primarily drove somatic repeat expansion. Major changes in repeat length, including expansion, were observed when SSB was introduced in one-cell embryos, or intergenerationally without DSB/SSB introduction if G4C2 repeats exceeded 400 copies, although spontaneous HDR-mediated expansion has yet to be identified. These findings provide a novel strategy to model repeat expansion in a non-human genome and offer insights into the mechanism behind C9orf72 G4C2 repeat instability.
Collapse
Affiliation(s)
- Nada Kojak
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Junko Kuno
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - David Wenger
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Yajun Tang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Jade Zhang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Katie Huling
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Roxanne Ally
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | - Pei Yi Huang
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Sze Yen Kerk
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | - Jose Rojas
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | | | | - Guochun Gong
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Eric Chiao
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | | | | |
Collapse
|
12
|
Buccellato FR, D'Anca M, Tartaglia GM, Del Fabbro M, Galimberti D. Frontotemporal dementia: from genetics to therapeutic approaches. Expert Opin Investig Drugs 2024; 33:561-573. [PMID: 38687620 DOI: 10.1080/13543784.2024.2349286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) includes a group of neurodegenerative diseases characterized clinically by behavioral disturbances and by neurodegeneration of brain anterior temporal and frontal lobes, leading to atrophy. Apart from symptomatic treatments, there is, at present, no disease-modifying cure for FTD. AREAS COVERED Three main mutations are known as causes of familial FTD, and large consortia have studied carriers of mutations, also in preclinical Phases. As genetic cases are the only ones in which the pathology can be predicted in life, compounds developed so far are directed toward specific proteins or mutations. Herein, recently approved clinical trials will be summarized, including molecules, mechanisms of action and pharmacological testing. EXPERT OPINION These studies are paving the way for the future. They will clarify whether single mutations should be addressed rather than common proteins depositing in the brain to move from genetic to sporadic FTD.
Collapse
Affiliation(s)
- Francesca R Buccellato
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Marianna D'Anca
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
13
|
Evans LJ, O'Brien D, Shaw PJ. Current neuroprotective therapies and future prospects for motor neuron disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:327-384. [PMID: 38802178 DOI: 10.1016/bs.irn.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Four medications with neuroprotective disease-modifying effects are now in use for motor neuron disease (MND). With FDA approvals for tofersen, relyvrio and edaravone in just the past year, 2022 ended a quarter of a century when riluzole was the sole such drug to offer to patients. The acceleration of approvals may mean we are witnessing the beginning of a step-change in how MND can be treated. Improvements in understanding underlying disease biology has led to more therapies being developed to target specific and multiple disease mechanisms. Consideration for how the pipeline of new therapeutic agents coming through in clinical and preclinical development can be more effectively evaluated with biomarkers, advances in patient stratification and clinical trial design pave the way for more successful translation for this archetypal complex neurodegenerative disease. While it must be cautioned that only slowed rates of progression have so far been demonstrated, pre-empting rapid neurodegeneration by using neurofilament biomarkers to signal when to treat, as is currently being trialled with tofersen, may be more effective for patients with known genetic predisposition to MND. Early intervention with personalized medicines could mean that for some patients at least, in future we may be able to substantially treat what is considered by many to be one of the most distressing diseases in medicine.
Collapse
Affiliation(s)
- Laura J Evans
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - David O'Brien
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- The Sheffield Institute for Translational Neuroscience, and the NIHR Sheffield Biomedical Research Centre, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
14
|
Sellier C, Corcia P, Vourc'h P, Dupuis L. C9ORF72 hexanucleotide repeat expansion: From ALS and FTD to a broader pathogenic role? Rev Neurol (Paris) 2024; 180:417-428. [PMID: 38609750 DOI: 10.1016/j.neurol.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024]
Abstract
The major gene underlying monogenic forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) is C9ORF72. The causative mutation in C9ORF72 is an abnormal hexanucleotide (G4C2) repeat expansion (HRE) located in the first intron of the gene. The aim of this review is to propose a comprehensive update on recent developments on clinical, biological and therapeutics aspects related to C9ORF72 in order to highlight the current understanding of genotype-phenotype correlations, and also on biological machinery leading to neuronal death. We will particularly focus on the broad phenotypic presentation of C9ORF72-related diseases, that goes well beyond the classical phenotypes observed in ALS and FTD patients. Last, we will comment the possible therapeutical hopes for patients carrying a C9ORF72 HRE.
Collapse
Affiliation(s)
- C Sellier
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France
| | - P Corcia
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Centre constitutif de coordination SLA, CHU de Bretonneau, 2, boulevard Tonnelle, 37044 Tours cedex 1, France
| | - P Vourc'h
- UMR 1253 iBrain, Inserm, université de Tours, Tours, France; Service de biochimie et biologie moléculaire, CHU de Tours, Tours, France
| | - L Dupuis
- Centre de recherches en biomédecine de Strasbourg, UMR-S1329, Inserm, université de Strasbourg, Strasbourg, France.
| |
Collapse
|
15
|
Kekenadze M, Rocca C, Turchetti V, Nagy S, Kvirkvelia N, Vashadze S, Kvaratskhelia E, Beridze M, Kaiyrzhanov R, Houlden H. Analysis of C9orf72 repeat expansions in Georgian patients with Amyotrophic lateral sclerosis (ALS). F1000Res 2024; 12:1113. [PMID: 38464738 PMCID: PMC10924727 DOI: 10.12688/f1000research.138436.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder that affects the upper and lower motor neurons. Several genetic risk factors have been identified in the past decade with a hexanucleotide repeat expansion in the C9orf72 gene being the most significant. However, the presence of C9orf72 repeat expansion has not been examined in the Transcaucasian region, therefore we aimed to analyse its frequency in Georgian patients with ALS. Methods We included 64 self-reported Georgian patients with ALS from different parts of the country, fulfilling the Gold Coast criteria. To investigate the presence of an expanded GGGGCC hexanucleotide repeat in the non-coding region of the C9orf72 gene, we performed Repeat-Primed PCR (RP-PCR). Results In total, 62 sporadic and two familial ALS cases were identified. Patients were aged 26 to 84 years with a mean age of 58.3 years at disease onset. Bulbar onset was observed in 21.88%, upper limb onset in 34.38%, and lower limb onset in 43.75% of the patients. Frontotemporal dementia (FTD) fulfilling the Strong criteria was diagnosed in seven patients (10.94%). C9orf72 repeat expansion was detected in only one case using RP-PCR; the patient had a family history of dementia. Conclusions Our results indicate that C9orf72 hexanucleotide expansion does not belong to the major genetic risk factor of ALS in Georgian patients. Further genetic studies in a bigger study population are needed to reveal the genetic causes of ALS in the Transcaucasian population.
Collapse
Affiliation(s)
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, England, UK
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, England, UK
| | - Sara Nagy
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Basel-Stadt, Switzerland
| | | | | | | | - Maia Beridze
- Tbilisi State Medical University, Tbilisi, 0141, Georgia
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, England, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, University College London, London, England, UK
| |
Collapse
|
16
|
Brodtmann A, Hinton F, McLean C, Darby D. Phenocopy or variant? A longitudinal study of very slowly progressive frontotemporal dementia confirmed on genetic testing. BMJ Case Rep 2024; 17:e254962. [PMID: 38350701 PMCID: PMC10868319 DOI: 10.1136/bcr-2023-254962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Affiliation(s)
- Amy Brodtmann
- Cognitive Health Initiative, Monash University Central Clinical School, Melbourne, Victoria, Australia
- Neurosciences, Eastern Cognitive Disorders Clinic, Box Hill Hospital, Melbourne, Victoria, Australia
| | - Fairlie Hinton
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Catriona McLean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Anatomical Pathology, Alfred Health, Melbourne, Victoria, Australia
| | - David Darby
- Neurosciences, Eastern Cognitive Disorders Clinic, Box Hill Hospital, Melbourne, Victoria, Australia
- Neurosciences, Monash University Central Clinical School, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Jia H, Li Z, Liu H, Ren M, Liu T, Zhou X, Li X, Li R, Liu Q, Liu Y, Dong H. The Beaumont behavioral intervention in a Chinese amyotrophic lateral sclerosis cohort. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:88-95. [PMID: 37855109 DOI: 10.1080/21678421.2023.2271518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE The prevalence of behavior impairment (27.38%) in the Chinese amyotrophic lateral sclerosis (ALS) cohort is lower. We hypothesize that the screening scales used among studies might not be appropriate to diagnose behavioral disorders in ALS patients. So, we urgently need to find a behavior scale with a high detection rate designed specifically for ALS. This study aims to verify the Chinese translation of the Beaumont Behavioral Inventory (BBI) as an effective assessment in a Chinese ALS cohort. METHODS Ninety-eighty ALS patients and ninety-three healthy controls were included in this cross-sectional study. All participants took emotional state, overall cognitive, sleep quality and gastroenteric function, and behavioral evaluation. RESULTS The BBI scores showed a strong association with the amyotrophic lateral sclerosis-Frontotemporal Dementia-Questionnaire (ALS-FTD-Q) (rs = 0.71, p < 0.001) as well as a moderate correlation with the Frontal Behavioral Inventory (FBI) (rs = 0.55, p < 0.001). High internal consistency was demonstrated in patients using BBI-after items (Cronbach's a = 0.89). When tested against clinical diagnoses, the optimal cutoff of total BBI score was identified at 5.5 (AUC = 0.95; SE = 0.02; 95% CI [0.91, 0.99]), the BBI reached optimal sensitivity and specificity values (91.5% and 87.2%). The BBI turned out to be more precise than the FBI (AUC = 0.76; SE = 0.05; 95% CI [0.66, 0.86]) and the ALS-FTD-Q (AUC = 0.84; SE = 0.04; 95% CI [0.77, 0.92]). CONCLUSION The Chinese version of BBI is a quicker and more efficient instrument for assessing behavioral impairment in the ALS population in China.
Collapse
Affiliation(s)
- Hongning Jia
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China, and
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Zhiguang Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huakang Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Mengsi Ren
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tingting Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaomeng Zhou
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China, and
| | - Xin Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China, and
| | - Rui Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China, and
| | - Qi Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China, and
| | - Yaling Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China, and
| | - Hui Dong
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Clinical Neurology, Ministry of Education, Shijiazhuang, Hebei, China
- Key Laboratory of Neurology of Hebei Province, Shijiazhuang, Hebei, China, and
| |
Collapse
|
18
|
Paris A, Lakatos A. Cell and gene therapy for amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:217-241. [PMID: 39341656 DOI: 10.1016/b978-0-323-90120-8.00017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disorder with rapidly progressive skeletal muscle weakness, which can also cause a variable cognitive deficit. Genetic causes are only identified in approximately 10% of all cases, with complex genotype-phenotype associations, making it challenging to identify treatment targets. What further hampers therapeutic development is a broad heterogeneity in mechanisms, possible targets, and disturbances across various cell types, aside from the cortical and spinal motor neurons that lie at the heart of the pathology of ALS. Over the last decade, significant progress in biotechnologic techniques, cell and ribonucleic acid (RNA) engineering, animal models, and patient-specific human stem cell and organoid models have accelerated both mechanistic and therapeutic discoveries. The growing number of clinical trials mirrors this. This chapter reviews the current state of human preclinical models supporting trial strategies as well as recent clinical cell and gene therapy approaches.
Collapse
Affiliation(s)
- Alvar Paris
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Cambridge University Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - András Lakatos
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Cambridge University Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
19
|
Corcia P, Vourc'h P, Bernard E, Cassereau J, Codron P, Fleury MC, Guy N, Mouzat K, Pradat PF, Soriani MH, Couratier P. French National Protocol for genetic of amyotrophic lateral sclerosis. Rev Neurol (Paris) 2023; 179:1020-1029. [PMID: 37735015 DOI: 10.1016/j.neurol.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 09/23/2023]
Abstract
Relationships between genes and amyotrophic lateral sclerosis (ALS) have been widely accepted since the first studies highlighting pathogenic mutations in the SOD1 gene 30years ago. Over the last three decades, scientific literature has clearly highlighted the central role played by genetic factors in the disease, in both clinics and pathophysiology, as well as in therapeutics. This implies that health professionals who care for patients with ALS are increasingly faced with patients and relatives eager to have answers to questions related to the role of genetic factors in the occurrence of the disease and the risk for their relatives to develop ALS. In order to address these public health issues, the French ALS network FILSLAN proposed to the Haute Autorité de santé (HAS) the drafting of a French National Protocol (PNDS) on ALS genetics. This PNDS was developed according to the "method for developing a national diagnosis and care protocol for rare diseases" published by the HAS in 2012 (methodological guide for PNDS available on the HAS website: http://www.has-sante.fr/). This document aims to provide the most recent data on the role of genes in ALS and to detail the implications for diagnosis and care.
Collapse
Affiliation(s)
- P Corcia
- CRMR SLA, CHRU Bretonneau, Tours, France; UMR 1253 iBrain, Tours, France.
| | - P Vourc'h
- UMR 1253 iBrain, Tours, France; Laboratoire de biochimie et biologie moléculaire, CHRU Bretonneau, Tours, France
| | | | | | - P Codron
- CRMR SLA, CHU d'Angers, Angers, France
| | - M-C Fleury
- CRC SLA, CHU de Strasbourg, Strasbourg, France
| | - N Guy
- CRC SLA, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - K Mouzat
- Laboratoire de biochimie et biologie moléculaire, CHU de Nîmes, Nîmes, France
| | - P-F Pradat
- CRMR SLA, CHU Pitié-Salpêtrière, Paris, France
| | | | | |
Collapse
|
20
|
Roggenbuck J, Eubank BHF, Wright J, Harms MB, Kolb SJ. Evidence-based consensus guidelines for ALS genetic testing and counseling. Ann Clin Transl Neurol 2023; 10:2074-2091. [PMID: 37691292 PMCID: PMC10646996 DOI: 10.1002/acn3.51895] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Advances in amyotrophic lateral sclerosis (ALS) gene discovery, ongoing gene therapy trials, and patient demand have driven increased use of ALS genetic testing. Despite this progress, the offer of genetic testing to persons with ALS is not yet "standard of care." Our primary goal is to develop clinical ALS genetic counseling and testing guidelines to improve and standardize genetic counseling and testing practice among neurologists, genetic counselors or any provider caring for persons with ALS. METHODS Core clinical questions were identified and a rapid review performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA-P) 2015 method. Guideline recommendations were drafted and the strength of evidence for each recommendation was assessed by combining two systems: the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) System and the Evaluation of Genomic Applications in Practice and Prevention (EGAPP). A modified Delphi approach was used to reach consensus among a group of content experts for each guideline statement. RESULTS A total of 35 guideline statements were developed. In summary, all persons with ALS should be offered single-step genetic testing, consisting of a C9orf72 assay, along with sequencing of SOD1, FUS, and TARDBP, at a minimum. The key education and genetic risk assessments that should be provided before and after testing are delineated. Specific guidance regarding testing methods and reporting for C9orf72 and other genes is provided for commercial laboratories. INTERPRETATION These evidence-based, consensus guidelines will support all stakeholders in the ALS community in navigating benefits and challenges of genetic testing.
Collapse
Affiliation(s)
- Jennifer Roggenbuck
- Division of Human Genetics, Department of Internal MedicineThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Breda H. F. Eubank
- Health & Physical Education Department, Faculty of Health, Community, & EducationMount Royal University4825 Mount Royal Gate SWCalgaryAlbertaCanada
| | - Joshua Wright
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Matthew B. Harms
- Department of NeurologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Stephen J. Kolb
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Biological Chemistry & PharmacologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
21
|
Kortazar-Zubizarreta I, Manero-Azua A, Afonso-Agüera J, Perez de Nanclares G. C9ORF72 Gene GGGGCC Hexanucleotide Expansion: A High Clinical Variability from Amyotrophic Lateral Sclerosis to Frontotemporal Dementia. J Pers Med 2023; 13:1396. [PMID: 37763163 PMCID: PMC10532825 DOI: 10.3390/jpm13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The expanded GGGGCC hexanucleotide repeat (HRE) in the non-coding region of the C9ORF72 gene (C9ORF72-HRE) is the most common genetic cause of familial forms of amyotrophic lateral sclerosis (ALS), FTD, and concurrent ALS and FTD (ALS-FTD), in addition to contributing to the sporadic forms of these diseases. Both syndromes overlap not only genetically, but also sharing similar clinical and neuropathological findings, being considered as a spectrum. In this paper we describe the clinical-genetic findings in a Basque family with different manifestations within the spectrum, our difficulties in reaching the diagnosis, and a narrative review, carried out as a consequence, of the main features associated with C9ORF72-HRE. Family members underwent a detailed clinical assessment, neurological examination, and genetic analysis by repeat-primed PCR. We studied 10 relatives of a symptomatic carrier of the C9ORF72-HRE expansion. Two of them presented the expansion in the pathological range, one of them was symptomatic whereas the other one remained asymptomatic at 72 years. Given the great intrafamilial clinical variability of C9ORF72-HRE, the characterization of patients and family members with particular clinical and genetic subgroups within ALS and FTD becomes a bottleneck for medication development, in particular for genetically focused medicines for ALS and FTD.
Collapse
Affiliation(s)
- Izaro Kortazar-Zubizarreta
- Department of Neurology, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, 01009 Vitoria-Gasteiz, Spain
| | - Africa Manero-Azua
- Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain; (A.M.-A.); (G.P.d.N.)
| | - Juan Afonso-Agüera
- Department of Neurology, Central University Hospital of Asturias, 33006 Oviedo, Spain;
| | - Guiomar Perez de Nanclares
- Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain; (A.M.-A.); (G.P.d.N.)
| |
Collapse
|
22
|
Akçimen F, Lopez ER, Landers JE, Nath A, Chiò A, Chia R, Traynor BJ. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet 2023; 24:642-658. [PMID: 37024676 PMCID: PMC10611979 DOI: 10.1038/s41576-023-00592-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Recent advances in sequencing technologies and collaborative efforts have led to substantial progress in identifying the genetic causes of amyotrophic lateral sclerosis (ALS). This momentum has, in turn, fostered the development of putative molecular therapies. In this Review, we outline the current genetic knowledge, emphasizing recent discoveries and emerging concepts such as the implication of distinct types of mutation, variability in mutated genes in diverse genetic ancestries and gene-environment interactions. We also propose a high-level model to synthesize the interdependent effects of genetics, environmental and lifestyle factors, and ageing into a unified theory of ALS. Furthermore, we summarize the current status of therapies developed on the basis of genetic knowledge established for ALS over the past 30 years, and we discuss how developing treatments for ALS will advance our understanding of targeting other neurological diseases.
Collapse
Affiliation(s)
- Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Elia R Lopez
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy
- Azienda Ospedaliero Universitaria Citta' della Salute e della Scienza, Turin, Italy
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
23
|
Dunn E, Steinert JR, Stone A, Sahota V, Williams RSB, Snowden S, Augustin H. Medium-Chain Fatty Acids Rescue Motor Function and Neuromuscular Junction Degeneration in a Drosophila Model of Amyotrophic Lateral Sclerosis. Cells 2023; 12:2163. [PMID: 37681895 PMCID: PMC10486503 DOI: 10.3390/cells12172163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterised by progressive degeneration of the motor neurones. An expanded GGGGCC (G4C2) hexanucleotide repeat in C9orf72 is the most common genetic cause of ALS and frontotemporal dementia (FTD); therefore, the resulting disease is known as C9ALS/FTD. Here, we employ a Drosophila melanogaster model of C9ALS/FTD (C9 model) to investigate a role for specific medium-chain fatty acids (MCFAs) in reversing pathogenic outcomes. Drosophila larvae overexpressing the ALS-associated dipeptide repeats (DPRs) in the nervous system exhibit reduced motor function and neuromuscular junction (NMJ) defects. We show that two MCFAs, nonanoic acid (NA) and 4-methyloctanoic acid (4-MOA), can ameliorate impaired motor function in C9 larvae and improve NMJ degeneration, although their mechanisms of action are not identical. NA modified postsynaptic glutamate receptor density, whereas 4-MOA restored defects in the presynaptic vesicular release. We also demonstrate the effects of NA and 4-MOA on metabolism in C9 larvae and implicate various metabolic pathways as dysregulated in our ALS model. Our findings pave the way to identifying novel therapeutic targets and potential treatments for ALS.
Collapse
Affiliation(s)
- Ella Dunn
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Joern R. Steinert
- Faculty of Medicine & Health Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (J.R.S.); (A.S.)
| | - Aelfwin Stone
- Faculty of Medicine & Health Sciences, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (J.R.S.); (A.S.)
| | - Virender Sahota
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Robin S. B. Williams
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Stuart Snowden
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| | - Hrvoje Augustin
- Centre for Biomedical Sciences, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 OEX, UK; (E.D.); (R.S.B.W.)
| |
Collapse
|
24
|
Abstract
DNA sequencing has revolutionized medicine over recent decades. However, analysis of large structural variation and repetitive DNA, a hallmark of human genomes, has been limited by short-read technology, with read lengths of 100-300 bp. Long-read sequencing (LRS) permits routine sequencing of human DNA fragments tens to hundreds of kilobase pairs in size, using both real-time sequencing by synthesis and nanopore-based direct electronic sequencing. LRS permits analysis of large structural variation and haplotypic phasing in human genomes and has enabled the discovery and characterization of rare pathogenic structural variants and repeat expansions. It has also recently enabled the assembly of a complete, gapless human genome that includes previously intractable regions, such as highly repetitive centromeres and homologous acrocentric short arms. With the addition of protocols for targeted enrichment, direct epigenetic DNA modification detection, and long-range chromatin profiling, LRS promises to launch a new era of understanding of genetic diversity and pathogenic mutations in human populations.
Collapse
Affiliation(s)
- Peter E Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Liu X, Zhao X, He J, Wang S, Shen X, Liu Q, Wang S. Advances in the Structure of GGGGCC Repeat RNA Sequence and Its Interaction with Small Molecules and Protein Partners. Molecules 2023; 28:5801. [PMID: 37570771 PMCID: PMC10420822 DOI: 10.3390/molecules28155801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The aberrant expansion of GGGGCC hexanucleotide repeats within the first intron of the C9orf72 gene represent the predominant genetic etiology underlying amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). The transcribed r(GGGGCC)n RNA repeats form RNA foci, which recruit RNA binding proteins and impede their normal cellular functions, ultimately resulting in fatal neurodegenerative disorders. Furthermore, the non-canonical translation of the r(GGGGCC)n sequence can generate dipeptide repeats, which have been postulated as pathological causes. Comprehensive structural analyses of r(GGGGCC)n have unveiled its polymorphic nature, exhibiting the propensity to adopt dimeric, hairpin, or G-quadruplex conformations, all of which possess the capacity to interact with RNA binding proteins. Small molecules capable of binding to r(GGGGCC)n have been discovered and proposed as potential lead compounds for the treatment of ALS and FTD. Some of these molecules function in preventing RNA-protein interactions or impeding the phase transition of r(GGGGCC)n. In this review, we present a comprehensive summary of the recent advancements in the structural characterization of r(GGGGCC)n, its propensity to form RNA foci, and its interactions with small molecules and proteins. Specifically, we emphasize the structural diversity of r(GGGGCC)n and its influence on partner binding. Given the crucial role of r(GGGGCC)n in the pathogenesis of ALS and FTD, the primary objective of this review is to facilitate the development of therapeutic interventions targeting r(GGGGCC)n RNA.
Collapse
Affiliation(s)
- Xiaole Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Xinyue Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Jinhan He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Sishi Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Xinfei Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Qingfeng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
- Beijing NMR Center, Peking University, Beijing 100087, China
| |
Collapse
|
26
|
König T, Leutmezer F, Berger T, Zimprich A, Schmied C, Stögmann E, Zrzavy T. No Association of Multiple Sclerosis with C9orf72 Hexanucleotide Repeat Size in an Austrian Cohort. Int J Mol Sci 2023; 24:11254. [PMID: 37511014 PMCID: PMC10378763 DOI: 10.3390/ijms241411254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple Sclerosis (MS) is a common immune-mediated disorder of the central nervous system that affects young adults and is characterized by demyelination and neurodegeneration. Recent studies have associated C9orf72 intermediate repeat expansions with MS. The objective of this study was to investigate whether C9orf72 repeat length is associated with MS or with a specific disease course in a monocentric Austrian MS cohort. Genotyping of 382 MS patients and 643 non-neurological controls for C9orf72 repeat expansions was performed. The study did not find a difference in the distribution of repeat numbers between controls and MS cases (median repeat units = 2; p = 0.39). Additionally, sub-analysis did not establish a link between intermediate repeats and MS (p = 0.23) and none of the patients with progressive disease course carried an intermediate allele (20-30 repeat units). Exploratory analysis for different cut-offs (of ≥7, ≥17, and ≥24) did not reveal any significant differences in allele frequencies between MS and controls. However, the study did identify a progressive MS patient with a pathogenic C9orf72 expansion and probable co-existing behavioral variant frontotemporal dementia (bvFTD) in a retrospective chart review. In conclusion, this study did not find evidence supporting an association between C9orf72 repeat length and MS or a specific disease course in the Austrian MS cohort. However, the identification of a progressive MS patient with a pathogenic C9orf72 expansion and probable co-existing with FTD highlights the complexity and challenges involved in recognizing distinct neurodegenerative diseases that may co-occur in MS patients.
Collapse
Affiliation(s)
- Theresa König
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexander Zimprich
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Christiane Schmied
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Elisabeth Stögmann
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Tobias Zrzavy
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
27
|
Miyagi T, Ueda K, Sugimoto M, Yagi T, Ito D, Yamazaki R, Narumi S, Hayamizu Y, Uji-i H, Kuroda M, Kanekura K. Differential toxicity and localization of arginine-rich C9ORF72 dipeptide repeat proteins depend on de-clustering of positive charges. iScience 2023; 26:106957. [PMID: 37332605 PMCID: PMC10275993 DOI: 10.1016/j.isci.2023.106957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Arginine-rich dipeptide repeat proteins (R-DPRs), poly(PR) and poly(GR), translated from the hexanucleotide repeat expansion in the amyotrophic lateral sclerosis (ALS)-causative C9ORF72 gene, contribute significantly to pathogenesis of ALS. Although both R-DPRs share many similarities, there are critical differences in their subcellular localization, phase separation, and toxicity mechanisms. We analyzed localization, protein-protein interactions, and phase separation of R-DPR variants and found that sufficient segregation of arginine charges is necessary for nucleolar distribution. Proline not only efficiently separated the charges, but also allowed for weak, but highly multivalent binding. In contrast, because of its high flexibility, glycine cannot fully separate the charges, and poly(GR) behaves similarly to the contiguous arginines, being trapped in the cytoplasm. We conclude that the amino acid that spaces the arginine charges determines the strength and multivalency of the binding, leading to differences in localization and toxicity mechanisms.
Collapse
Affiliation(s)
- Tamami Miyagi
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Masahiro Sugimoto
- Research and Development Center for Minimally Invasive Therapies, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Institute for Advanced Biosciences, KEIO University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan
| | - Takuya Yagi
- Department of Neurology, KEIO University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Daisuke Ito
- Department of Physiology, KEIO University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Rio Yamazaki
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroshi Uji-i
- Department of Nanomaterials and Nanoscopy, Research Institute for Electronic Science, Hokkaido University, Kita 10 Nishi 20, North Ward, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, KU Leuven Celestijnenlaan 200F, Heverlee, 3001 Leuven, Belgium
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | - Kohsuke Kanekura
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
- Department of Pharmacology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
28
|
Nigri A, Umberto M, Stanziano M, Ferraro S, Fedeli D, Medina Carrion JP, Palermo S, Lequio L, Denegri F, Agosta F, Filippi M, Valentini MC, Canosa A, Calvo A, Chiò A, Bruzzone MG, Moglia C. C9orf72 ALS mutation carriers show extensive cortical and subcortical damage compared to matched wild-type ALS patients. Neuroimage Clin 2023; 38:103400. [PMID: 37068310 PMCID: PMC10130353 DOI: 10.1016/j.nicl.2023.103400] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVE C9orf72 mutation carriers with different neurological phenotypes show cortical and subcortical atrophy in multiple different brain regions, even in pre-symptomatic phases. Despite there is a substantial amount of knowledge, small sample sizes, clinical heterogeneity, as well as different choices of image analysis may hide anatomical abnormalities that are unique to amyotrophic lateral sclerosis (ALS) patients with this genotype or that are indicative of the C9orf72-specific trait overlain in fronto-temporal dementia patients. METHODS Brain structural and resting state functional magnetic imaging was obtained in 24 C9orf72 positive (ALSC9+) ALS patients paired for burden disease with 24 C9orf72 negative (ALSC9-) ALS patients. A comprehensive structural evaluation of cortical thickness and subcortical volumes between ALSC9+ and ALSC9- patients was performed while a region of interest (ROI)-ROI analysis of functional connectivity was implemented to assess functional alterations among abnormal cortical and subcortical regions. Results were corrected for multiple comparisons. RESULTS Compared to ALSC9- patients, ALSC9+ patients exhibited extensive disease-specific patterns of thalamo-cortico-striatal atrophy, supported by functional alterations of the identified abnormal regions. Cortical thinning was most pronounced in posterior areas and extended to frontal regions. Bilateral atrophy of the mediodorsal and pulvinar nuclei was observed, emphasizing a focal rather than global thalamus atrophy. Volume loss in a large portion of bilateral caudate and left putamen was reported. The marked reduction of functional connectivity observed between the left posterior thalamus and almost all the atrophic cortical regions support the central role of the thalamus in the pathogenic mechanism of C9orf72-mediated disease. CONCLUSIONS These findings constitute a coherent and robust picture of ALS patients with C9orf72-mediated disease, unveiling a specific structural and functional characterization of thalamo-cortico-striatal circuit alteration. Our study introduces new evidence in the characterization of the pathogenic mechanisms of C9orf72 mutation.
Collapse
Affiliation(s)
- Anna Nigri
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Manera Umberto
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Mario Stanziano
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy; ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy.
| | - Stefania Ferraro
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy; School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Davide Fedeli
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | | | - Sara Palermo
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Laura Lequio
- Neuroradiology Unit, CTO Hospital, AOU Città della Salute e della Scienza di Torino, Italy
| | - Federica Denegri
- Neuroradiology Unit, CTO Hospital, AOU Città della Salute e della Scienza di Torino, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, Italy; Neurology Unit, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Italy; Neurology Unit, Italy; Neurorehabilitation Unit, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | - Antonio Canosa
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Institute of Cognitive Sciences and Technologies, National Council of Research, Rome, Italy
| | - Andrea Calvo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| | - Adriano Chiò
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Institute of Cognitive Sciences and Technologies, National Council of Research, Rome, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Cristina Moglia
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy
| |
Collapse
|
29
|
Van't Spijker HM, Almeida S. How villains are made: The translation of dipeptide repeat proteins in C9ORF72-ALS/FTD. Gene 2023; 858:147167. [PMID: 36621656 PMCID: PMC9928902 DOI: 10.1016/j.gene.2023.147167] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
A hexanucleotide repeat expansion in the C9ORF72 gene is the most common genetic alteration associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). These neurodegenerative diseases share genetic, clinical and pathological features. The mutation in C9ORF72 appears to drive pathogenesis through a combination of loss of C9ORF72 normal function and gain of toxic effects due to the repeat expansion, which result in aggregation prone expanded RNAs and dipeptide repeat (DPR) proteins. Studies in cellular and animal models indicate that the DPR proteins are the more toxic species. Thus, a large body of research has focused on identifying the cellular pathways most directly impacted by these toxic proteins, with the goal of characterizing disease pathogenesis and nominating potential targets for therapeutic development. The preventative block of the production of the toxic proteins before they can cause harm is a second strategy of intense focus. Despite the considerable amount of effort dedicated to this prophylactic approach, it is still unclear how the DPR proteins are synthesized from RNAs harboring repeat expansions. In this review, we summarize our current knowledge of the specific protein translation mechanisms shown to account for the synthesis of DPR proteins. We will then discuss how enhanced understanding of the composition of these toxic effectors could help in refining disease mechanisms, and paving the way to identify and design effective prophylactic therapies for C9ORF72 ALS-FTD.
Collapse
Affiliation(s)
- Heleen M Van't Spijker
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sandra Almeida
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
30
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
31
|
König T, Wurm R, Parvizi T, Silvaieh S, Hotzy C, Cetin H, Klotz S, Gelpi E, Bancher C, Benke T, Dal-Bianco P, Defrancesco M, Fischer P, Marksteiner J, Sutterlüty H, Ransmayr G, Schmidt R, Zimprich A, Stögmann E. C9orf72 repeat length might influence clinical sub-phenotypes in dementia patients. Neurobiol Dis 2022; 175:105927. [DOI: 10.1016/j.nbd.2022.105927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/15/2022] Open
|
32
|
Liao P, Yuan Y, Liu Z, Hou X, Li W, Wen J, Zhang K, Jiao B, Shen L, Jiang H, Guo J, Tang B, Zhang Z, Hu Z, Wang J. Association of variants in the KIF1A gene with amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:46. [PMID: 36284339 PMCID: PMC9597953 DOI: 10.1186/s40035-022-00320-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord. As in many other neurodegenerative disorders, the genetic risk factors and pathogenesis of ALS involve dysregulation of cytoskeleton and neuronal transport. Notably, sensory and motor neuron diseases such as hereditary sensory and autonomic neuropathy type 2 (HSAN2) and spastic paraplegia 30 (SPG30) share several causative genes with ALS, as well as having common clinical phenotypes. KIF1A encodes a kinesin 3 motor that transports presynaptic vesicle precursors (SVPs) and dense core vesicles and has been reported as a causative gene for HSAN2 and SPG30. METHODS Here, we analyzed whole-exome sequencing data from 941 patients with ALS to investigate the genetic association of KIF1A with ALS. RESULTS We identified rare damage variants (RDVs) in the KIF1A gene associated with ALS and delineated the clinical characteristics of ALS patients with KIF1A RDVs. Clinically, these patients tended to exhibit sensory disturbance. Interestingly, the majority of these variants are located at the C-terminal cargo-binding region of the KIF1A protein. Functional examination revealed that the ALS-associated KIF1A variants located in the C-terminal region preferentially enhanced the binding of SVPs containing RAB3A, VAMP2, and synaptophysin. Expression of several disease-related KIF1A mutants in cultured mouse cortical neurons led to enhanced colocalization of RAB3A or VAMP2 with the KIF1A motor. CONCLUSIONS Our study highlighted the importance of KIF1A motor-mediated transport in the pathogenesis of ALS, indicating KIF1A as an important player in the oligogenic scenario of ALS.
Collapse
Affiliation(s)
- Panlin Liao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaorong Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jin Wen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kexuan Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Zhuohua Zhang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Zhonghua Hu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Hunan Provincial Clinical Research Center for Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410008, China.
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, 410008, China.
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China.
- Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, 410008, China.
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, 410008, China.
| |
Collapse
|
33
|
Braems E, Bercier V, Van Schoor E, Heeren K, Beckers J, Fumagalli L, Dedeene L, Moisse M, Geudens I, Hersmus N, Mehta AR, Selvaraj BT, Chandran S, Ho R, Thal DR, Van Damme P, Swinnen B, Van Den Bosch L. HNRNPK alleviates RNA toxicity by counteracting DNA damage in C9orf72 ALS. Acta Neuropathol 2022; 144:465-488. [PMID: 35895140 PMCID: PMC9381635 DOI: 10.1007/s00401-022-02471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
A 'GGGGCC' repeat expansion in the first intron of the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The exact mechanism resulting in these neurodegenerative diseases remains elusive, but C9 repeat RNA toxicity has been implicated as a gain-of-function mechanism. Our aim was to use a zebrafish model for C9orf72 RNA toxicity to identify modifiers of the ALS-linked phenotype. We discovered that the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (HNRNPK) reverses the toxicity of both sense and antisense repeat RNA, which is dependent on its subcellular localization and RNA recognition, and not on C9orf72 repeat RNA binding. We observed HNRNPK cytoplasmic mislocalization in C9orf72 ALS patient fibroblasts, induced pluripotent stem cell (iPSC)-derived motor neurons and post-mortem motor cortex and spinal cord, in line with a disrupted HNRNPK function in C9orf72 ALS. In C9orf72 ALS/FTD patient tissue, we discovered an increased nuclear translocation, but reduced expression of ribonucleotide reductase regulatory subunit M2 (RRM2), a downstream target of HNRNPK involved in the DNA damage response. Last but not least, we showed that increasing the expression of HNRNPK or RRM2 was sufficient to mitigate DNA damage in our C9orf72 RNA toxicity zebrafish model. Overall, our study strengthens the relevance of RNA toxicity as a pathogenic mechanism in C9orf72 ALS and demonstrates its link with an aberrant DNA damage response, opening novel therapeutic avenues for C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Elke Braems
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| | - Evelien Van Schoor
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
| | - Kara Heeren
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Lieselot Dedeene
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Department of Neurosciences, Laboratory for Molecular Neurobiomarker Research and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Ilse Geudens
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Nicole Hersmus
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Arpan R Mehta
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Bhuvaneish T Selvaraj
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ritchie Ho
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Dietmar R Thal
- Department of Imaging and Pathology, Laboratory of Neuropathology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Swinnen
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, PB 602, 3000, Leuven, Belgium.
| |
Collapse
|
34
|
Zampatti S, Peconi C, Campopiano R, Gambardella S, Caltagirone C, Giardina E. C9orf72-Related Neurodegenerative Diseases: From Clinical Diagnosis to Therapeutic Strategies. Front Aging Neurosci 2022; 14:907122. [PMID: 35754952 PMCID: PMC9226392 DOI: 10.3389/fnagi.2022.907122] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hexanucleotide expansion in C9orf72 has been related to several phenotypes to date, complicating the clinical recognition of these neurodegenerative disorders. An early diagnosis can improve the management of patients, promoting early administration of therapeutic supportive strategies. Here, we report known clinical presentations of C9orf72-related neurodegenerative disorders, pointing out suggestive phenotypes that can benefit the genetic characterization of patients. Considering the high variability of C9orf72-related disorder, frequent and rare manifestations are described, with detailed clinical, instrumental evaluation, and supportive therapeutical approaches. Furthermore, to improve the understanding of molecular pathways of the disease and potential therapeutical targets, a detailed description of the cellular mechanisms related to the pathological effect of C9orf72 is reported. New promising therapeutical strategies and ongoing studies are reported highlighting their molecular role in cellular pathological pathways of C9orf72. These therapeutic approaches are particularly promising because they seem to stop the disease before neuronal damage. The knowledge of clinical and molecular features of C9orf72-related neurodegenerative disorders improves the therapeutical application of known strategies and will lay the basis for the development of new potential therapies.
Collapse
Affiliation(s)
- Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Stefano Gambardella
- IRCCS Neuromed, Pozzilli, Italy.,Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| |
Collapse
|
35
|
van der Ende EL, Bron EE, Poos JM, Jiskoot LC, Panman JL, Papma JM, Meeter LH, Dopper EGP, Wilke C, Synofzik M, Heller C, Swift IJ, Sogorb-Esteve A, Bouzigues A, Borroni B, Sanchez-Valle R, Moreno F, Graff C, Laforce R, Galimberti D, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, Rowe JB, de Mendonça A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Otto M, Pijnenburg YAL, Sorbi S, Zetterberg H, Niessen WJ, Rohrer JD, Klein S, van Swieten JC, Venkatraghavan V, Seelaar H. A data-driven disease progression model of fluid biomarkers in genetic frontotemporal dementia. Brain 2022; 145:1805-1817. [PMID: 34633446 PMCID: PMC9166533 DOI: 10.1093/brain/awab382] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/22/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Several CSF and blood biomarkers for genetic frontotemporal dementia have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain and phosphorylated neurofilament heavy chain), synapse dysfunction [neuronal pentraxin 2 (NPTX2)], astrogliosis (glial fibrillary acidic protein) and complement activation (C1q, C3b). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging and help identify mutation carriers with prodromal or early-stage frontotemporal dementia, which is especially important as pharmaceutical trials emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic frontotemporal dementia using cross-sectional data from the Genetic Frontotemporal dementia Initiative (GENFI), a longitudinal cohort study. Two-hundred and seventy-five presymptomatic and 127 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non-carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of sample collection ('converters'). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event-based modelling (DEBM) and for each genetic subgroup using co-initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data-driven way and do not rely on previous diagnostic information or biomarker cut-off points. Using cross-validation, subjects were subsequently assigned a disease stage based on their position along the disease progression timeline. CSF NPTX2 was the first biomarker to become abnormal, followed by blood and CSF neurofilament light chain, blood phosphorylated neurofilament heavy chain, blood glial fibrillary acidic protein and finally CSF C3b and C1q. Biomarker orderings did not differ significantly between genetic subgroups, but more uncertainty was noted in the C9orf72 and MAPT groups than for GRN. Estimated disease stages could distinguish symptomatic from presymptomatic carriers and non-carriers with areas under the curve of 0.84 (95% confidence interval 0.80-0.89) and 0.90 (0.86-0.94) respectively. The areas under the curve to distinguish converters from non-converting presymptomatic carriers was 0.85 (0.75-0.95). Our data-driven model of genetic frontotemporal dementia revealed that NPTX2 and neurofilament light chain are the earliest to change among the selected biomarkers. Further research should investigate their utility as candidate selection tools for pharmaceutical trials. The model's ability to accurately estimate individual disease stages could improve patient stratification and track the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Emma L van der Ende
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jackie M Poos
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jessica L Panman
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Janne M Papma
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Elise G P Dopper
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Carlo Wilke
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
| | - Carolin Heller
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Imogen J Swift
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Arabella Bouzigues
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Raquel Sanchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, 20014 Gipuzkoa, Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, 17176 Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 17176 Solna, Sweden
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, Université Laval, G1Z 1J4 Québec, Canada
| | - Daniela Galimberti
- Centro Dino Ferrari, University of Milan, 20122 Milan, Italy
- Neurodegenerative Diseases Unit, Fondazione IRCCS, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, ON M4N 3M5 Toronto, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, M5S 1A8 Toronto, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, ON N6A 3K7 London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - James B Rowe
- Cambridge University Centre for Frontotemporal Dementia, University of Cambridge, CB2 0SZ Cambridge, UK
| | | | | | - Isabel Santana
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute and McGill University Health Centre, McGill University, 3801 Montreal, Québec, Canada
| | - Christopher R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, OX3 9DU Oxford, UK
- Department of Brain Sciences, Imperial College London, SW7 2AZ London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ Manchester, UK
- Department of Nuclear Medicine and Geriatric Medicine, University Hospital Essen, 45 147 Essen, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
| | - Yolande A L Pijnenburg
- Department of Neurology, Alzheimer Center, Location VU University Medical Center Amsterdam Neuroscience, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139 Florence, Italy
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 405 30 Mölndal, Sweden
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Stefan Klein
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Vikram Venkatraghavan
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
36
|
Benatar M, Wuu J, McHutchison C, Postuma RB, Boeve BF, Petersen R, Ross CA, Rosen H, Arias JJ, Fradette S, McDermott MP, Shefner J, Stanislaw C, Abrahams S, Cosentino S, Andersen PM, Finkel RS, Granit V, Grignon AL, Rohrer JD, McMillan CT, Grossman M, Al-Chalabi A, Turner MR. Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain 2022; 145:27-44. [PMID: 34677606 PMCID: PMC8967095 DOI: 10.1093/brain/awab404] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/12/2022] Open
Abstract
Significant progress has been made in understanding the pre-symptomatic phase of amyotrophic lateral sclerosis. While much is still unknown, advances in other neurodegenerative diseases offer valuable insights. Indeed, it is increasingly clear that the well-recognized clinical syndromes of Alzheimer's disease, Parkinson's disease, Huntington's disease, spinal muscular atrophy and frontotemporal dementia are also each preceded by a pre-symptomatic or prodromal period of varying duration, during which the underlying disease process unfolds, with associated compensatory changes and loss of inherent system redundancy. Key insights from these diseases highlight opportunities for discovery in amyotrophic lateral sclerosis. The development of biomarkers reflecting amyloid and tau has led to a shift in defining Alzheimer's disease based on inferred underlying histopathology. Parkinson's disease is unique among neurodegenerative diseases in the number and diversity of non-genetic biomarkers of pre-symptomatic disease, most notably REM sleep behaviour disorder. Huntington's disease benefits from an ability to predict the likely timing of clinically manifest disease based on age and CAG-repeat length alongside reliable neuroimaging markers of atrophy. Spinal muscular atrophy clinical trials have highlighted the transformational value of early therapeutic intervention, and studies in frontotemporal dementia illustrate the differential role of biomarkers based on genotype. Similar advances in amyotrophic lateral sclerosis would transform our understanding of key events in pathogenesis, thereby dramatically accelerating progress towards disease prevention. Deciphering the biology of pre-symptomatic amyotrophic lateral sclerosis relies on a clear conceptual framework for defining the earliest stages of disease. Clinically manifest amyotrophic lateral sclerosis may emerge abruptly, especially among those who harbour genetic mutations associated with rapidly progressive amyotrophic lateral sclerosis. However, the disease may also evolve more gradually, revealing a prodromal period of mild motor impairment preceding phenoconversion to clinically manifest disease. Similarly, cognitive and behavioural impairment, when present, may emerge gradually, evolving through a prodromal period of mild cognitive impairment or mild behavioural impairment before progression to amyotrophic lateral sclerosis. Biomarkers are critically important to studying pre-symptomatic amyotrophic lateral sclerosis and essential to efforts to intervene therapeutically before clinically manifest disease emerges. The use of non-genetic biomarkers, however, presents challenges related to counselling, informed consent, communication of results and limited protections afforded by existing legislation. Experiences from pre-symptomatic genetic testing and counselling, and the legal protections against discrimination based on genetic data, may serve as a guide. Building on what we have learned-more broadly from other pre-symptomatic neurodegenerative diseases and specifically from amyotrophic lateral sclerosis gene mutation carriers-we present a road map to early intervention, and perhaps even disease prevention, for all forms of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, USA
| | - Caroline McHutchison
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | - Ronald B Postuma
- Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Howard Rosen
- Department of Neurology, University of California San Francisco, CA, USA
| | - Jalayne J Arias
- Department of Neurology, University of California San Francisco, CA, USA
| | | | - Michael P McDermott
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jeremy Shefner
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Sharon Abrahams
- Human Cognitive Neuroscience, Department of Psychology, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, UK
| | | | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University, Sweden
| | - Richard S Finkel
- Department of Pediatric Medicine, Center for Experimental Neurotherapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Volkan Granit
- Department of Neurology, University of Miami, Miami, FL, USA
| | | | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, UK
- Department of Neurology, King's College Hospital, London, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Laaksovirta H, Launes J, Jansson L, Traynor BJ, Kaivola K, Tienari PJ. ALS in Finland. Neurol Genet 2022; 8:e665. [PMID: 35295181 PMCID: PMC8922337 DOI: 10.1212/nxg.0000000000000665] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/26/2022] [Indexed: 11/15/2022]
Abstract
Background and Objectives To analyze the frequencies of major genetic variants and the clinical features in Finnish patients with amyotrophic lateral sclerosis (ALS) with or without the C9orf72 hexanucleotide repeat expansion. Methods A cohort of patients with motor neuron disease was recruited between 1993 and 2020 at the Helsinki University Hospital and 2 second-degree outpatient clinics in Helsinki. Finnish ancestry patients with ALS fulfilled the diagnosis according to the revised El Escorial criteria and the Awaji-criteria. Two categories of familial ALS (FALS) were used. A patient was defined FALS-A if at least 1 first- or second-degree family member had ALS, and FALS-NP, if family members had additional neurologic or psychiatric endophenotypes. Results Of the 815 patients, 25% had FALS-A and 45% FALS-NP. C9orf72 expansion (C9pos) was found in 256 (31%) of all patients, in 58% of FALS-A category, in 48% of FALS-NP category, and in 23 or 17% of sporadic cases using the FALS-A or FALS-NP definition. C9pos or SOD1 p.D91A homozygosity was found in 328 (40%) of the 815 patients. We compared demographic and clinical characteristics between C9pos and patients with unknown cause of ALS (Unk). We found that the age at onset was significantly earlier and survival markedly shorter in the C9pos vs Unk patients with ALS. The shortest survival was found in bulbar-onset male C9pos patients, whereas the longest survival was found in Unk limb-onset males. Older age at onset associated consistently with shorter survival in C9pos and Unk patients in both limb-onset and bulbar-onset groups. There were no significant differences in the frequencies of bulbar-onset and limb-onset patients in C9pos and Unk groups. ALS-frontotemporal dementia (FTD) was more common in C9pos (17%) than in Unk (4%) patients, and of all patients with ALS-FTD, 70% were C9pos. Discussion These results provide further evidence for the short survival of C9orf72-associated ALS. A prominent role of the C9orf72 and SOD1 variants was found in the Finnish population. An unusually high frequency of C9pos was also found among patients with sporadic ALS. The enrichment of these 2 variants likely contributes to the high incidence of ALS in Finland.
Collapse
|
38
|
Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK, Tchan M, Fung V, Ng K, Cortese A, Houlden H, Dobson-Stone C, Fitzpatrick L, Halliday G, Ravenscroft G, Davis MR, Laing NG, Fellner A, Kennerson M, Kumar KR, Deveson IW. Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. SCIENCE ADVANCES 2022; 8:eabm5386. [PMID: 35245110 PMCID: PMC8896783 DOI: 10.1126/sciadv.abm5386] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/11/2022] [Indexed: 05/25/2023]
Abstract
More than 50 neurological and neuromuscular diseases are caused by short tandem repeat (STR) expansions, with 37 different genes implicated to date. We describe the use of programmable targeted long-read sequencing with Oxford Nanopore's ReadUntil function for parallel genotyping of all known neuropathogenic STRs in a single assay. Our approach enables accurate, haplotype-resolved assembly and DNA methylation profiling of STR sites, from a list of predetermined candidates. This correctly diagnoses all individuals in a small cohort (n = 37) including patients with various neurogenetic diseases (n = 25). Targeted long-read sequencing solves large and complex STR expansions that confound established molecular tests and short-read sequencing and identifies noncanonical STR motif conformations and internal sequence interruptions. We observe a diversity of STR alleles of known and unknown pathogenicity, suggesting that long-read sequencing will redefine the genetic landscape of repeat disorders. Last, we show how the inclusion of pharmacogenomic genes as secondary ReadUntil targets can further inform patient care.
Collapse
Affiliation(s)
- Igor Stevanovski
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sanjog R. Chintalaphani
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Hasindu Gamaarachchi
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - James M. Ferguson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Sandy S. Pineda
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Carolin K. Scriba
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Michel Tchan
- Westmead Hospital, Westmead, NSW, Australia and Sydney Medical School, The University of Sydney, NSW, Australia
| | - Victor Fung
- Westmead Hospital, Westmead, NSW, Australia and Sydney Medical School, The University of Sydney, NSW, Australia
| | - Karl Ng
- Department of Neurology, Royal North Shore Hospital and The University of Sydney, Sydney, NSW, Australia
| | - Andrea Cortese
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- The National Hospital for Neurology and Neurosurgery, London, UK
| | - Carol Dobson-Stone
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Lauren Fitzpatrick
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Glenda Halliday
- The University of Sydney, Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, Camperdown, NSW, Australia
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Mark R. Davis
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - Nigel G. Laing
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
- Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands, WA, Australia
| | - Avi Fellner
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- The Neurology Department, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW, Australia
- Faculty of Health and Medicine, University of Sydney, Camperdown, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
| | - Kishore R. Kumar
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Concord, NSW, Australia
- Neurology Department, Central Clinical School, Concord Repatriation General Hospital, University of Sydney, Concord, NSW, Australia
| | - Ira W. Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
39
|
Querin G, Grazia Biferi M, Pradat PF. Biomarkers for C9orf7-ALS in Symptomatic and Pre-symptomatic Patients: State-of-the-art in the New Era of Clinical Trials. J Neuromuscul Dis 2021; 9:25-37. [PMID: 34864683 PMCID: PMC8842771 DOI: 10.3233/jnd-210754] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of new possible treatments for C9orf72-related ALS and the possibility of early identification of subjects genetically at risk of developing the disease is creating a critical need for biomarkers to track neurodegeneration that could be used as outcome measures in clinical trials. Current candidate biomarkers in C9orf72-ALS include neuropsychology tests, imaging, electrophysiology as well as different circulating biomarkers. Neuropsychology tests show early executive and verbal function involvement both in symptomatic and asymptomatic mutation carriers. At brain MRI, C9orf72-ALS patients present diffuse white and grey matter degeneration, which are already identified up to 20 years before symptom onset and that seem to be slowly progressive over time, while regions of altered connectivity at fMRI and of hypometabolism at [18F]FDG PET have been described as well. At the same time, spinal cord MRI has also shown progressive decrease of FA in the cortico-spinal tract over time. On the side of wet biomarkers, neurofilament proteins are increased both in the CSF and serum just before symptom onset and tend to slowly increase over time, while poly(GP) protein can be detected in the CSF and probably used as target engagement marker in clinical trials.
Collapse
Affiliation(s)
- Giorgia Querin
- Institut de Myologie, I-Motion Adult ClinicalTrials Platform, Hôpital Pitié-Salpêtrière, Paris, France.,APHP, Centre de référence desmaladies neuromusculaires Nord/Est/Ile de France, HôpitalPitié-Salpêtrière, Paris, France
| | - Maria Grazia Biferi
- Sorbonne Université, Inserm UMRS974, Centre of Research in Myology (CRM), Institut de Myologie, GH PitiéSalpêtrière, Paris, France
| | - Pierre-Francois Pradat
- APHP, Département de Neurologie, Centre Référent SLA, Hôpital Pitié-Salpêtrière, Paris, France.,Laboratoire d'Imagerie Biomédicale, CNRS, INSERM, Sorbonne Université, Paris, France.,Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Londonderry, United Kingdom
| |
Collapse
|
40
|
Barp A, Mosca L, Sansone VA. Facilitations and Hurdles of Genetic Testing in Neuromuscular Disorders. Diagnostics (Basel) 2021; 11:diagnostics11040701. [PMID: 33919863 PMCID: PMC8070835 DOI: 10.3390/diagnostics11040701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Neuromuscular disorders (NMDs) comprise a heterogeneous group of disorders that affect about one in every thousand individuals worldwide. The vast majority of NMDs has a genetic cause, with about 600 genes already identified. Application of genetic testing in NMDs can be useful for several reasons: correct diagnostic definition of a proband, extensive familial counselling to identify subjects at risk, and prenatal diagnosis to prevent the recurrence of the disease; furthermore, identification of specific genetic mutations still remains mandatory in some cases for clinical trial enrollment where new gene therapies are now approaching. Even though genetic analysis is catching on in the neuromuscular field, pitfalls and hurdles still remain and they should be taken into account by clinicians, as for example the use of next generation sequencing (NGS) where many single nucleotide variants of “unknown significance” can emerge, complicating the correct interpretation of genotype-phenotype relationship. Finally, when all efforts in terms of molecular analysis have been carried on, a portion of patients affected by NMDs still remain “not genetically defined”. In the present review we analyze the evolution of genetic techniques, from Sanger sequencing to NGS, and we discuss “facilitations and hurdles” of genetic testing which must always be balanced by clinicians, in order to ensure a correct diagnostic definition, but taking always into account the benefit that the patient could obtain especially in terms of “therapeutic offer”.
Collapse
Affiliation(s)
- Andrea Barp
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
- Correspondence:
| | - Lorena Mosca
- Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
| | - Valeria Ada Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy;
| |
Collapse
|
41
|
Abstract
Neuromuscular disorders (NMDs) comprise a heterogeneous group of disorders that affect about one in every thousand individuals worldwide. The vast majority of NMDs has a genetic cause, with about 600 genes already identified. Application of genetic testing in NMDs can be useful for several reasons: correct diagnostic definition of a proband, extensive familial counselling to identify subjects at risk, and prenatal diagnosis to prevent the recurrence of the disease; furthermore, identification of specific genetic mutations still remains mandatory in some cases for clinical trial enrollment where new gene therapies are now approaching. Even though genetic analysis is catching on in the neuromuscular field, pitfalls and hurdles still remain and they should be taken into account by clinicians, as for example the use of next generation sequencing (NGS) where many single nucleotide variants of "unknown significance" can emerge, complicating the correct interpretation of genotype-phenotype relationship. Finally, when all efforts in terms of molecular analysis have been carried on, a portion of patients affected by NMDs still remain "not genetically defined". In the present review we analyze the evolution of genetic techniques, from Sanger sequencing to NGS, and we discuss "facilitations and hurdles" of genetic testing which must always be balanced by clinicians, in order to ensure a correct diagnostic definition, but taking always into account the benefit that the patient could obtain especially in terms of "therapeutic offer".
Collapse
Affiliation(s)
- Andrea Barp
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Lorena Mosca
- Medical Genetics Unit, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Valeria Ada Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| |
Collapse
|