1
|
Kiełbowski K, Bakinowska E, Gorący-Rosik A, Figiel K, Judek R, Rosik J, Dec P, Modrzejewski A, Pawlik A. DNA and RNA Methylation in Rheumatoid Arthritis-A Narrative Review. EPIGENOMES 2025; 9:2. [PMID: 39846569 PMCID: PMC11755448 DOI: 10.3390/epigenomes9010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Rheumatoid arthritis (RA) is a progressive autoimmune disease leading to structural and functional joint damage and, eventually, to physical disability. The pathogenesis of the disease is highly complex and involves interactions between fibroblast-like synoviocytes (FLSs) and immune cells, which stimulate the secretion of pro-inflammatory factors, leading to chronic inflammation. In recent years, studies have demonstrated the importance of epigenetics in RA. Specifically, epigenetic alterations have been suggested to serve as diagnostic and treatment biomarkers, while epigenetic mechanisms are thought to be involved in the pathogenesis of RA. Epigenetic regulators coordinate gene expression, and in the case of inflammatory diseases, they regulate the expression of a broad range of inflammatory molecules. In this review, we discuss current evidence on the involvement of DNA and RNA methylation in RA.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| | - Anna Gorący-Rosik
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Karolina Figiel
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| | - Roksana Judek
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| | - Paweł Dec
- Department of Plastic and Reconstructive Surgery, 109 Military Hospital, 71-422 Szczecin, Poland
| | - Andrzej Modrzejewski
- Clinical Department of General Surgery, Pomeranian Medical University in Szczecin, Piotra Skargi 9-11, 70-965 Szczecin, Poland;
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (K.F.); (R.J.); (J.R.)
| |
Collapse
|
2
|
Kamel NA, Bashir DW, El-Leithy EMM, Tohamy AF, Rashad MM, Ali GE, El-Saba AAA. "Polyethylene Terephthalate Nanoplastics Caused Hepatotoxicity in Mice Can be Prevented by Betaine: Molecular and Immunohistochemical Insights". J Biochem Mol Toxicol 2024; 38:e70088. [PMID: 39651595 DOI: 10.1002/jbt.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/11/2024]
Abstract
Polyethylene terephthalate nanoplastics (PET-NPs) are one of the most frequently distributed nanoplastics in daily life. Betaine is thought to be a promising hepatoprotective agent. The current investigation focused on whether orally administered PET-NPs caused hepatotoxicity and ameliorative effect of betaine. Forty adult male Swiss albino mice were randomly split into four groups: group I control, group II betaine (1000 mg/kg I/P), group III PET-NPs (200 mg/kg orally), and group IV betaine plus PET-NPs at doses similar to group II& III respectively. After 30 days, blood sample were collected then animals were euthanized and liver specimens were dissected out for biochemical and histopathological examination. PET-NPs induced a significant elevation in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and malondialdehyde (MDA), as well as an increase in the inflammatory genes a proto-oncogene (c-FOS) and cyclooxygenase 2 (COX2) (p ≤ 0.05), with a substantial decrease in glutathione (GSH) (p ≤ 0.05). Furthermore, on the level of histopathological analysis PET-NPs caused alterations in hepatic tissue architecture as vascular dilatation and congestion with hepatocytes degeneration, bile duct epithelial hyperplasia and inflammatory cell infiltrations While on the level of immunohistochemistry, PET-NPs trigger positive tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-ҠB) expression in comparison to control. Meanwhile, betaine treatment reduced the deleterious effects of PET-NPs. To summarize, PET-NPs may cause hepatotoxicity in mice, with a belief that betaine could mitigate the detrimental impact.
Collapse
Affiliation(s)
- Nehal A Kamel
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ebtihal M M El-Leithy
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Adel F Tohamy
- Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Maha M Rashad
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ghada E Ali
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Abdel Aleem A El-Saba
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Zheng Y, Cai X, Ren F, Yao Y. The role of non-coding RNAs in fibroblast-like synoviocytes in rheumatoid arthritis. Int J Rheum Dis 2024; 27:e15376. [PMID: 39439368 DOI: 10.1111/1756-185x.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by synovial hyperplasia, and fibroblast-like synoviocytes (FLSs) constitute the majority of cells in the synovial tissue, playing a crucial role in the onset of RA. Dysregulation of FLSs function is a critical strategy in treating joint damage associated with RA. Non-coding RNAs, a class of RNA molecules that do not encode proteins, participate in the development of various diseases. This article aims to review the progress in the study of long non-coding RNAs, microRNAs, and circular RNAs in FLSs. Non-coding RNAs are involved in the pathogenesis of RA, directly or indirectly regulating FLSs' proliferation, migration, invasion, apoptosis, and inflammatory responses. Furthermore, non-coding RNAs also influence DNA methylation and osteogenic differentiation in FLSs. Therefore, non-coding RNAs hold promise as biomarkers for diagnosing RA. Targeting non-coding RNAs in FLSs locally represents a potential strategy for future therapies in RA.
Collapse
Affiliation(s)
- Yongquan Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Fujia Ren
- Department of Pharmacy, Hangzhou Women's Hospital, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Syed NH, Mussa A, Elmi AH, Jamal Al-Khreisat M, Ahmad Mohd Zain MR, Nurul AA. Role of MicroRNAs in Inflammatory Joint Diseases: A Review. Immunol Invest 2024; 53:185-209. [PMID: 38095847 DOI: 10.1080/08820139.2023.2293095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/03/2023] [Indexed: 03/23/2024]
Abstract
Inflammatory arthritis commonly initiates in the soft tissues lining the joint. This lining swells, as do the cells in it and inside the joint fluid, producing chemicals that induce inflammation signs such as heat, redness, and swelling. MicroRNA (miRNA), a subset of non-coding small RNA molecules, post-transcriptionally controls gene expression by targeting their messenger RNA. MiRNAs modulate approximately 1/3 of the human genome with their multiple targets. Recently, they have been extensively studied as key modulators of the innate and adaptive immune systems in diseases such as allergic disorders, types of cancer, and cardiovascular diseases. However, research on the different inflammatory joint diseases, such as rheumatoid arthritis, gout, Lyme disease, ankylosing spondylitis, and psoriatic arthritis, remains in its infancy. This review presents a deeper understanding of miRNA biogenesis and the functions of miRNAs in modulating the immune and inflammatory responses in the above-mentioned inflammatory joint diseases. According to the literature, it has been demonstrated that the development of inflammatory joint disorders is closely related to different miRNAs and their specific regulatory mechanisms. Furthermore, they may present as possible prognostic and diagnostic biomarkers for all diseases and may help in developing a therapeutic response. However, further studies are needed to determine whether manipulating miRNAs can influence the development and progression of inflammatory joint disorders.
Collapse
Affiliation(s)
- Nazmul Huda Syed
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Ali Mussa
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman, Sudan
| | - Abdirahman Hussein Elmi
- Department of Microbiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | | | - Asma Abdullah Nurul
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| |
Collapse
|
5
|
Cheng P, Wei H, Chen H, Wang Z, Mao P, Zhang H. DNMT3a-mediated methylation of PPARγ promote intervertebral disc degeneration by regulating the NF-κB pathway. J Cell Mol Med 2024; 28:e18048. [PMID: 37986543 PMCID: PMC10826446 DOI: 10.1111/jcmm.18048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common chronic musculoskeletal disease that causes chronic low back pain and imposes an immense financial strain on patients. The pathological mechanisms underlying IVDD have not been fully elucidated. The development of IVDD is closely associated with abnormal epigenetic changes, suggesting that IVDD progression may be controlled by epigenetic mechanisms. Consequently, this study aimed to investigate the role of epigenetic regulation, including DNA methyltransferase 3a (DNMT3a)-mediated methylation and peroxisome proliferator-activated receptor γ (PPARγ) inhibition, in IVDD development. The expression of DNMT3a and PPARγ in early and late IVDD of nucleus pulposus (NP) tissues was detected using immunohistochemistry and western blotting analyses. Cellularly, DNMT3a inhibition significantly inhibited IL-1β-induced apoptosis and extracellular matrix (ECM) degradation in rat NP cells. Pretreatment with T0070907, a specific inhibitor of PPARγ, significantly reversed the anti-apoptotic and ECM degradation effects of DNMT3a inhibition. Mechanistically, DNMT3a modified PPARγ promoter hypermethylation to activate the nuclear factor-κB (NF-κB) pathway. DNMT3a inhibition alleviated IVDD progression. Conclusively, the results of this study show that DNMT3a activates the NF-κB pathway by modifying PPARγ promoter hypermethylation to promote apoptosis and ECM degradation. Therefore, we believe that the ability of DNMT3a to mediate the PPARγ/NF-κB axis may provide new ideas for the potential pathogenesis of IVDD and may become an attractive target for the treatment of IVDD.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
- Department of OrthopedicsLanzhou University Second HospitalLanzhouGansu ProvincePR China
| | - Hang‐Zhi Wei
- Department of Department of General SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Hai‐Wei Chen
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
| | - Zhi‐Qiang Wang
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
| | - Peng Mao
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPR China
| | - Hai‐Hong Zhang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouGansu ProvincePR China
| |
Collapse
|
6
|
Bian Y, Xiang Z, Wang Y, Ren Q, Chen G, Xiang B, Wang J, Zhang C, Pei S, Guo S, Xiao L. Immunomodulatory roles of metalloproteinases in rheumatoid arthritis. Front Pharmacol 2023; 14:1285455. [PMID: 38035026 PMCID: PMC10684723 DOI: 10.3389/fphar.2023.1285455] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune pathology characterized by persistent synovial inflammation and gradually advancing bone destruction. Matrix metalloproteinases (MMPs), as a family of zinc-containing enzymes, have been found to play an important role in degradation and remodeling of extracellular matrix (ECM). MMPs participate in processes of cell proliferation, migration, inflammation, and cell metabolism. A growing number of persons have paid attention to their function in inflammatory and immune diseases. In this review, the details of regulation of MMPs expression and its expression in RA are summarized. The role of MMPs in ECM remodeling, angiogenesis, oxidative and nitrosative stress, cell migration and invasion, cytokine and chemokine production, PANoptosis and bone destruction in RA disease are discussed. Additionally, the review summarizes clinical trials targeting MMPs in inflammatory disease and discusses the potential of MMP inhibition in the therapeutic context of RA. MMPs may serve as biomarkers for drug response, pathology stratification, and precision medicine to improve clinical management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Yanqin Bian
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zheng Xiang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yaofeng Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ren
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Guoming Chen
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bei Xiang
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianye Wang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengbo Zhang
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaoqiang Pei
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Lianbo Xiao
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Wang Y, Yan H, Zhao L, He XL, Bao TRG, Sun XD, Yang YC, Zhu SY, Gao XX, Wang AH, Jia JM. An integrated network pharmacology approach reveals that Darutigenol reduces inflammation and cartilage degradation in a mouse collagen-induced arthritis model by inhibiting the JAK-STAT3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116574. [PMID: 37160212 DOI: 10.1016/j.jep.2023.116574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Darutigenol (DL) is a natural active product derived from the Chinese herbal medicine Sigesbeckia glabrescens (Makino) Makino. It is administered as a traditional Chinese medicine (TCM) to dispel rheumatism, benefit the joints, and detoxify. However, its potential mechanism in the treatment of rheumatoid arthritis (RA) remains unknown. AIMS OF THE STUDY The objectives of this research were to determine the effects and elucidate the modes of action of DL on RA-related joint inflammation. MATERIALS AND METHODS Network pharmacology and molecular docking were used to screen and validate candidate DL targets for RA treatment, respectively. A DBA/1 mouse rheumatoid arthritis model was induced with bovine type II collagen. Intragastric DL administration was followed by the calculation of the clinical arthritis index. A section of the ankle joint was excised and stained and the pathological changes in it were observed. Enzyme-linked immunosorbent assays (ELISA) and western blotting (WB) were used to clarify the mechanisms of DL in RA treatment. RESULTS DL effectively attenuated the inflammation, mitigated the articular cartilage degradation, and bone erosion, and alleviated the inflammatory joints associated with RA. Network pharmacology screened six key targets of DL while molecular docking revealed that it docked well with its protein targets. The DL treatment group presented with significantly less ankle joint redness and swelling, a lower arthritis index scores and serum and bone marrow supernatant IL-6 levels, more complete ankle joint surfaces, and less synovial inflammation, cartilage degradation, and bone erosion than the collagen-induced arthritis (CIA) group. The DL treatment also substantially downregulated the Janus kinase (JAK)1, JAK3, matrix metalloproteinase (MMP)2, MMP9, and phospho-signal transducer and activator of transcription (p-STAT)3 proteins in the joints. CONCLUSIONS To the best of our knowledge, the present work was the first to demonstrate that DL has significant anti-inflammatory efficacy and reduces cartilage degradation and bone erosion. It also demonstrated that the anti-RA effect of DL may be explained by its ability to inhibit joint inflammation and reduce articular cartilage degradation through the interleukin (IL)-6/JAK1,3/STAT3 axis and downregulate MMP2 and MMP9. Hence, DL might play a therapeutic role in a mouse RA model.
Collapse
Affiliation(s)
- Yong Wang
- Teaching and Research Department of Chinese Materia Medica Resources, College of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Hui Yan
- Teaching and Research Department of Chinese Materia Medica Resources, College of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Long Zhao
- Teaching and Research Department of Chinese Materia Medica Resources, College of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xue-Lai He
- School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, 442000, People's Republic of China
| | - Te-Ri-Gen Bao
- Teaching and Research Department of Chinese Materia Medica Resources, College of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xian-Duo Sun
- Teaching and Research Department of Chinese Materia Medica Resources, College of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yong-Cheng Yang
- Teaching and Research Department of Chinese Materia Medica Resources, College of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shu-Yi Zhu
- Teaching and Research Department of Chinese Materia Medica Resources, College of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiao-Xu Gao
- Teaching and Research Department of Chinese Materia Medica Resources, College of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - An-Hua Wang
- Teaching and Research Department of Chinese Materia Medica Resources, College of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Jing-Ming Jia
- Teaching and Research Department of Chinese Materia Medica Resources, College of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
8
|
Mei X, Zhang B, Zhao M, Lu Q. An update on epigenetic regulation in autoimmune diseases. J Transl Autoimmun 2022; 5:100176. [PMID: 36544624 PMCID: PMC9762196 DOI: 10.1016/j.jtauto.2022.100176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases (AIDs) generally manifest as chronic immune disorders characterized by significant heterogeneity and complex symptoms. The discordant incidence of AIDs between monozygotic twins guided people to attach importance to environmental factors. Epigenetics is one of the major ways to be influenced, some of them can even occur years before clinical diagnosis. With the advent of high-throughput omics times, the mysterious veil of epigenetic modification in AIDs has been gradually unraveled, and some progress has been made in utilizing it as indicators of diagnosis and disease activity. For example, the hypomethylated IFI44L promoter in diagnosing systematic lupus erythematosus (SLE). More recently, newly identified noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are also believed to be involved in the etiology of AIDs while the initial factor behind those epigenetic alterations can be diverse from metabolism to microbiota. Update and comprehensive insights into epigenetics in AIDs can help us understand the pathogenesis and further orchestrate it to benefit patients in the future. Therefore, we reviewed the latest epigenetic findings in SLE, rheumatoid arthritis (RA), Type 1 diabetes (T1D), systemic sclerosis (SSc) primarily from cellular levels.
Collapse
Affiliation(s)
- Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China
| | - Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
9
|
Payet M, Dargai F, Gasque P, Guillot X. Epigenetic Regulation (Including Micro-RNAs, DNA Methylation and Histone Modifications) of Rheumatoid Arthritis: A Systematic Review. Int J Mol Sci 2021; 22:ijms222212170. [PMID: 34830057 PMCID: PMC8625518 DOI: 10.3390/ijms222212170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
The inflammatory reaction in rheumatoid arthritis (RA) is controlled by major epigenetic modifications that modulate the phenotype of synovial and immune cells. The aim of this work was to perform a systematic review focusing on miR expression, DNA methylation and histone modifications in RA. We demonstrated that, in human samples, the expressions of miR-155, miR-146a and miR-150 were significantly decreased while the expression of miR-410-3p was significantly increased in the RA group. Moreover, miR-146a significantly decreased pro-autoimmune IL-17 cytokine expression in RA. In a murine model, miR-34a inhibition can ameliorate the arthritis score. However, this evidence remain critically insufficient to support current therapeutic applications in RA patients.
Collapse
Affiliation(s)
- Melissa Payet
- Research Unit ‘Etudes en Pharmaco-Immunologie’ UR EPI, Université de la Réunion, 97400 Réunion, France; (P.G.); (X.G.)
- Correspondence:
| | - Farouk Dargai
- Orthopedic Clinical Department, CHU Bellepierre, Reunion University Hospital, 97400 Réunion, France;
| | - Philippe Gasque
- Research Unit ‘Etudes en Pharmaco-Immunologie’ UR EPI, Université de la Réunion, 97400 Réunion, France; (P.G.); (X.G.)
- Immunology Laboratory (LICE-OI), CHU Bellepierre, Reunion University Hospital, 97400 Réunion, France
| | - Xavier Guillot
- Research Unit ‘Etudes en Pharmaco-Immunologie’ UR EPI, Université de la Réunion, 97400 Réunion, France; (P.G.); (X.G.)
- Rheumatology Clinical Department, CHU Bellepierre, Reunion University Hospital, 97400 Réunion, France
| |
Collapse
|
10
|
Kemble S, Croft AP. Critical Role of Synovial Tissue-Resident Macrophage and Fibroblast Subsets in the Persistence of Joint Inflammation. Front Immunol 2021; 12:715894. [PMID: 34539648 PMCID: PMC8446662 DOI: 10.3389/fimmu.2021.715894] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/17/2021] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic prototypic immune-mediated inflammatory disease which is characterized by persistent synovial inflammation, leading to progressive joint destruction. Whilst the introduction of targeted biological drugs has led to a step change in the management of RA, 30-40% of patients do not respond adequately to these treatments, regardless of the mechanism of action of the drug used (ceiling of therapeutic response). In addition, many patients who acheive clinical remission, quickly relapse following the withdrawal of treatment. These observations suggest the existence of additional pathways of disease persistence that remain to be identified and targeted therapeutically. A major barrier for the identification of therapeutic targets and successful clinical translation is the limited understanding of the cellular mechanisms that operate within the synovial microenvironment to sustain joint inflammation. Recent insights into the heterogeneity of tissue resident synovial cells, including macropahges and fibroblasts has revealed distinct subsets of these cells that differentially regulate specific aspects of inflammatory joint pathology, paving the way for targeted interventions to specifically modulate the behaviour of these cells. In this review, we will discuss the phenotypic and functional heterogeneity of tissue resident synovial cells and how this cellular diversity contributes to joint inflammation. We discuss how critical interactions between tissue resident cell types regulate the disease state by establishing critical cellular checkpoints within the synovium designed to suppress inflammation and restore joint homeostasis. We propose that failure of these cellular checkpoints leads to the emergence of imprinted pathogenic fibroblast cell states that drive the persistence of joint inflammation. Finally, we discuss therapeutic strategies that could be employed to specifically target pathogenic subsets of fibroblasts in RA.
Collapse
Affiliation(s)
| | - Adam P. Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
11
|
Marsh LJ, Kemble S, Reis Nisa P, Singh R, Croft AP. Fibroblast pathology in inflammatory joint disease. Immunol Rev 2021; 302:163-183. [PMID: 34096076 DOI: 10.1111/imr.12986] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis is an immune-mediated inflammatory disease in which fibroblasts contribute to both joint damage and inflammation. Fibroblasts are a major cell constituent of the lining of the joint cavity called the synovial membrane. Under resting conditions, fibroblasts have an important role in maintaining joint homeostasis, producing extracellular matrix and joint lubricants. In contrast, during joint inflammation, fibroblasts contribute to disease pathology by producing pathogenic levels of inflammatory mediators that drive the recruitment and retention of inflammatory cells within the joint. Recent advances in single-cell profiling techniques have transformed our ability to examine fibroblast biology, leading to the identification of specific fibroblast subsets, defining a previously underappreciated heterogeneity of disease-associated fibroblast populations. These studies are challenging the previously held dogma that fibroblasts are homogeneous and are providing unique insights into their role in inflammatory joint pathology. In this review, we discuss the recent advances in our understanding of how fibroblast heterogeneity contributes to joint pathology in rheumatoid arthritis. Finally, we address how these insights could lead to the development of novel therapies that directly target selective populations of fibroblasts in the future.
Collapse
Affiliation(s)
- Lucy-Jayne Marsh
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Samuel Kemble
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Patricia Reis Nisa
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Ruchir Singh
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - Adam P Croft
- Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, Bondareva KI, Kalinkin AI, Lukashev AN, Tarasov VV, Zamyatnin AA, Nemtsova MV. Analysis of miRNA Expression in Patients with Rheumatoid Arthritis during Olokizumab Treatment. J Pers Med 2020; 10:jpm10040205. [PMID: 33142700 PMCID: PMC7712090 DOI: 10.3390/jpm10040205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is the most common autoimmune disease worldwide. Epigenetic alternations of microRNAs (miRNAs) can contribute to its pathogenesis and progression. As the first line therapy with DMARDs is not always successful, other drugs and therapeutic targets should be applied. This study aims to measure the expression level of plasma miRNAs in RA patients treated with olokizumab and to evaluate their potential as prognostic biomarkers. The expression of 9 miRNAs was quantified in 103 RA patients before treatment and at weeks 12 and 24 of olokizumab therapy by reverse transcription-polymerase chain reaction (RT-PCR) assay and analyzed in groups of responders and non-responders. Almost all miRNAs changed their expression during therapy. The ROC curve analysis of the most prominent of them together with consequent univariate and multivariate regression analysis revealed statistically significant associations with the olokizumab therapy efficiency scores for miR-26b, miR-29, miR-451, and miR-522. Therefore, these miRNAs might be a potential therapeutic response biomarker.
Collapse
Affiliation(s)
- Irina V. Bure
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
| | - Dmitry S. Mikhaylenko
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Ekaterina B. Kuznetsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Ekaterina A. Alekseeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Kristina I. Bondareva
- Biostatistics Department, OCT Rus, Bolshaya Moskovskaya str., 8/2, 191002 Saint-Petersburg, Russia;
| | - Alexey I. Kalinkin
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
| | - Alexander N. Lukashev
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology and Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340 Sochi, Russia
- Correspondence: (A.A.Z.J.); (M.V.N.)
| | - Marina V. Nemtsova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str., 8-2, 119992 Moscow, Russia; (I.V.B.); (D.S.M.); (E.B.K.); (E.A.A.); (A.N.L.)
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moskvorechye str. 1, 115478 Moscow, Russia;
- Correspondence: (A.A.Z.J.); (M.V.N.)
| |
Collapse
|
13
|
Iwamoto N, Kawakami A. Recent findings regarding the effects of microRNAs on fibroblast-like synovial cells in rheumatoid arthritis. Immunol Med 2019; 42:156-161. [PMID: 31770498 DOI: 10.1080/25785826.2019.1695490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease with severe joint inflammation and destruction characterized by marked hyperplasia of the lining layer of the synovium. Fibroblast-like synovial cells (FLS) is a key cellular component within the synovia; it plays pivotal roles in RA pathogenesis by unfavorable behaviors such as producing inflammatory cytokines and chemokines, and hyperproliferation. MicroRNAs are evolutionarily conserved small non-coding RNAs (length is 18-25 nucleotides) that regulate gene expression at the post-transcriptional level. There is increasing interest in the involvement of microRNAs in autoimmune diseases including RA. Recent studies revealed the regulation of the function of FLS by microRNAs. Here, we review the known functional microRNAs in RA and summarize the potential uses of these small molecules in the treatment of RA.
Collapse
Affiliation(s)
- Naoki Iwamoto
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
14
|
Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun Rev 2019; 18:102391. [PMID: 31520804 DOI: 10.1016/j.autrev.2019.102391] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, many epigenetic mechanisms that contribute in the pathogenesis of autoimmune disorders have been revealed. MicroRNAs (miRNAs) are small, non-coding, RNA molecules that bind to messenger RNAs and disrupt the transcription of target genes. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease in which a plethora of epigenetic changes take place. Current research on RA epigenetics has focused mainly on miRNAs. Genetic variance of some miRNA genes, especially miR-499, might predispose an individual to RA development. Additionally, altered expression of many miRNAs has been discovered in several cells, tissues and body fluids in patients with RA. MiRNAs expression also differs depending on disease's stage and activity. Serum miR-22 and miR-103a might predict RA development in susceptible individuals (pre-RA), while serum miR-16, miR-24, miR-125a and miR-223 levels are altered in early RA (disease duration <12 months) patients compared to established RA or healthy individuals. Moreover, serum miR-223 levels have been associated with RA activity and disease relapse. What is more, serum levels of several miRNAs, including miR-125b and miR-223, could be used to predict response to RA treatment. Finally, miRNA analogs or antagonists have been used as therapeutic regimens in experimental arthritis models and have demonstrated promising results. In conclusion, the research on the miRNA alterations in RA sheds light to several aspects of RA pathogenesis, introduces new biomarkers for RA diagnosis and treatment response prediction and offers the opportunity to discover new, targeted drugs for patients with RA.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Rheumatology Department, 417 Army Share Fund Hospital (NMTS), Athens, Greece; Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece.
| | - George E Fragoulis
- Rheumatology Unit, First Department of Propaedeutic Internal Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Vassiliki Koulouri
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - George I Lambrou
- Postgraduate Program "Metabolic Bone Diseases", School of Medicine, National and Kapodistrian University of Athens, Greece; Choremeio Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
15
|
Abstract
Knowledge of how the joint functions as an integrated unit in health and disease requires an understanding of the stromal cells populating the joint mesenchyme, including fibroblasts, tissue-resident macrophages and endothelial cells. Knowledge of the physiological and pathological mechanisms that involve joint mesenchymal stromal cells has begun to cast new light on why joint inflammation persists. The shared embryological origins of fibroblasts and endothelial cells might shape the behaviour of these cell types in diseased adult tissues. Cells of mesenchymal origin sustain inflammation in the synovial membrane and tendons by various mechanisms, and the important contribution of newly discovered fibroblast subtypes and their associated crosstalk with endothelial cells, tissue-resident macrophages and leukocytes is beginning to emerge. Knowledge of these mechanisms should help to shape the future therapeutic landscape and emphasizes the requirement for new strategies to address the pathogenic stroma and associated crosstalk between leukocytes and cells of mesenchymal origin.
Collapse
|
16
|
Li F, Si D, Guo X, Guo N, Li D, Zhang L, Jian X, Ma J. Aberrant expression of miR‑130a‑3p in ankylosing spondylitis and its role in regulating T‑cell survival. Mol Med Rep 2019; 20:3388-3394. [PMID: 31432140 DOI: 10.3892/mmr.2019.10573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/06/2019] [Indexed: 11/09/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory rheumatic disease. MicroRNAs (miRNAs) are a group of endogenous small non‑coding RNAs that regulate target genes, and play a critical role in many biological processes. However, the underlying mechanism of specific miRNA, miR‑130a‑3p, in AS remains largely unknown. Therefore, the present study aimed to explore the underlying mechanism of miR‑130a‑3p in the development of AS. In the present study, it was revealed that miR‑130a‑3p was downregulated in T cells from HLA‑B27‑positive AS patients compared with the HLA‑B27‑negative healthy controls. Next, bioinformatics software TargetScan 7.2 was used to predict the target genes of miR‑130a‑3p, and a luciferase reporter assay indicated that HOXB1 was the direct target gene of miR‑130a‑3p. Furthermore, it was determined that HOXB1 expression was upregulated in T cells from HLA‑B27‑positive AS patients. In addition, the results of the present study indicated that miR‑130a‑3p inhibitor significantly inhibited cell proliferation ability and induced cell apoptosis of Jurkat T cells, while the miR‑130a‑3p mimic promoted proliferation ability and inhibited cell apoptosis of Jurkat T cells. Notably, all the effects of the miR‑130a‑3p mimic on Jurkat T cells were reversed by HOXB1‑plasmid. Collectively, our data indicated that miR‑130a‑3p was decreased in T cells from AS patients and it could regulate T‑cell survival by targeting HOXB1.
Collapse
Affiliation(s)
- Fengju Li
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Dingran Si
- Department of Cardiovascular Medicine, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Xuejun Guo
- Department of Hematology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Ningru Guo
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Dandan Li
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Liujing Zhang
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Xianan Jian
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| | - Jiasheng Ma
- Department of Rheumatism and Immunology, Puyang Oilfield General Hospital, Puyang, Henan 457001, P.R. China
| |
Collapse
|
17
|
Zhao G, He F, Wu C, Li P, Li N, Deng J, Zhu G, Ren W, Peng Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front Immunol 2018; 9:1070. [PMID: 29881379 PMCID: PMC5976740 DOI: 10.3389/fimmu.2018.01070] [Citation(s) in RCA: 283] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Betaine is known as trimethylglycine and is widely distributed in animals, plants, and microorganisms. Betaine is known to function physiologically as an important osmoprotectant and methyl group donor. Accumulating evidence has shown that betaine has anti-inflammatory functions in numerous diseases. Mechanistically, betaine ameliorates sulfur amino acid metabolism against oxidative stress, inhibits nuclear factor-κB activity and NLRP3 inflammasome activation, regulates energy metabolism, and mitigates endoplasmic reticulum stress and apoptosis. Consequently, betaine has beneficial actions in several human diseases, such as obesity, diabetes, cancer, and Alzheimer's disease.
Collapse
Affiliation(s)
- Guangfu Zhao
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chenlu Wu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Pan Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Nengzhang Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, South China Agricultural University, Guangzhou, Guangdong, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuanyi Peng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
18
|
The Effects of MicroRNAs on Key Signalling Pathways and Epigenetic Modification in Fibroblast-Like Synoviocytes of Rheumatoid Arthritis. Mediators Inflamm 2018; 2018:9013124. [PMID: 29861659 PMCID: PMC5971246 DOI: 10.1155/2018/9013124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/03/2018] [Accepted: 04/08/2018] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level via direct binding to the 3′-untranslated region (UTR) of target mRNAs. Emerging evidence shows that miRNAs play crucial roles in controlling and modulating immune system-related diseases. This review focuses on the role played by miRNAs in fibroblast-like synoviocytes (FLS), which is a key cellular component within synovia, during the establishment and maintenance of rheumatoid arthritis (RA), a systemic inflammatory autoimmune disease. It also provides an overview and classification of known functional miRNAs in RA FLS and summarizes the potential uses of these small molecules in RA diagnosis and treatment.
Collapse
|
19
|
Neidhart M. European League Against Rheumatism Recommendations for Early Arthritis: What Has Changed? EUROPEAN MEDICAL JOURNAL 2018. [DOI: 10.33590/emj/10313466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Michel Neidhart
- Center of Experimental Rheumatology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|