1
|
Mondesert E, Delaby C, De La Cruz E, Kuhle J, Benkert P, Pradeilles N, Duchiron M, Morchikh M, Camu W, Cristol JP, Hirtz C, Esselin F, Lehmann S. Comparative Performances of 4 Serum NfL Assays, pTau181, and GFAP in Patients With Amyotrophic Lateral Sclerosis. Neurology 2025; 104:e213400. [PMID: 40009787 PMCID: PMC11863781 DOI: 10.1212/wnl.0000000000213400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/23/2024] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Selecting the most appropriate blood tests is crucial for the management of patients with amyotrophic lateral sclerosis (ALS). This study evaluates the diagnostic and prognostic performance of neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), and phosphorylated tau 181 (pTau181) biomarkers in ALS to establish their clinical relevance and cutoff values. METHODS In a cohort of patients from the ALS center in Montpellier, we conducted a head-to-head comparison of 4 different technologies and 3 distinct serum analytes: NfL was tested using the ultrasensitive Simoa and the microfluidic Ella platforms, along with 2 assays recently set up on clinical-grade platforms: Lumipulse and Elecsys. We also used Elecsys to assess serum GFAP and pTau181. RESULTS Our cohort included 139 patients with ALS and 70 non-ALS patients, with a mean age of 66.1 ± 11.4 years and 47.4% of women. The mean follow-up was 42 ± 26.3 months for patients with ALS and 141.6 ± 106.3 months for non-ALS patients, with a mortality rate of 85.5% vs 7.7%. There was a high correlation between all methods tested for serum NfL quantification (R2 = 0.939 to 0.963). The area under the curve (AUC) for ALS diagnosis was 0.889 (0.827-0.932) for NfL Simoa, 0.906 (0.847-0.944) for Ella, 0.912 (0.853-0.948) for Lumipulse, and 0.910 (0.851-0.946) for Elecsys. Serum pTau181 and GFAP showed poor diagnostic performance with AUCs of 0.565 (0.472-0.649) and 0.546 (0.461-0.636), respectively. Kaplan-Meier survival analysis revealed significant hazard ratios (4.4-5.4) for blood NfL. Patients with ALS had a 40%-50% chance of surviving 50 weeks below the prognostic cutoff values while survival rates dropped to near zero above. NfL and GFAP levels were associated with age and body mass index, considered confounding factors. pTau181 levels varied significantly in patients with ALS depending on the site of onset. DISCUSSION This study demonstrates the consistent performance of 4 immunoassays for serum NfL quantification in ALS. NfL showed high diagnostic and prognostic accuracy, making it suitable for individual assessment, unlike GFAP or pTau181. We propose diagnostic and prognostic cutoff values for serum NfL, providing a basis for wider implementation, especially with the clinically accredited Lumipulse and Elecsys platforms, which are becoming standard practice. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that serum NfL levels are useful in identifying over 80% of patients with ALS and predicting survival in patients with ALS compared with pTau181 and GFAP levels.
Collapse
Affiliation(s)
- Etienne Mondesert
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, France
- Biochimie Lapeyronie, Univ Montpellier, CHU Montpellier, France
| | - Constance Delaby
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, France
- Hospital de la Santa Creu i Sant Pau - Biomedical Research Institute Sant Pau - Universitat Autònoma de Barcelona, Spain
| | - Elisa De La Cruz
- Explorations neurologiques et centre SLA, Univ Montpellier, CHU Gui de Chauliac, INM, INSERM, France
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Switzerland; and
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland
| | - Pascal Benkert
- Department of Neurology, University Hospital and University of Basel, Switzerland; and
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Department of Biomedicine and Clinical Research, University Hospital and University of Basel, Switzerland
| | | | - Marie Duchiron
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, France
| | - Mehdi Morchikh
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, France
| | - William Camu
- Explorations neurologiques et centre SLA, Univ Montpellier, CHU Gui de Chauliac, INM, INSERM, France
| | | | | | - Florence Esselin
- Explorations neurologiques et centre SLA, Univ Montpellier, CHU Gui de Chauliac, INM, INSERM, France
| | - Sylvain Lehmann
- LBPC-PPC, Univ Montpellier, CHU Montpellier, INM INSERM, France
| |
Collapse
|
2
|
Abu-Rumeileh S, Scholle L, Mensch A, Großkopf H, Ratti A, Kölsch A, Stoltenburg-Didinger G, Conrad J, De Gobbi A, Barba L, Steinacker P, Klafki HW, Oeckl P, Halbgebauer S, Stapf C, Posa A, Kendzierski T, Silani V, Hausner L, Ticozzi N, Froelich L, Weishaupt JH, Verde F, Otto M. Phosphorylated tau 181 and 217 are elevated in serum and muscle of patients with amyotrophic lateral sclerosis. Nat Commun 2025; 16:2019. [PMID: 40044663 PMCID: PMC11882981 DOI: 10.1038/s41467-025-57144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
Blood phosphorylated (p)-tau 181 and p-tau 217 have been proposed as accurate biomarkers of Alzheimer's disease (AD) pathology. However, blood p-tau 181 is also elevated in amyotrophic lateral sclerosis (ALS) without a clearly identified source. We measured serum p-tau 181 and p-tau 217 in a multicentre cohort of ALS (n = 152), AD (n = 111) cases and disease controls (n = 99) recruited from four different centres. Further, we investigated the existence of both p-tau species using immunohistochemistry (IHC) and mass spectrometry (MS) in muscle biopsies of ALS cases (IHC: n = 13, MS: n = 5) and disease controls (IHC: n = 14, MS: n = 5) from one cohort. Serum p-tau 181 and p-tau 217 were higher in AD and ALS patients compared to disease controls. IHC and MS analyses revealed the presence of p-tau 181 and 217 in muscle biopsies from both ALS cases and disease controls, with ALS samples showing increased p-tau reactivity in atrophic muscle fibres. Blood p-tau species could potentially be used to diagnose both ALS and AD.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Leila Scholle
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Alexander Mensch
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Henning Großkopf
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Anna Kölsch
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Gisela Stoltenburg-Didinger
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Cell Biology and Neurobiology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Conrad
- Division for Neurodegenerative Diseases, Department of Neurology, Mannheim Center for Translational Medicine, University Medicine Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anna De Gobbi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Lorenzo Barba
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Hans-Wolfgang Klafki
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August University, Goettingen, Germany
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | - Steffen Halbgebauer
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | - Caroline Stapf
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Posa
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Kendzierski
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Lutz Froelich
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jochen Hans Weishaupt
- Division for Neurodegenerative Diseases, Department of Neurology, Mannheim Center for Translational Medicine, University Medicine Mannheim, University of Heidelberg, Mannheim, Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Markus Otto
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
3
|
Shaw LM, Korecka M, Lee EB, Cousins KAQ, Vanderstichele H, Schindler SE, Tosun D, DeMarco ML, Brylska M, Wan Y, Burnham S, Sciulli A, Vulaj A, Tropea TF, Chen‐Plotkin A, Wolk DA. ADNI Biomarker Core: A review of progress since 2004 and future challenges. Alzheimers Dement 2025; 21:e14264. [PMID: 39614747 PMCID: PMC11773510 DOI: 10.1002/alz.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND We describe the Alzheimer's Disease Neuroimaging Initiative (ADNI) Biomarker Core major activities from October 2004 to March 2024, including biobanking ADNI cerebrospinal fluid (CSF), plasma, and serum biofluid samples, biofluid analyses for Alzheimer's disease (AD) biomarkers in the Biomarker Core and various non-ADNI laboratories, and continuous assessments of pre-analytics. RESULTS Validated immunoassay and mass spectrometry-based assays were performed in CSF with a shift to plasma, a more accessible biofluid, as qualified assays became available. Performance comparisons across different CSF and plasma AD biomarker measurement platforms have enriched substantially the ADNI participant database enabling method performance determinations for AD pathology detection and longitudinal assessments of disease progression. DISCUSSION Close collaboration with academic and industrial partners in the validation and implementation of AD biomarkers for early detection of disease pathology in treatment trials and ultimately in clinical practice is a key factor for the success of the work done in the Biomarker Core. HIGHLIGHTS Describe ADNI Biomarker Core biobanking and sample distribution from 2007 to 2024. Discuss validated mass spectrometry and immunoassay methods for ADNI biofluid analyses. Review collaborations with academic and industrial partners to detect AD and progression. Discuss major challenges, and progress to date, for co-pathology detection. Implementation in the ATN scheme: co-pathology and modeling disease progression.
Collapse
Affiliation(s)
- Leslie M. Shaw
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Magdalena Korecka
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Edward B. Lee
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Katheryn A Q Cousins
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Suzanne E. Schindler
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Duygu Tosun
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mari L. DeMarco
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVan CouverCanada
| | - Magdalena Brylska
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Yang Wan
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | | - Alexandria Sciulli
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Amberley Vulaj
- Department of Pathology and Laboratory MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Thomas F. Tropea
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alice Chen‐Plotkin
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Neurology DepartmentUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | | |
Collapse
|
4
|
Spitz G, Hicks AJ, McDonald SJ, Dore V, Krishnadas N, O’Brien TJ, O’Brien WT, Vivash L, Law M, Ponsford JL, Rowe C, Shultz SR. Plasma biomarkers in chronic single moderate-severe traumatic brain injury. Brain 2024; 147:3690-3701. [PMID: 39315931 PMCID: PMC11531850 DOI: 10.1093/brain/awae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 06/06/2024] [Accepted: 07/04/2024] [Indexed: 09/25/2024] Open
Abstract
Blood biomarkers are an emerging diagnostic and prognostic tool that reflect a range of neuropathological processes following traumatic brain injury (TBI). Their effectiveness in identifying long-term neuropathological processes after TBI is unclear. Studying biomarkers in the chronic phase is vital because elevated levels in TBI might result from distinct neuropathological mechanisms during acute and chronic phases. Here, we examine plasma biomarkers in the chronic period following TBI and their association with amyloid and tau PET, white matter microarchitecture, brain age and cognition. We recruited participants ≥40 years of age who had suffered a single moderate-severe TBI ≥10 years previously between January 2018 and March 2021. We measured plasma biomarkers using single molecule array technology [ubiquitin C-terminal hydrolase L1 (UCH-L1), neurofilament light (NfL), tau, glial fibrillary acidic protein (GFAP) and phosphorylated tau (P-tau181)]; PET tracers to measure amyloid-β (18F-NAV4694) and tau neurofibrillary tangles (18F-MK6240); MRI to assess white matter microstructure and brain age; and the Rey Auditory Verbal Learning Test to measure verbal-episodic memory. A total of 90 post-TBI participants (73% male; mean = 58.2 years) were recruited on average 22 years (range = 10-33 years) post-injury, and 32 non-TBI control participants (66% male; mean = 57.9 years) were recruited. Plasma UCH-L1 levels were 67% higher {exp(b) = 1.67, P = 0.018, adjusted P = 0.044, 95% confidence interval (CI) [10% to 155%], area under the curve = 0.616} and P-tau181 were 27% higher {exp(b) = 1.24, P = 0.011, adjusted P = 0.044, 95% CI [5% to 46%], area under the curve = 0.632} in TBI participants compared with controls. Amyloid and tau PET were not elevated in TBI participants. Higher concentrations of plasma P-tau181, UCH-L1, GFAP and NfL were significantly associated with worse white matter microstructure but not brain age in TBI participants. For TBI participants, poorer verbal-episodic memory was associated with higher concentration of P-tau181 {short delay: b = -2.17, SE = 1.06, P = 0.043, 95% CI [-4.28, -0.07]; long delay: bP-tau = -2.56, SE = 1.08, P = 0.020, 95% CI [-4.71, -0.41]}, tau {immediate memory: bTau = -6.22, SE = 2.47, P = 0.014, 95% CI [-11.14, -1.30]} and UCH-L1 {immediate memory: bUCH-L1 = -2.14, SE = 1.07, P = 0.048, 95% CI [-4.26, -0.01]}, but was not associated with functional outcome. Elevated plasma markers related to neuronal damage and accumulation of phosphorylated tau suggest the presence of ongoing neuropathology in the chronic phase following a single moderate-severe TBI. Plasma biomarkers were associated with measures of microstructural brain disruption on MRI and disordered cognition, further highlighting their utility as potential objective tools to monitor evolving neuropathology post-TBI.
Collapse
Affiliation(s)
- Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Stuart J McDonald
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
| | - Vincent Dore
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Natasha Krishnadas
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Terence J O’Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - William T O’Brien
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
| | - Lucy Vivash
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Meng Law
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Radiology, Alfred Health, Melbourne, VIC 3004, Australia
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Christopher Rowe
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3004, Australia
- Department of Neurology, The Alfred, Melbourne, VIC 3004, Australia
- The Centre for Trauma and Mental Health Research, Health Sciences and Human Services, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada
| |
Collapse
|
5
|
Maranzano A, Verde F, Dubini A, Torre S, Colombo E, Doretti A, Gentile F, Manini A, Milone I, Brusati A, Peverelli S, Santangelo S, Spinelli EG, Torresani E, Gentilini D, Messina S, Morelli C, Poletti B, Agosta F, Ratti A, Filippi M, Silani V, Ticozzi N. Association of APOE genotype and cerebrospinal fluid Aβ and tau biomarkers with cognitive and motor phenotype in amyotrophic lateral sclerosis. Eur J Neurol 2024; 31:e16374. [PMID: 38853763 PMCID: PMC11295165 DOI: 10.1111/ene.16374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/13/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Little is known about amyotrophic lateral sclerosis (ALS)-nonspecific cognitive deficits - most notably memory disturbance - and their biological underpinnings. We investigated the associations of the Alzheimer's disease (AD) genetic risk factor APOE and cerebrospinal fluid (CSF) biomarkers Aβ and tau proteins with cognitive and motor phenotype in ALS. METHODS APOE haplotype was determined in 281 ALS patients; for 105 of these, CSF levels of Aβ42, Aβ40, total tau (T-tau), and phosphorylated tau (P-tau181) were quantified by chemiluminescence enzyme immunoassay (CLEIA). The Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was employed to evaluate the neuropsychological phenotype. RESULTS APOE-E4 allele was associated with worse ECAS memory score (median, 14.0 in carriers vs. 16.0 in non-carriers) and lower CSF Aβ42 (-0.8 vs. 0.1, log-transformed values) and Aβ42/40 ratio (-0.1 vs. 0.3). Some 37.1% of ALS patients showed low Aβ42 levels, possibly reflecting cerebral Aβ deposition. While lower Aβ42/40 correlated with lower memory score (β = 0.20), Aβ42 positively correlated with both ALS-specific (β = 0.24) and ALS-nonspecific (β = 0.24) scores. Although Aβ42/40 negatively correlated with T-tau (β = -0.29) and P-tau181 (β = -0.33), we found an unexpected positive association of Aβ42 and Aβ40 with both tau proteins. Regarding motor phenotype, lower levels of Aβ species were associated with lower motor neuron (LMN) signs (Aβ40: β = 0.34; Aβ42: β = 0.22). CONCLUSIONS APOE haplotype and CSF Aβ biomarkers are associated with cognitive deficits in ALS and particularly with memory impairment. This might partly reflect AD-like pathophysiological processes, but additional ALS-specific mechanisms could be involved.
Collapse
Affiliation(s)
- Alessio Maranzano
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Federico Verde
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ CenterUniversità degli Studi di MilanoMilanItaly
| | - Antonella Dubini
- Department of Laboratory Medicine, Laboratory of Clinical Chemistry and MicrobiologyIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Silvia Torre
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Eleonora Colombo
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Alberto Doretti
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Francesco Gentile
- Division of Genetics and Cell BiologyIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Arianna Manini
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ CenterUniversità degli Studi di MilanoMilanItaly
| | - Ilaria Milone
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Alberto Brusati
- Department of Brain and Behavioural SciencesUniversità degli Studi di PaviaPaviaItaly
| | - Silvia Peverelli
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Serena Santangelo
- Department of Medical Biotechnology and Molecular MedicineUniversità degli Studi di MilanoMilanItaly
| | - Edoardo Gioele Spinelli
- Neurology Unit, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Neuroimaging Research Unit, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Erminio Torresani
- Department of Laboratory Medicine, Laboratory of Clinical Chemistry and MicrobiologyIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Davide Gentilini
- Department of Brain and Behavioural SciencesUniversità degli Studi di PaviaPaviaItaly
- Bioinformatics and Statistical Genomics UnitIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Stefano Messina
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Claudia Morelli
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
| | - Barbara Poletti
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
- Department of Oncology and Hemato‐OncologyUniversità degli Studi di MilanoMilanItaly
| | - Federica Agosta
- Neurology Unit, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Neuroimaging Research Unit, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
- Neurorehabilitation Unit, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Antonia Ratti
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
- Department of Medical Biotechnology and Molecular MedicineUniversità degli Studi di MilanoMilanItaly
| | - Massimo Filippi
- Neurology Unit, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Neuroimaging Research Unit, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
- Neurorehabilitation Unit, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Neurophysiology Service, Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Vincenzo Silani
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ CenterUniversità degli Studi di MilanoMilanItaly
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of NeuroscienceIRCCS Istituto Auxologico ItalianoMilanItaly
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ CenterUniversità degli Studi di MilanoMilanItaly
| |
Collapse
|
6
|
Rajendrakumar AL, Arbeev KG, Bagley O, Yashin AI, Ukraintseva S. The association between rs6859 in NECTIN2 gene and Alzheimer's disease is partly mediated by pTau. Front Aging Neurosci 2024; 16:1388363. [PMID: 39165837 PMCID: PMC11334082 DOI: 10.3389/fnagi.2024.1388363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Emerging evidence suggests a connection between vulnerability to infections and Alzheimer's disease (AD). The nectin cell adhesion molecule 2 (NECTIN2) gene coding for a membrane component of adherens junctions is involved in response to infections, and its single nucleotide polymorphism (SNP) rs6859 was significantly associated with AD risk in several human cohorts. It is unclear, however, how exactly rs6859 influences the development of AD pathology. The aggregation of hyperphosphorylated tau protein (pTau) is a key pathological feature of neurodegeneration in AD, which may be induced by infections, among other factors, and potentially influenced by genes involved in both AD and vulnerability to infections, such as NECTIN2. Materials and methods We conducted a causal mediation analysis (CMA) on a sample of 708 participants in the Alzheimer's disease Neuroimaging Initiative (ADNI). The relationship between rs6859 and Alzheimer's disease (AD), with AD (yes/no) as the outcome and pTau-181 levels in the cerebrospinal fluid (CSF) acting as a mediator in this association, was assessed. Adjusted estimates from the probit and linear regression models were used in the CMA model, where an additive model considered an increase in dosage of the rs6859 A allele (AD risk factor). Results The increase in dose of allele A of the SNP rs6859 resulted in about 0.144 increase per standard deviation (SD) of pTau-181 (95% CI: 0.041, 0.248, p < 0.01). When included together in the probit model, the change in A allele dose and each standard deviation change in pTau-181 predicted 6.84% and 9.79% higher probabilities for AD, respectively. In the CMA, the proportion of the average mediated effect was 17.05% and was higher for the risk allele homozygotes (AA), at 19.40% (95% CI: 6.20%, 43.00%, p < 0.01). The sensitivity analysis confirmed the evidence of a robust mediation effect. Conclusion This study reported a new potential causal relationship between pTau-181 and AD. We found that the association between rs6859 in the NECTIN2 gene and AD is partly mediated by pTau-181 levels in CSF. The rest of this association may be mediated by other factors. Our finding sheds light on the complex interplay between genetic susceptibility, protein aggregation, and neurodegeneration in AD. Further research, using other biomarkers, is needed to uncover the remaining mechanisms of the association between the NECTIN2 gene and AD.
Collapse
Affiliation(s)
| | | | | | | | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, United States
| |
Collapse
|
7
|
Alanazi N, Fitzgerald M, Hume P, Hellewell S, Horncastle A, Anyaegbu C, Papini MG, Hargreaves N, Halicki M, Entwistle I, Hind K, Chazot P. Concussion-Related Biomarker Variations in Retired Rugby Players and Implications for Neurodegenerative Disease Risk: The UK Rugby Health Study. Int J Mol Sci 2024; 25:7811. [PMID: 39063053 PMCID: PMC11276902 DOI: 10.3390/ijms25147811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The health and well-being of retired rugby union and league players, particularly regarding the long-term effects of concussions, are of major concern. Concussion has been identified as a major risk factor for neurodegenerative diseases, such as Alzheimer's and Amyotrophic Lateral Sclerosis (ALS), in athletes engaged in contact sports. This study aimed to assess differences in specific biomarkers between UK-based retired rugby players with a history of concussion and a non-contact sports group, focusing on biomarkers associated with Alzheimer's, ALS, and CTE. We randomly selected a sample of male retired rugby or non-contact sport athletes (n = 56). The mean age was 41.84 ± 6.44, and the mean years since retirement from the sport was 7.76 ± 6.69 for participants with a history of substantial concussions (>5 concussions in their career) (n = 30). The mean age was 45.75 ± 11.52, and the mean years since retirement was 6.75 ± 4.64 for the healthy controls (n = 26). Serum biomarkers (t-tau, RBP-4, SAA, Nf-L, and retinol), plasma cytokines, and biomarkers associated with serum-derived exosomes (Aβ42, p-tau181, p-tau217, and p-tau231) were analyzed using validated commercial ELISA assays. The results of the selected biomarkers were compared between the two groups. Biomarkers including t-tau and p-tau181 were significantly elevated in the history of the substantial concussion group compared to the non-contact sports group (t-tau: p < 0.01; p-tau181: p < 0.05). Although between-group differences in p-tau217, p-tau231, SAA, Nf-L, retinol, and Aβ42 were not significantly different, there was a trend for higher levels of Aβ42, p-tau217, and p-tau231 in the concussed group. Interestingly, the serum-derived exosome sizes were significantly larger (p < 0.01), and serum RBP-4 levels were significantly reduced (p < 0.05) in the highly concussed group. These findings indicate that retired athletes with a history of multiple concussions during their careers have altered serum measurements of exosome size, t-tau, p-tau181, and RBP-4. These biomarkers should be explored further for the prediction of future neurodegenerative outcomes, including ALS, in those with a history of concussion.
Collapse
Affiliation(s)
- Norah Alanazi
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
| | - Patria Hume
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, AUT Millennium, 17 Antares Place, Mairangi Bay, Private Bag 92006, Auckland 1142, New Zealand;
- Traumatic Brain Injury Network (TBIN), Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Technology and Policy Laboratory, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Sarah Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Alex Horncastle
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Melissa G. Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; (M.F.); (S.H.); (M.G.P.)
- Perron Institute for Neurological and Translational Sciences, Nedlands, WA 6009, Australia
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Natasha Hargreaves
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Michal Halicki
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| | - Ian Entwistle
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
- Wolfson Research Institute for Health and Wellbeing, Durham University, Durham TS17 6BH, UK
| | - Karen Hind
- Wolfson Research Institute for Health and Wellbeing, Durham University, Durham TS17 6BH, UK
| | - Paul Chazot
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK; (N.A.); (A.H.); (N.H.); (M.H.); (I.E.)
| |
Collapse
|
8
|
Rajendrakumar AL, Arbeev KG, Bagley O, Yashin AI, Ukraintseva S. The association between rs6859 in NECTIN2 gene and Alzheimer's disease is partly mediated by pTau. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.21.24309310. [PMID: 38947013 PMCID: PMC11213054 DOI: 10.1101/2024.06.21.24309310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Introduction Emerging evidence suggests a connection between vulnerability to infections and Alzheimer's disease (AD). The nectin cell adhesion molecule 2 (NECTIN2) gene coding for a membrane component of adherens junctions is involved in response to infection, and its single nucleotide polymorphism (SNP) rs6859 was significantly associated with AD risk in several human cohorts. It is unclear, however, how exactly rs6859 influences the development of AD pathology. The aggregation of hyperphosphorylated tau protein (pTau) is a key pathological feature of neurodegeneration in AD, which may be induced by infections, among other factors, and potentially influenced by genes involved in both AD and vulnerability to infections, such as NECTIN2. Materials and methods We conducted a causal mediation analysis (CMA) on a sample of 708 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI). The relationship between rs6859 and Alzheimer's disease (AD), with AD (yes/no) as the outcome and pTau-181 levels in the cerebrospinal fluid (CSF) acting as a mediator in this association, was assessed. Adjusted estimates from the probit and linear regression models were used in the CMA model, where an additive model considered an increase in dosage of the rs6859 A allele (AD risk factor). Results The increase in dose of allele A of the SNP rs6859 resulted in about 0.144 increase per standard deviation (SD) of pTau-181 (95% CI: 0.041, 0.248, p<0.01). When included together in the probit model, the change in A allele dose and each standard deviation change in pTau-181 predicted 6.84% and 9.79% higher probabilities for AD, respectively. In the CMA, the proportion of the average mediated effect was 17.05% and was higher for the risk allele homozygotes (AA), at 19.40% (95% CI: 6.20%, 43.00%, p<0.01). The sensitivity analysis confirmed the evidence of a robust mediation effect. Conclusion This study reported a new causal relationship between pTau-181 and AD. We found that the association between rs6859 in the NECTIN2 gene and AD is partly mediated by pTau-181 levels in CSF. The rest of this association may be mediated by other factors. Further research, using other biomarkers, is needed to uncover the remaining mechanisms of the association between the NECTIN2 gene and AD.
Collapse
Affiliation(s)
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Duke University, Social Science Research Institute, Durham, NC, USA
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Duke University, Social Science Research Institute, Durham, NC, USA
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Duke University, Social Science Research Institute, Durham, NC, USA
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Duke University, Social Science Research Institute, Durham, NC, USA
| |
Collapse
|
9
|
Antonioni A, Raho EM, Di Lorenzo F. Is blood pTau a reliable indicator of the CSF status? A narrative review. Neurol Sci 2024; 45:2471-2487. [PMID: 38129590 DOI: 10.1007/s10072-023-07258-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The identification of biomarkers for the early diagnosis of Alzheimer's disease (AD) is a crucial goal of the current research. Blood biomarkers are less invasive, easier to obtain and achievable by a cheaper means than those on cerebrospinal fluid (CSF) and significantly more economic than functional neuroimaging investigations; thus, a great interest is focused on blood isoforms of the phosphorylated Tau protein (pTau), indicators of ongoing tau pathology (i.e. neurofibrillary tangles, NFTs, an AD neuropathological hallmark) in the central nervous system (CNS). However, current data often highlight discordant results about the ability of blood pTau to predict CSF status. OBJECTIVE We aim to synthesise the studies that compared pTau levels on CSF and blood to assess their correlation in AD continuum. METHODS We performed a narrative literature review using, first, MEDLINE (via PubMed) by means of MeSH terms, and then, we expanded the reults by means of Scopus and Web of Sciences to be as inclusive as possible. Finally, we added work following an expert opinion. Only papers presenting original data on pTau values on both blood and CSF were included. RESULTS The 33 included studies show an extreme heterogeneity in terms of pTau isoform (pTau181, 217 and 231), laboratory methods, diagnostic criteria and choice of comparison groups. Most studies evaluated plasma pTau181, while data on other isoforms and serum are scarcer. DISCUSSION Most papers identify a correlation between CSF and blood measurements. Furthermore, even when not specified, it is often possible to show an increase in blood pTau values as AD-related damage progresses in the AD continuum and higher values in AD than in other neurodegenerative diseases. Notably, plasma pTau231 seems the first biomarker to look for in the earliest and pre-clinical stages, quickly followed by pTau217 and, finally, by pTau181. CONCLUSIONS Our results encourage the use of blood pTau for the early identification of patients with AD continuum.
Collapse
Affiliation(s)
- Annibale Antonioni
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121, Ferrara, Italy
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, 44121, Ferrara, Italy
| | - Emanuela Maria Raho
- Unit of Clinical Neurology, Neurosciences and Rehabilitation Department, University of Ferrara, 44121, Ferrara, Italy
| | - Francesco Di Lorenzo
- Non Invasive Brain Stimulation Unit, Istituto Di Ricovero E Cura a Carattere Scientifico Santa Lucia, 00179, Rome, Italy.
| |
Collapse
|
10
|
Donini L, Tanel R, Zuccarino R, Basso M. Protein biomarkers for the diagnosis and prognosis of Amyotrophic Lateral Sclerosis. Neurosci Res 2023; 197:31-41. [PMID: 37689321 DOI: 10.1016/j.neures.2023.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common motor neuron disease, still incurable. The disease is highly heterogenous both genetically and phenotypically. Therefore, developing efficacious treatments is challenging in many aspects because it is difficult to predict the rate of disease progression and stratify the patients to minimize statistical variability in clinical studies. Moreover, there is a lack of sensitive measures of therapeutic effect to assess whether a pharmacological intervention ameliorates the disease. There is also urgency of markers that reflect a molecular mechanism dysregulated by ALS pathology and can be rescued when a treatment relieves the condition. Here, we summarize and discuss biomarkers tested in multicentered studies and across different laboratories like neurofilaments, the most used marker in ALS clinical studies, neuroinflammatory-related proteins, p75ECD, p-Tau/t-Tau, and UCHL1. We also explore the applicability of muscle proteins and extracellular vesicles as potential biomarkers.
Collapse
Affiliation(s)
- Luisa Donini
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| | - Raffaella Tanel
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy.
| | - Riccardo Zuccarino
- Clinical Center NeMO, APSS Ospedale Riabilitativo Villa Rosa, Pergine 38057, TN, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Italy.
| |
Collapse
|
11
|
Verde F, Milone I, Colombo E, Maranzano A, Dubini A, Colombrita C, Gentile F, Doretti A, Torre S, Messina S, Morelli C, Torresani E, Poletti B, Priori A, Maderna L, Ratti A, Silani V, Ticozzi N. Phosphorylated tau in plasma could be a biomarker of lower motor neuron impairment in amyotrophic lateral sclerosis. Neurol Sci 2023; 44:3697-3702. [PMID: 37369876 DOI: 10.1007/s10072-023-06916-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Plasma levels of phosphorylated tau (P-tau181) have been recently reported to be increased in amyotrophic lateral sclerosis (ALS) and associated with lower motor neuron (LMN) impairment. PATIENTS AND METHODS We quantified plasma P-tau181 (pP-tau181) in a cohort of 29 deeply phenotyped ALS patients using the new fully automated Lumipulse assay and analysed phenotype-biomarker correlations. RESULTS pP-tau181 levels correlated positively with a clinical LMN score (r = 0.3803) and negatively, albeit not significantly, with a composite index of muscle strength (r = - 0.3416; p = 0.0811), but not with Penn Upper Motor Neuron (UMN) Score. Accordingly, pP-tau181 correlated with electromyographic indices of spinal active and chronic denervation (r = 0.4507 and r = 0.3864, respectively) but not with transcranial magnetic stimulation parameters of UMN dysfunction. pP-tau181 levels did not correlate with those in the cerebrospinal fluid (CSF), serum NFL, serum GFAP, CSF/serum albumin ratio, or estimated glomerular filtration rate, but correlated with plasma creatine kinase levels (r = 0.4661). Finally, while not being associated with neuropsychological phenotype, pP-tau181 correlated negatively with pH (r = - 0.5632) and positively with partial pressure of carbon dioxide (PaCO2; r = 0.7092), bicarbonate (sHCO3-; r = 0.6667) and base excess (r = 0.6611) on arterial blood gas analysis. DISCUSSION pP-tau181 has potential as ALS biomarker and could be associated with LMN impairment. Its raised levels might reflect pathophysiological processes (tau hyperphosphorylation and/or release) occurring in the axons of LMNs distantly from the CNS and the CSF. pP-tau181 could also be associated with respiratory dysfunction.
Collapse
Affiliation(s)
- Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy.
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università Degli Studi Di Milano, Milan, Italy.
| | - Ilaria Milone
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
| | - Eleonora Colombo
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
| | - Antonella Dubini
- Laboratory of Clinical Chemistry and Microbiology, Department of Laboratory Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Claudia Colombrita
- Laboratory of Clinical Chemistry and Microbiology, Department of Laboratory Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Francesco Gentile
- Neurology Residency Program, Università Degli Studi Di Milano, Milan, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
| | - Silvia Torre
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
| | - Stefano Messina
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
| | - Erminio Torresani
- Laboratory of Clinical Chemistry and Microbiology, Department of Laboratory Medicine, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università Degli Studi Di Milano, Milan, Italy
| | - Alberto Priori
- Aldo Ravelli Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, Università Degli Studi Di Milano, Milan, Italy
- III Neurology Clinic, ASST Santi Paolo E Carlo University Hospital, Milan, Italy
| | - Luca Maderna
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università Degli Studi Di Milano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università Degli Studi Di Milano, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia, 20 - 20149, Milan, Italy
- Department of Pathophysiology and Transplantation, Dino Ferrari Center, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
12
|
Mastrangelo A, Vacchiano V, Zenesini C, Ruggeri E, Baiardi S, Cherici A, Avoni P, Polischi B, Santoro F, Capellari S, Liguori R, Parchi P. Amyloid-Beta Co-Pathology Is a Major Determinant of the Elevated Plasma GFAP Values in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:13976. [PMID: 37762278 PMCID: PMC10531493 DOI: 10.3390/ijms241813976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies reported increased plasma glial acidic fibrillary protein (GFAP) levels in amyotrophic lateral sclerosis (ALS) patients compared to controls. We expanded these findings in a larger cohort, including 156 ALS patients and 48 controls, and investigated the associations of plasma GFAP with clinical variables and other biofluid biomarkers. Plasma GFAP and Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers were assessed by the single molecule array and the Lumipulse platforms, respectively. In ALS patients, plasma GFAP was higher than in controls (p < 0.001) and associated with measures of cognitive decline. Twenty ALS patients (12.8%) showed a positive amyloid status (A+), of which nine also exhibited tau pathology (A+T+, namely ALS-AD). ALS-AD patients showed higher plasma GFAP than A- ALS participants (p < 0.001) and controls (p < 0.001), whereas the comparison between A- ALS and controls missed statistical significance (p = 0.07). Plasma GFAP distinguished ALS-AD subjects more accurately (area under the curve (AUC) 0.932 ± 0.027) than plasma p-tau181 (AUC 0.692 ± 0.058, p < 0.0001) and plasma neurofilament light chain protein (AUC, 0.548 ± 0.088, p < 0.0001). Cognitive measures differed between ALS-AD and other ALS patients. AD co-pathology deeply affects plasma GFAP values in ALS patients. Plasma GFAP is an accurate biomarker for identifying AD co-pathology in ALS, which can influence the cognitive phenotype.
Collapse
Affiliation(s)
- Andrea Mastrangelo
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
| | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Edoardo Ruggeri
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Simone Baiardi
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
| | - Arianna Cherici
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Patrizia Avoni
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Barbara Polischi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Francesca Santoro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Sabina Capellari
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Rocco Liguori
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| | - Piero Parchi
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum Università di Bologna, 40139 Bologna, Italy; (A.M.); (S.B.); (P.A.); (S.C.); (R.L.)
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (V.V.); (C.Z.); (E.R.); (A.C.); (B.P.); (F.S.)
| |
Collapse
|
13
|
Verde F, Aiello EN, Adobbati L, Poletti B, Solca F, Tiloca C, Sangalli D, Maranzano A, Muscio C, Ratti A, Zago S, Ticozzi N, Frisoni GB, Silani V. Coexistence of Amyotrophic Lateral Sclerosis and Alzheimer's Disease: Case Report and Review of the Literature. J Alzheimers Dis 2023; 95:1383-1399. [PMID: 37694369 DOI: 10.3233/jad-230562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We describe a case of amyotrophic lateral sclerosis (ALS) associated with Alzheimer's disease (AD) and review the literature about the coexistence of the two entities, highlighting the following: mean age at onset is 63.8 years, with slight female predominance; ALS tends to manifest after cognitive impairment and often begins in the bulbar region; average disease duration is 3 years; cognitive phenotype is mostly amnestic; the pattern of brain involvement is, in most cases, consistent with AD. Our case and the reviewed ones suggest that patients with ALS and dementia lacking unequivocal features of FTD should undergo additional examinations in order to recognize AD.
Collapse
Affiliation(s)
- Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Edoardo Nicolò Aiello
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Laura Adobbati
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Federica Solca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cinzia Tiloca
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Davide Sangalli
- Department of Neurology and Stroke Unit, Azienda Socio Sanitaria Territoriale Lecco, Lecco, Italy
| | - Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cristina Muscio
- Neurology-5 (Neuropathology) Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Stefano Zago
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Giovanni Battista Frisoni
- Memory Clinic and LANVIE - Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Barba L, Otto M, Abu-Rumeileh S. The Underestimated Relevance of Alzheimer's Disease Copathology in Amyotrophic Lateral Sclerosis. J Alzheimers Dis 2023; 95:1401-1404. [PMID: 37807784 DOI: 10.3233/jad-230900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Concomitant Alzheimer's disease (AD) pathology can be observed in approximately 10-15% of cases with amyotrophic lateral sclerosis (ALS). ALS-AD patients have a higher prevalence of amnestic cognitive disturbances, which may often precede motor symptoms. Cerebrospinal fluid (CSF) AD core biomarkers usually show no or slightly significant changes in ALS, whereas blood phosphorylated tau protein might be increased independently from AD copathology. Neurofilament proteins are consistently elevated in CSF and blood of ALS, but have been poorly investigated in ALS-AD. All these issues should be taken into account when using fluid biomarkers as inclusion criteria or secondary endpoints in clinical trials.
Collapse
Affiliation(s)
- Lorenzo Barba
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|