1
|
Abstract
In different organs and tissues, the lymphatic system serves as a drainage system for interstitial fluid and is useful for removing substances that would otherwise accumulate in the interstitium. In the brain, which lacks lymphatic circulation, the drainage and cleaning function is performed by the glymphatic system, called so for its dependence on glial cells and its similar function to that of the lymphatic system. In the present article, we define glymphatic insufficiency as the inability of the glymphatic system to properly perform the brain cleaning function. Furthermore, we propose that corpora amylacea or wasteosomes, which are protective structures that act as waste containers and accumulate waste products, are, in fact, a manifestation of chronic glymphatic insufficiency. Assuming this premise, we provide an explanation that coherently links the formation, distribution, structure, and function of these bodies in the human brain. Moreover, we open up new perspectives in the study of the glymphatic system since wasteosomes can provide information about which variables have the greatest impact on the glymphatic system and which diseases occur with chronic glymphatic insufficiency. For example, based on the presence of wasteosomes, it seems that aging, sleep disorders, and cerebrovascular pathologies have the highest impact on the glymphatic system, whereas neurodegenerative diseases have a more limited impact. Furthermore, as glymphatic insufficiency is a risk factor for neurodegenerative diseases, information provided by wasteosomes could help to define the strategies and actions that can prevent glymphatic disruptions, thus limiting the risk of developing neurodegenerative diseases.
Collapse
|
2
|
Riba M, Del Valle J, Augé E, Vilaplana J, Pelegrí C. From corpora amylacea to wasteosomes: History and perspectives. Ageing Res Rev 2021; 72:101484. [PMID: 34634491 DOI: 10.1016/j.arr.2021.101484] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022]
Abstract
Corpora amylacea (CA) have been described in several human organs and have been associated with ageing and several pathological conditions. Although they were first discovered two centuries ago, their function and significance have not yet been identified. Here, we provide a chronological summary of the findings on CA in various organs and identify their similarities. After collecting and integrating these findings, we propose to consider CA as waste containers created by specific cells, which sequester waste products and foreign products, and assemble them within a glycan structure. The containers are then secreted into the external medium or interstitial spaces, in this latter case subsequently being phagocytosed by macrophages. This proposal explains, among others, why CA are so varied in content, why only some of them contain fibrillary amyloid proteins, why all of them contain glycan structures, why some of them contain neo-epitopes and are phagocytosed, and why they can be intracellular or extracellular structures. Lastly, in order to avoid the ambiguity of the term amyloid (which can indicate starch-like structures but also insoluble fibrillary proteins), we propose renaming CA as "wasteosomes", emphasising the waste products they entrap rather than their misleading amyloid properties.
Collapse
Affiliation(s)
- Marta Riba
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain; Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Jaume Del Valle
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain; Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Elisabet Augé
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain; Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Jordi Vilaplana
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain; Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| | - Carme Pelegrí
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; Institut de Neurociències, Universitat de Barcelona, 08035 Barcelona, Spain; Centros de Biomedicina en Red de Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
3
|
Xu C, Owen JE, Gislason T, Benediktsdottir B, Robinson SR. Quantitative analysis of size and regional distribution of corpora amylacea in the hippocampal formation of obstructive sleep apnoea patients. Sci Rep 2021; 11:20892. [PMID: 34686751 PMCID: PMC8536671 DOI: 10.1038/s41598-021-99795-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Corpora amylacea (CoA) are spherical aggregates of glucose polymers and proteins within the periventricular, perivascular and subpial regions of the cerebral cortex and the hippocampal cornu ammonis (CA) subfields. The present study quantified the distribution of CoA in autopsied hippocampi of patients with obstructive sleep apnoea (OSA) using ethanolamine-induced fluorescence. CoA were observed in 29 of 30 patients (96.7%). They were most abundant in periventricular regions (wall of lateral ventricle, alveus, fimbria and CA4), rarely found in the CA3 and CA1, and undetectable in the CA2 or subiculum. A spatiotemporal sequence of CoA deposition was postulated, beginning in the fimbria and progressively spreading around the subpial layer until they extended medially to the wall of the lateral ventricle and laterally to the collateral sulcus. This ranked CoA sequence was positively correlated with CoA packing density (count and area fraction) and negatively correlated with CoA minimum diameters (p < 0.05). Although this sequence was not correlated with age or body mass index (BMI), age was positively correlated with the mean and maximum diameters of CoA. These findings support the view that the spatiotemporal sequence of CoA deposition is independent of age, and that CoA become larger due to the accretion of new material over time.
Collapse
Affiliation(s)
- Cuicui Xu
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jessica E Owen
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Thorarinn Gislason
- Department of Respiratory Medicine and Sleep, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Department of Clinical Biochemistry, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bryndis Benediktsdottir
- Department of Respiratory Medicine and Sleep, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,Department of Clinical Biochemistry, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Stephen R Robinson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia. .,Institute for Breathing and Sleep, Austin Health, Heidelberg, VIC, Australia. .,School of Health and Biomedical Sciences, College of Science, Engineering & Health, RMIT University, PO Box 71, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
4
|
Bathini P, Mottas A, Jaquet M, Brai E, Alberi L. Progressive signaling changes in the olfactory nerve of patients with Alzheimer's disease. Neurobiol Aging 2019; 76:80-95. [DOI: 10.1016/j.neurobiolaging.2018.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 02/08/2023]
|
5
|
Paré B, Lehmann M, Beaudin M, Nordström U, Saikali S, Julien JP, Gilthorpe JD, Marklund SL, Cashman NR, Andersen PM, Forsberg K, Dupré N, Gould P, Brännström T, Gros-Louis F. Misfolded SOD1 pathology in sporadic Amyotrophic Lateral Sclerosis. Sci Rep 2018; 8:14223. [PMID: 30242181 PMCID: PMC6155098 DOI: 10.1038/s41598-018-31773-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/15/2018] [Indexed: 11/30/2022] Open
Abstract
Aggregation of mutant superoxide dismutase 1 (SOD1) is a pathological hallmark of a subset of familial ALS patients. However, the possible role of misfolded wild type SOD1 in human ALS is highly debated. To ascertain whether or not misfolded SOD1 is a common pathological feature in non-SOD1 ALS, we performed a blinded histological and biochemical analysis of post mortem brain and spinal cord tissues from 19 sporadic ALS, compared with a SOD1 A4V patient as well as Alzheimer’s disease (AD) and non-neurological controls. Multiple conformation- or misfolded-specific antibodies for human SOD1 were compared. These were generated independently by different research groups and were compared using standardized conditions. Five different misSOD1 staining patterns were found consistently in tissue sections from SALS cases and the SOD1 A4V patient, but were essentially absent in AD and non-neurological controls. We have established clear experimental protocols and provide specific guidelines for working, with conformational/misfolded SOD1-specific antibodies. Adherence to these guidelines will aid in the comparison of the results of future studies and better interpretation of staining patterns. This blinded, standardized and unbiased approach provides further support for a possible pathological role of misSOD1 in SALS.
Collapse
Affiliation(s)
- Bastien Paré
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center - Enfant-Jésus Hospital, Québec, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada
| | - Manuela Lehmann
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Marie Beaudin
- Neuroscience Division of the CHU de Québec and Department of Medicine of the Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Ulrika Nordström
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Stephan Saikali
- Department of Medical Biology, Division of Anatomic Pathology and Neuropathology, CHU de Québec, Hôpital de l'Enfant-Jésus, Québec, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, Laval University, Québec City, Québec, Canada.,Centre de Recherche CERVO, Québec City, Québec, Canada
| | - Jonathan D Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden
| | - Neil R Cashman
- Department of Medicine (Neurology), Brain Research Center, University of British Columbia, Vancouver, BC, Canada
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Karin Forsberg
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Nicolas Dupré
- Neuroscience Division of the CHU de Québec and Department of Medicine of the Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Peter Gould
- Department of Medical Biology, Division of Anatomic Pathology and Neuropathology, CHU de Québec, Hôpital de l'Enfant-Jésus, Québec, Canada
| | - Thomas Brännström
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - François Gros-Louis
- Laval University Experimental Organogenesis Research Center/LOEX, Division of Regenerative Medicine, CHU de Québec Research Center - Enfant-Jésus Hospital, Québec, Canada. .,Department of Surgery, Faculty of Medicine, Laval University, Québec, Canada.
| |
Collapse
|
6
|
Ubogu EE, Hong STK, Akman HO, Dimauro S, Katirji B, Preston DC, Shapiro BE. Adult polyglucosan body disease: A case report of a manifesting heterozygote. Muscle Nerve 2005; 32:675-81. [PMID: 16007674 DOI: 10.1002/mus.20384] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A 62-year-old man developed progressive gait instability, bladder dysfunction, proximal weakness, distal sensory loss, and mild cognitive impairment over 6 years. Neurologic examination revealed upper and lower motor neuron dysfunction in the lower extremities, with distal sensory loss. Electrodiagnostic studies, magnetic resonance imaging of the brain, and sural nerve biopsy were consistent with adult polyglucosan body disease. Biochemical and genetic analyses demonstrated reduced glycogen brancher enzyme levels associated with a heterozygous point mutation (Tyr329Ser or Y329S) in the glycogen brancher enzyme gene on chromosome 3. Mutational heterozygosity in the glycogen brancher enzyme gene has not been previously reported as a cause for this rare disease. A review of the clinical presentation, pathogenesis, etiology, and diagnosis of this disease is presented.
Collapse
Affiliation(s)
- Eroboghene E Ubogu
- Neuromuscular Division, Department of Neurology, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, Ohio 44106-5098, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Buervenich S, Olson L, Galter D. Nestin-like immunoreactivity of corpora amylacea in aged human brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 94:204-8. [PMID: 11597782 DOI: 10.1016/s0169-328x(01)00166-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Corpora amylacea (CA) are spherical bodies routinely observed throughout the aged human brain, normally found at high frequencies under the ependymal lining of the ventricles. We identified clusters of CA under the ependyma of the lateral and fourth ventricles in post-mortem brain material from Parkinson patients as well as age-matched controls. Using a monoclonal antibody we found CA to be immunoreactive for nestin, a marker of neural stem cells, while no other structures in the investigated brain areas were labeled by this antibody. Nestin filaments are therefore possible structural components of CA, a finding which may trigger new hypotheses regarding their biogenesis and function.
Collapse
Affiliation(s)
- S Buervenich
- Department of Neuroscience, Retzius Laboratory, Retzius väg 8, Karolinska Institutet, 17177, Stockholm, Sweden
| | | | | |
Collapse
|
8
|
Abstract
Adult polyglucosan body disease is a clinicopathologic entity characterized by progressive upper and lower motor neuron dysfunction, sensory loss in the lower extremities, sphincter dysfunction, and occasionally dementia. Pathologically, numerous large polyglucosan bodies are noted in peripheral nerves, cerebral hemispheres, and the spinal cord, as well as in other systemic tissues. We present a case of probable adult polyglucosan body disease based on clinical history and examination, magnetic resonance images, and sural nerve biopsy findings.
Collapse
Affiliation(s)
- C M Klein
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
9
|
Cavanagh JB. Corpora-amylacea and the family of polyglucosan diseases. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:265-95. [PMID: 10209236 DOI: 10.1016/s0165-0173(99)00003-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The history, characters, composition and topography of corpora amylacea (CA) in man and the analogous polyglucosan bodies (PGB) in other species are documented, noting particularly the wide variation in the numbers found with age and in neurological disease. Their origins from both neurons and glia and their probable migrations and ultimate fate are discussed. Their presence is also noted in other organs, particularly in the heart. The occurrence in isolated cases of occasional 'massive' usually focal accumulations of similar polyglucosan bodies in association with certain chronic neurological diseases is noted and the specific conditions Adult Polyglucosan body disease and type IV glycogenosis where they are found throughout the nervous system in great excess is discussed. The distinctive differences of CA from the PGB of Lafora body disease and Bielschowsky body disease are emphasised. When considering their functional roles, a parallel is briefly drawn on the one hand between normal CA and the bodies in the polyglucosan disorders and on the other with the lysosomal system and its associated storage diseases. It is suggested that these two systems are complementary ways by which large, metabolically active cells such as neurons, astrocytes, cardiac myocytes and probably many other cell types, dispose of the products of stressful metabolic events throughout life and the continuing underlying process of aging and degradation of long lived cellular proteins. Each debris disposal system must be regulated in its own way and must inevitably, a priori, be heir to metabolic defects that give rise in each to its own set of metabolic disorders.
Collapse
Affiliation(s)
- J B Cavanagh
- Department of Clinical Neurosciences, Institute of Psychiatry, De Crespigny Avenue, London SE5 8AF, UK
| |
Collapse
|