1
|
Barros G, Federico E, Fillingham P, Chanana P, Kaneko N, Zheng Y, Kim LJ, Levitt MR. Endothelial Cell Transcription Modulation in Cerebral Aneurysms After Endovascular Flow Diversion. Ann Biomed Eng 2024; 52:3253-3263. [PMID: 39095638 PMCID: PMC11563914 DOI: 10.1007/s10439-024-03591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Flow diverting stents (FDS) are used to treat cerebral aneurysms, by promoting thrombosis and occlusion of the aneurysm sac. However, retreatment is required in some cases, and the biologic basis behind treatment outcome is not known. The goal of this study was to understand how changes in hemodynamic flow after FDS placement affect aneurysmal endothelial cell (EC) activity. METHODS Three-dimensional models of patient-specific aneurysms were created to quantify the EC response to FDS placement. Computational fluid dynamic simulations were used to determine the hemodynamic impact of FDS. Two identical models were created for each patient; into one a FDS was inserted. Each model was then populated with human carotid ECs and subjected to patient-specific pulsatile flow for 24 h. ECs were isolated from aneurysm dome from each model and bulk RNA sequencing was performed. RESULTS Paired untreated and treated models were created for four patients. Aneurysm dome EC analysis revealed 366 (2.6%) significant gene changes between the untreated and FDS conditions, out of 13909 total expressed genes. Gene set enrichment analysis of the untreated models demonstrated enriched gene ontology terms related to cell adhesion, growth/tensile activity, cytoskeletal organization, and calcium ion binding. In the FDS models, enriched terms were related to cellular proliferation, ribosomal activity, RNA splicing, and protein folding. CONCLUSION Treatment of cerebral aneurysms with FDS induces significant EC gene transcription changes related to aneurysm hemodynamics in patient-specific in vitro 3D-printed models subjected to pulsatile flow. Further investigation is needed into the relationship between transcriptional change and treatment outcome.
Collapse
Affiliation(s)
- Guilherme Barros
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Emma Federico
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Patrick Fillingham
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- Stroke & Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Pritha Chanana
- Bioinformatics Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Naoki Kaneko
- Division of Interventional Neuroradiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Stroke & Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Louis J Kim
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
- Stroke & Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Michael R Levitt
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA.
- Department of Radiology, University of Washington, Seattle, WA, USA.
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA.
- Stroke & Applied Neuroscience Center, University of Washington, Seattle, WA, USA.
- Department of Neurology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
DeMaria WG, Figueroa-Milla AE, Kaija A, Harrington AE, Tero B, Ryzhova L, Liaw L, Rolle MW. Endothelial Cells Increase Mesenchymal Stem Cell Differentiation in Scaffold-Free 3D Vascular Tissue. Tissue Eng Part A 2024. [PMID: 39109944 DOI: 10.1089/ten.tea.2024.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
In this study, we present a versatile, scaffold-free approach to create ring-shaped engineered vascular tissue segments using human mesenchymal stem cell-derived smooth muscle cells (hMSC-SMCs) and endothelial cells (ECs). We hypothesized that incorporation of ECs would increase hMSC-SMC differentiation without compromising tissue ring strength or fusion to form tissue tubes. Undifferentiated hMSCs and ECs were co-seeded into custom ring-shaped agarose wells using four different concentrations of ECs: 0%, 10%, 20%, and 30%. Co-seeded EC and hMSC rings were cultured in SMC differentiation medium for a total of 22 days. Tissue rings were then harvested for histology, Western blotting, wire myography, and uniaxial tensile testing to examine their structural and functional properties. Differentiated hMSC tissue rings comprising 20% and 30% ECs exhibited significantly greater SMC contractile protein expression, endothelin-1 (ET-1)-meditated contraction, and force at failure compared with the 0% EC rings. On average, the 0%, 10%, 20%, and 30% EC rings exhibited a contractile force of 0.745 ± 0.117, 0.830 ± 0.358, 1.31 ± 0.353, and 1.67 ± 0.351 mN (mean ± standard deviation [SD]) in response to ET-1, respectively. Additionally, the mean maximum force at failure for the 0%, 10%, 20%, and 30% EC rings was 88.5 ± 36. , 121 ± 59.1, 147 ± 43.1, and 206 ± 0.8 mN (mean ± SD), respectively. Based on these results, 30% EC rings were fused together to form tissue-engineered blood vessels (TEBVs) and compared with 0% EC TEBV controls. The addition of 30% ECs in TEBVs did not affect ring fusion but did result in significantly greater SMC protein expression (calponin and smoothelin). In summary, co-seeding hMSCs with ECs to form tissue rings resulted in greater contraction, strength, and hMSC-SMC differentiation compared with hMSCs alone and indicates a method to create a functional 3D human vascular cell coculture model.
Collapse
Affiliation(s)
- William G DeMaria
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Andre E Figueroa-Milla
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Abigail Kaija
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | | | - Benjamin Tero
- MaineHealth Institute for Research, Scarborough, Maine, USA
- The Roux Institute, Northeastern University, Portland, Maine, USA
| | - Larisa Ryzhova
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Lucy Liaw
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
- The Roux Institute, Northeastern University, Portland, Maine, USA
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Zhu Y, Zeng F, Liu J, Mu S, Zhang Y, Yang X. Evaluation of the EMBOPIPE flow diverter device: in vivo and in vitro experiments. Chin Neurosurg J 2024; 10:8. [PMID: 38468329 PMCID: PMC10929142 DOI: 10.1186/s41016-024-00360-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Although flow diverter device (FDD) has brought revolutionized advances in endovascular treatment of intracranial aneurysms, it also presents considerable drawbacks as well, as the innovation for novel device has never stopped. This preclinical research aims to evaluate the safety and efficacy of a newly developed FDD, the EMBOPIPE, through in vivo and in vitro experiments. METHODS Aneurysms were induced in 20 New Zealand white rabbits which were randomized to three follow-up groups according to the time elapsed after EMBOPIPE implantation (28, 90, and 180 days). Additional EMBOPIPEs were implanted in the abdominal aorta to cover the renal artery in nine rabbits. Angiography was performed immediately after device placement in all groups. Aneurysm occlusion, patency of renal arteries, and pathological outcomes were assessed. For the in vitro experiments, we measured the thrombogenic potential of EMBOPIPEs (n = 5) compared with bare stents (n = 5) using the Chandler loop model. Evaluation indicators were the platelet counts, macroscopic observations and scanning electron microscopy. RESULTS EMBOPIPEs were successfully deployed in 19 of 20 rabbit aneurysms (95.0%). The rates of complete or near-complete aneurysm occlusion were 73.3%, 83.3%, and 100% in the 28-, 90-, and 180-day groups, respectively. All renal arteries covered by EMBOPIPEs remained patent, and the mean difference in renal artery diameter before and after the device placement in the three groups was 0.07 mm, 0.10 mm, and 0.10 mm, respectively (p = 0.77). Renal pathology was normal in all cases. The pathological findings of the aneurysms were as follows: thickened and adequate neointimal coverage at the aneurysm neck, minimal inflammatory response, near-complete smooth muscle cell layer, and endothelialization along the device. In vitro experiments showed that the platelet counts were significantly higher in EMBOPIPE blood samples than in bare stent samples and that platelet adhesion to the device was lower in the EMBOPIPE stent struts compared with bare stent struts through macroscopic observations and scanning electron microscopy. CONCLUSIONS The EMBOPIPE can achieve high rates of aneurysm occlusion while maintaining excellent branch artery patency. It exhibited wonderful pathological results. This novel device with phosphorylcholine surface modification could reduce platelet thrombus attached to the stent struts.
Collapse
Affiliation(s)
- Yongnan Zhu
- Department of Beijing Neurosurgical Institute, Fengtai District, Capital Medical University, No. 119, South Fourth Ring West Road, Beijing, 100070, People's Republic of China
| | - Fanyan Zeng
- Fengxian District, Heartcare Medical Technology Co., Ltd, Building 38, No. 356 Zhengbo Road, Shanghai, 200000, People's Republic of China
| | - Jian Liu
- Neurosurgical Institute & Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring West Road, Beijing, 100070, People's Republic of China
| | - Shiqing Mu
- Neurosurgical Institute & Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring West Road, Beijing, 100070, People's Republic of China
| | - Ying Zhang
- Department of Beijing Neurosurgical Institute, Fengtai District, Capital Medical University, No. 119, South Fourth Ring West Road, Beijing, 100070, People's Republic of China.
| | - Xinjian Yang
- Department of Beijing Neurosurgical Institute, Fengtai District, Capital Medical University, No. 119, South Fourth Ring West Road, Beijing, 100070, People's Republic of China.
- Neurosurgical Institute & Department of Neurosurgery, Fengtai District, Beijing Tiantan Hospital, Capital Medical University, No. 119, South Fourth Ring West Road, Beijing, 100070, People's Republic of China.
| |
Collapse
|
4
|
Yang L, Hao X, Gao B, Ren C, Du H, Su X, Zhang D, Bao T, Qiao Z, Cao Q. Endothelialization of PTFE-covered stents for aneurysms and arteriovenous fistulas created in canine carotid arteries. Sci Rep 2024; 14:4803. [PMID: 38413764 PMCID: PMC10899654 DOI: 10.1038/s41598-024-55532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
To investigate the endothelialization of covered and bare stents deployed in the canine carotid arteries and subclavian arteries for treating experimental aneurysms and arteriovenous fistulas, twenty aneurysms were created in 10 dogs, and 20 fistulas in another 10 dogs. The Willis balloon-expandable covered stent and a self-expandable covered stent were used to treat these lesions, and a self-expandable bare stent was deployed in the subclavian artery for comparison. Followed up for up to 12 months, the gross observation, pathological staining, and scanning electronic microscopic data were analyzed. Two weeks after creation of animal model, thirty self-expandable covered stents and ten balloon-expandable covered stents were deployed. Fifteen bare stents were deployed within the left subclavian arteries. Twenty days after stenting, the aneurysm significantly shrank. At 6 months, the thrombi within the aneurysm cavity were organized. Three to 12 months later, most covered and bare stents were covered by a thin transparent or white layer of endothelial intima. Layers of intima or pseudomembrane were formed on the stent 20-40 days after stent deployment. Over three months, the pseudomembrane became organized, thinner, and merged into the vascular wall. Under scanning electronic microscopy, the surface of covered and bare stents had only deposition of collagen fibers and rare endothelial cells 20-40 days after stenting. From three to ten months, the endothelial cells on the internal surface of stent became mature, with spindle, stripe-like or quasi round morphology along the blood flow direction. Over time, the endothelial cells became mature. In conclusion, three months after deployment in canines' arteries, the self-expandable bare and covered stents have mostly been covered by endothelial cells which become maturer over time, whereas the balloon-expandable covered stents do not have complete coverage of endothelial cells at three months, especially for protruding stent struts and areas. Over time, the endothelialization will become mature.
Collapse
Affiliation(s)
- Lei Yang
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China.
| | - Xiaohong Hao
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Bulang Gao
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Chunfeng Ren
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Hong Du
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - XianHui Su
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Dongliang Zhang
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Tong Bao
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Zongrong Qiao
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Qinying Cao
- Shijiazhuang People's Hospital, Shijiazhuang, 050011, Hebei Province, People's Republic of China.
| |
Collapse
|
5
|
Turhon M, Kang H, Liu J, Zhang Y, Zhang Y, Huang J, Wang K, Li M, Liu J, Zhang H, Li T, Song D, Zhao Y, Luo B, Maimaiti A, Aisha M, Wang Y, Feng W, Wang Y, Wan J, Mao G, Shi H, Yang X, Guan S. In-Stent Stenosis After Pipeline Embolization Device in Intracranial Aneurysms: Incidence, Predictors, and Clinical Outcomes. Neurosurgery 2022; 91:943-951. [PMID: 36129281 DOI: 10.1227/neu.0000000000002142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In-stent stenosis (ISS) is a delayed complication that can occur after pipeline embolization device use when treating intracranial aneurysms (IAs). OBJECTIVE To assess the incidence, predictors, and outcomes of ISS. METHODS This was a retrospective, multicenter, observational study. All patient data were collected from a PLUS registry study. We collected data from patients with IA who completed digital subtraction angiography at follow-up and divided patients into "non-ISS," "mild ISS," or "severe ISS" groups. Multivariate logistic regression analysis was conducted to determine predictors of ISS. RESULTS A total of 1171 consecutive patients with 1322 IAs participated in this study. Angiographic follow-up was available for 662 patients with 728 IAs, and the mean follow-up time was 9 months. ISS was detected in 73 cases (10.03%), including 61 mild ISS cases and 12 severe ISS cases. Univariate and multivariable analysis demonstrated that current smoking history (mild ISS: OR 2.15, 95% CI 1.122-4.118, P = .021; severe ISS: OR 5.858, 95% CI 1.186-28.93, P = .030) and cerebral atherosclerosis (mild ISS: OR 5.694, 95% CI 3.193-10.15, P = .001; severe ISS: OR 6.103, 95% CI 1.384-26.91, P = .017) were independent predictors of ISS. Compared with the other groups, the severe ISS group had higher rate of ischemic stroke (33.3%). CONCLUSION ISS occurs in approximately 10.03% of cases at a mean follow-up of 9 months. Statistically, current smoking history and cerebral atherosclerosis are the main predictors of ISS. Severe ISS may be associated with higher risk of neurological ischemic events in patients with IA after pipeline embolization device implantation.
Collapse
Affiliation(s)
- Mirzat Turhon
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China.,Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Huibin Kang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China.,Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China.,Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China.,Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ying Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China.,Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jiliang Huang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China.,Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Kun Wang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China.,Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Mengxing Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China.,Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jianmin Liu
- Department of Neurosurgery, Changhai Hospital, Shanghai, People's Republic of China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Tianxiao Li
- Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, People's Republic of China
| | - Donglei Song
- Department of Neurosurgery, Shanghai Donglei Brain Hospital, Shanghai, People's Republic of China
| | - Yuanli Zhao
- Department of Neurosurgery, Peking University International Hospital, Beijing, People's Republic of China
| | - Bin Luo
- Department of Neurosurgery, Peking University International Hospital, Beijing, People's Republic of China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, People's Republic of China
| | - Maimaitili Aisha
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, People's Republic of China
| | - Yunyan Wang
- Department of Neurosurgery, Qilu Hospital, Shandong University, Jinan, People's Republic of China
| | - Wenfeng Feng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yang Wang
- Department of Neurosurgery, First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Neurosurgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jieqing Wan
- Department of Neurosurgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, People's Republic of China
| | - Guohua Mao
- Department of Neurosurgery, Nanchang University Second Affiliated Hospital, Nanchang, People's Republic of China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Xinjian Yang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, People's Republic of China.,Department of Interventional Neuroradiology, Beijing TianTan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Sheng Guan
- Department of Intervention Neuroradiology, Zhengzhou University First Affiliated Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
6
|
Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity. Int J Mol Sci 2021; 22:ijms22031195. [PMID: 33530487 PMCID: PMC7865724 DOI: 10.3390/ijms22031195] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
A hot topic in biomedical science is the implementation of more predictive in vitro models of human tissues to significantly improve the knowledge of physiological or pathological process, drugs discovery and screening. Bidimensional (2D) culture systems still represent good high-throughput options for basic research. Unfortunately, these systems are not able to recapitulate the in vivo three-dimensional (3D) environment of native tissues, resulting in a poor in vitro–in vivo translation. In addition, intra-species differences limited the use of animal data for predicting human responses, increasing in vivo preclinical failures and ethical concerns. Dealing with these challenges, in vitro 3D technological approaches were recently bioengineered as promising platforms able to closely capture the complexity of in vivo normal/pathological tissues. Potentially, such systems could resemble tissue-specific extracellular matrix (ECM), cell–cell and cell–ECM interactions and specific cell biological responses to mechanical and physical/chemical properties of the matrix. In this context, this review presents the state of the art of the most advanced progresses of the last years. A special attention to the emerging technologies for the development of human 3D disease-relevant and physiological models, varying from cell self-assembly (i.e., multicellular spheroids and organoids) to the use of biomaterials and microfluidic devices has been given.
Collapse
|