1
|
Sun Y, Ding S, Shen F, Yang X, Sun W, Wan J. Employ machine learning to identify NAD+ metabolism-related diagnostic markers for ischemic stroke and develop a diagnostic model. Exp Gerontol 2024; 196:112584. [PMID: 39299659 DOI: 10.1016/j.exger.2024.112584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Ischemic stroke (IS) is a severe condition regulated by complex molecular alterations. This study aimed to identify potential nicotinamide adenine dinucleotide (NAD+) metabolism-associated diagnostic markers of IS and explore their associations with immune dynamics. Weighted Gene Co-expression Network Analysis and single-sample gene set enrichment analysis (ssGSEA) were employed to identify key gene modules on the GEO dataset (GSE16561). LASSO regression was used to identify diagnostic genes. A diagnostic model was then developed using the training dataset, and its performance was assessed using a validation dataset (GSE22255 dataset). Associations between hub genes and immune cells, immune response genes, and human leukocyte antigen (HLA) genes were assessed by ssGSEA. A regulatory network was constructed using mirBase and TRRUST databases. A total of 20 NAD+ metabolic genes exhibited noteworthy expression variations. Within the module notably associated with NAD+ metabolism, 19 specific genes were included in the diagnostic model, which was validated on the GSE22255 dataset (AUC: 0.733). There were significant disparities in immune cell populations, immune response genes, and HLA gene expression, all of which were associated with the hub genes. A regulatory network composed of 153 edges and 103 nodes was constructed. This study advances our understanding of IS by providing insights into NAD+ metabolism and gene interactions, contributing to potential diagnostic innovations in IS.
Collapse
Affiliation(s)
- Yameng Sun
- Cerebrovascular Disease Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Shenghao Ding
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Fei Shen
- Cerebrovascular Disease Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xiaolan Yang
- Cerebrovascular Disease Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Wenhua Sun
- Cerebrovascular Disease Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jieqing Wan
- Cerebrovascular Disease Center, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
2
|
He W, Cheng Y, Lai Y. CircRNA_102046 Affects the Occurrence and Development of Ischemic Stroke by Regulating the miR-493-5p/ROCK1 Signaling. Cardiovasc Toxicol 2024; 24:280-290. [PMID: 38376771 DOI: 10.1007/s12012-024-09831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
In our previous studies, the results have revealed that circRNA_102046 is significantly upregulated in plasma of patients with ischemic stroke, which closely related to NIHSS score. Human neural stem cells (hNSCs) were used for characterization and subcellular localization of circRNA_102046, and hNSCs OGD/R model was generated. The proliferation of cells was examined by CCK-8 assay. The expression levels of associated molecules were evaluated using RT-qPCR, immunofluorescence staining or western blotting. The binding and co-localization of associated molecules were also evaluated by RIP and FISH assay. Furthermore, MCAO mouse model was established to examine the effects of circRNA_102046 on the progression of ischemic stroke. Expression of circRNA_102046 was detected in the cytoplasma of hNSCs. Then OGD/R cell model was established, where the levels of circRNA_102046 was significantly up-regulated. Furthermore, knockdown of circRNA_102046 was able to enhance the proliferation and differentiation of OGD/R hNSCs. In further downstream molecular studies, the results indicated that circRNA_102046 could participate in the occurrence and development of ischemic stroke through targeting miR-493-5p. In addition, ROCK1 was identified as the putative target of miR-493-5p, and circRNA_102046 regulates the proliferation and differentiation of hNSCs via the miR-493-5p/ROCK1 signaling. More importantly, the infarct volumes of MCAO mice were remarkably reduced after the treatment with sh-circRNA_102046, which also up- and down-regulate the expression of miR-493-5p and ROCK1, respectively. Elucidating this novel pathway provides a theoretical basis for the development of new diagnostic approach and targeted treatment for ischemic stroke.
Collapse
Affiliation(s)
- Wentao He
- Department of General Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yuanyuan Cheng
- Department of General Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Yujie Lai
- Department of Neurology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| |
Collapse
|
3
|
Nie X, Leng X, Miao Z, Fisher M, Liu L. Clinically Ineffective Reperfusion After Endovascular Therapy in Acute Ischemic Stroke. Stroke 2023; 54:873-881. [PMID: 36475464 DOI: 10.1161/strokeaha.122.038466] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endovascular treatment is a highly effective therapy for acute ischemic stroke due to large vessel occlusion. However, in clinical practice, nearly half of the patients do not have favorable outcomes despite successful recanalization of the occluded artery. This unfavorable outcome can be defined as having clinically ineffective reperfusion. The objective of the review is to describe clinically ineffective reperfusion after endovascular therapy and its underlying risk factors and mechanisms, including initial tissue damage, cerebral edema, the no-reflow phenomenon, reperfusion injury, procedural features, and variations in postprocedural management. Further research is needed to more accurately identify patients at a high risk of clinically ineffective reperfusion after endovascular therapy and to improve individualized periprocedural management strategies, to increase the chance of achieving favorable clinical outcomes.
Collapse
Affiliation(s)
- Ximing Nie
- Department of Neurology (X.N., L.L.), Beijing Tiantan Hospital, Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing (X.N., L.L.)
| | - Xinyi Leng
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Chinese University of Hong Kong, SAR (X.L.)
| | - Zhongrong Miao
- Department of Interventional Neuroradiology (Z.M.), Beijing Tiantan Hospital, Capital Medical University, China
| | - Marc Fisher
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (M.F.)
| | - Liping Liu
- Department of Neurology (X.N., L.L.), Beijing Tiantan Hospital, Capital Medical University, China.,China National Clinical Research Center for Neurological Diseases, Beijing (X.N., L.L.)
| |
Collapse
|
4
|
Dl-3-n-Butylphthalide Reduced Neuroinflammation by Inhibiting Inflammasome in Microglia in Mice after Middle Cerebral Artery Occlusion. Life (Basel) 2022; 12:life12081244. [PMID: 36013423 PMCID: PMC9410391 DOI: 10.3390/life12081244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
The inflammatory response is one of the key events in cerebral ischemia, causing secondary brain injury and neuronal death. Studies have shown that the NLRP3 inflammasome is a key factor in initiating the inflammatory response and that Dl-3-n-butylphthalide (NBP) can attenuate the inflammatory response and improve neuronal repair during ischemic stroke. However, whether NBP attenuates the inflammatory response via inhibition of NLRP3 remains unclear. A 90 min middle cerebral artery occlusion was induced in 62 2-month-old adult male ICR mice, and NBP was administered by gavage zero, one, or two days after ischemia. Brain infarct volume, neurological deficits, NLRP3, microglia, and neuronal death were examined in sacrificed mice to explore the correction between NBP effects and NLRP3 expression. NBP significantly reduced infarct volume and attenuated neurological deficits after ischemic stroke compared to controls (p < 0.05). Moreover, it inhibited ASC+ microglia activation and NLRP3 and CASP1 expression in ischemic mice. In addition, neuronal apoptosis was reduced in NBP-treated microglia cultures (p < 0.05). Our results indicate that NBP attenuates the inflammatory response in ischemic mouse brains, suggesting that NBP protects against microglia activation via the NLRP3 inflammasome.
Collapse
|
5
|
Conti E, Piccardi B, Sodero A, Tudisco L, Lombardo I, Fainardi E, Nencini P, Sarti C, Allegra Mascaro AL, Baldereschi M. Translational Stroke Research Review: Using the Mouse to Model Human Futile Recanalization and Reperfusion Injury in Ischemic Brain Tissue. Cells 2021; 10:3308. [PMID: 34943816 PMCID: PMC8699609 DOI: 10.3390/cells10123308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
The approach to reperfusion therapies in stroke patients is rapidly evolving, but there is still no explanation why a substantial proportion of patients have a poor clinical prognosis despite successful flow restoration. This issue of futile recanalization is explained here by three clinical cases, which, despite complete recanalization, have very different outcomes. Preclinical research is particularly suited to characterize the highly dynamic changes in acute ischemic stroke and identify potential treatment targets useful for clinical translation. This review surveys the efforts taken so far to achieve mouse models capable of investigating the neurovascular underpinnings of futile recanalization. We highlight the translational potential of targeting tissue reperfusion in fully recanalized mouse models and of investigating the underlying pathophysiological mechanisms from subcellular to tissue scale. We suggest that stroke preclinical research should increasingly drive forward a continuous and circular dialogue with clinical research. When the preclinical and the clinical stroke research are consistent, translational success will follow.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Alessandro Sodero
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Laura Tudisco
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Ivano Lombardo
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Enrico Fainardi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Patrizia Nencini
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| | - Cristina Sarti
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Marzia Baldereschi
- Neuroscience Institute, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
6
|
Mamtilahun M, Jiang L, Song Y, Shi X, Liu C, Jiang Y, Deng L, Zheng H, Shen H, Li Y, Zhang Z, Wang Y, Tang Y, Yang GY. Plasma from healthy donors protects blood-brain barrier integrity via FGF21 and improves the recovery in a mouse model of cerebral ischaemia. Stroke Vasc Neurol 2021; 6:561-571. [PMID: 33785536 PMCID: PMC8717795 DOI: 10.1136/svn-2020-000774] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/14/2023] Open
Abstract
Background Healthy plasma therapy reverses cognitive deficits and promotes neuroplasticity in ageing brain disease. However, whether healthy plasma therapy improve blood–brain barrier integrity after stroke remains unknown. Methods Here, we intravenously injected healthy female mouse plasma into adult female ischaemic stroke C57BL/6 mouse induced by 90 min transient middle cerebral artery occlusion for eight consecutive days. Infarct volume, brain atrophy and neurobehavioural tests were examined to assess the outcomes of plasma treatment. Cell apoptosis, blood–brain barrier integrity and fibroblast growth factor 21 knockout mice were used to explore the underlying mechanism. Results Plasma injection improved neurobehavioural recovery and decreased infarct volume, brain oedema and atrophy after stroke. Immunostaining showed that the number of transferase dUTP nick end labelling+/NeuN+ cells decreased in the plasma-injected group. Meanwhile, plasma injection reduced ZO-1, occluding and claudin-5 tight junction gap formation and IgG extravasation at 3 days after ischaemic stroke. Western blot results showed that the FGF21 expression increased in the plasma-injected mice. However, using FGF21 knockout mouse plasma injecting to the ischaemic wild-type mice diminished the neuroprotective effects. Conclusions Our study demonstrated that healthy adult plasma treatment protected the structural and functional integrity of blood–brain barrier, reduced neuronal apoptosis and improved functional recovery via FGF21, opening a new avenue for ischaemic stroke therapy.
Collapse
Affiliation(s)
- Muyassar Mamtilahun
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Lu Jiang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yaying Song
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Xiaojing Shi
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Chang Liu
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yixu Jiang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Lidong Deng
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Haoran Zheng
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Hui Shen
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yongfang Li
- Department of Neurology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| | - Zhijun Zhang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yongting Wang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Yaohui Tang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, China .,Department of Neurology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, Shanghai, China
| |
Collapse
|