1
|
Dutta RR, Abdolmanafi S, Rabizadeh A, Baghbaninogourani R, Mansooridara S, Lopez A, Akbari Y, Paff M. Neuromodulation and Disorders of Consciousness: Systematic Review and Pathophysiology. Neuromodulation 2025; 28:380-400. [PMID: 39425733 DOI: 10.1016/j.neurom.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
INTRODUCTION Disorders of consciousness (DoC) represent a range of clinical states, affect hundreds of thousands of people in the United States, and have relatively poor outcomes. With few effective pharmacotherapies, neuromodulation has been investigated as an alternative for treating DoC. To summarize the available evidence, a systematic review of studies using various forms of neuromodulation to treat DoC was conducted. MATERIALS AND METHODS Adhering to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines for systematic literature review, the PubMed, Scopus, and Web of Science databases were queried to identify articles published between 1990 and 2023 in which neuromodulation was used, usually in conjunction with pharmacologic intervention, to treat or reverse DoC in humans and animals. Records were excluded if DoC (eg, unresponsive wakefulness syndrome, minimally conscious state, etc) were not the primary clinical target. RESULTS A total of 69 studies (58 human, 11 animal) met the inclusion criteria for the systematic review, resulting in over 1000 patients and 150 animals studied in total. Most human studies investigated deep brain stimulation (n = 15), usually of the central thalamus, and transcranial magnetic stimulation (n = 18). Transcranial direct-current stimulation (n = 15) and spinal cord stimulation (n = 6) of the dorsal column also were represented. A few studies investigated low-intensity focused ultrasound (n = 2) and median nerve stimulation (n = 2). Animal studies included primate and murine models, with nine studies involving deep brain stimulation, one using ultrasound, and one using transcranial magnetic stimulation. DISCUSSION While clinical outcomes were mixed and possibly confounded by natural recovery or pharmacologic interventions, deep brain stimulation appeared to facilitate greater improvements in DoC than other modalities. However, repetitive transcranial magnetic stimulation also demonstrated clinical potential with much lower invasiveness.
Collapse
Affiliation(s)
- Rajeev R Dutta
- School of Medicine, University of California Irvine, Irvine, CA, USA.
| | | | | | | | | | - Alexander Lopez
- Department of Neurological Surgery, University of California Irvine, Orange, CA, USA
| | - Yama Akbari
- Department of Neurology, University of California Irvine, Orange, CA, USA; Department of Neurological Surgery, University of California Irvine, Orange, CA, USA; Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA; Beckman Laser Institute and Medical Clinic, University of California Irvine, Irvine, CA, USA
| | - Michelle Paff
- Department of Neurological Surgery, University of California Irvine, Orange, CA, USA
| |
Collapse
|
2
|
Cao T, Chai X, Wu H, Wang N, Song J, He Q, Zhu S, Jia Y, Yang Y, Zhao J. Central Thalamic Deep Brain Stimulation Modulates Autonomic Nervous System Responsiveness in Disorders of Consciousness. CNS Neurosci Ther 2025; 31:e70274. [PMID: 40050126 PMCID: PMC11884924 DOI: 10.1111/cns.70274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/15/2025] [Accepted: 01/31/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND The heart rate variability (HRV) of patients with disorders of consciousness (DOC) differs from healthy individuals. However, there is rarely research on HRV among DOC patients following treatment with deep brain stimulation (DBS). This study aims to investigate the modulatory effects of DBS-on the central-autonomic nervous system of DOC based on the study of HRV variations. METHODS We conducted DBS surgery on eight patients with DOC. Postoperatively, all patients underwent short-duration stimulation for 3 days, with stimulation frequencies of 25 Hz, 50 Hz, and 100 Hz respectively. Each day comprised four cycles, with a stimulation duration of 30 min DBS-on and 90 min DBS-off. We obtained the coma recovery scale-revised (CRS-R) scores and synchronously recorded electrocardiographic data. RESULITS We analyzed the HRV indices, including time-domain and frequency-domain parameters across various time points for all patients. The HRV exhibited a consistent trend across the three groups with different parameters. Notably, the most pronounced HRV changes were induced by the 100 Hz. Long-term follow-up indicates that high-frequency (HF), low-frequency (LF), and total power (TP) of HRV may serve as predictive indicators in the prognosis of patients. CONCLUSION Our study reveals that DBS enhances DOC patient consciousness while increasing HRV. Specifically, frequency-domain indices correlate with favorable prognosis.
Collapse
Affiliation(s)
- Tianqing Cao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xiaoke Chai
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Hongbin Wu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jiuxiang Song
- School of Advanced ManufacturingNanchang UniversityNanchangJiangxiChina
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Sipeng Zhu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yitong Jia
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
- Beijing Institute of Brain DisordersBeijingChina
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| |
Collapse
|
3
|
Yang Y, Cao TQ, He SH, Wang LC, He QH, Fan LZ, Huang YZ, Zhang HR, Wang Y, Dang YY, Wang N, Chai XK, Wang D, Jiang QH, Li XL, Liu C, Wang SY. Revolutionizing treatment for disorders of consciousness: a multidisciplinary review of advancements in deep brain stimulation. Mil Med Res 2024; 11:81. [PMID: 39690407 DOI: 10.1186/s40779-024-00585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Among the existing research on the treatment of disorders of consciousness (DOC), deep brain stimulation (DBS) offers a highly promising therapeutic approach. This comprehensive review documents the historical development of DBS and its role in the treatment of DOC, tracing its progression from an experimental therapy to a detailed modulation approach based on the mesocircuit model hypothesis. The mesocircuit model hypothesis suggests that DOC arises from disruptions in a critical network of brain regions, providing a framework for refining DBS targets. We also discuss the multimodal approaches for assessing patients with DOC, encompassing clinical behavioral scales, electrophysiological assessment, and neuroimaging techniques methods. During the evolution of DOC therapy, the segmentation of central nuclei, the recording of single-neurons, and the analysis of local field potentials have emerged as favorable technical factors that enhance the efficacy of DBS treatment. Advances in computational models have also facilitated a deeper exploration of the neural dynamics associated with DOC, linking neuron-level dynamics with macroscopic behavioral changes. Despite showing promising outcomes, challenges remain in patient selection, precise target localization, and the determination of optimal stimulation parameters. Future research should focus on conducting large-scale controlled studies to delve into the pathophysiological mechanisms of DOC. It is imperative to further elucidate the precise modulatory effects of DBS on thalamo-cortical and cortico-cortical functional connectivity networks. Ultimately, by optimizing neuromodulation strategies, we aim to substantially enhance therapeutic outcomes and greatly expedite the process of consciousness recovery in patients.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China.
- Innovative Center, Beijing Institute of Brain Disorders, Beijing, 100070, China.
- Department of Neurosurgery, Chinese Institute for Brain Research, Beijing, 100070, China.
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7BN, UK.
| | - Tian-Qing Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Sheng-Hong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 7BN, UK
| | - Lu-Chen Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Qi-Heng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Ling-Zhong Fan
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yong-Zhi Huang
- Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Hao-Ran Zhang
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yong Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100080, China
| | - Yuan-Yuan Dang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, 100080, China
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Xiao-Ke Chai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
| | - Dong Wang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Qiu-Hua Jiang
- Department of Neurosurgery, Ganzhou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Xiao-Li Li
- School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chen Liu
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
He Q, Huo R, Sun Y, Zheng Z, Xu H, Zhao S, Ni Y, Yu Q, Jiao Y, Zhang W, Zhao J, Cao Y. Cerebral vascular malformations: pathogenesis and therapy. MedComm (Beijing) 2024; 5:e70027. [PMID: 39654683 PMCID: PMC11625509 DOI: 10.1002/mco2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Cerebral vascular malformations (CVMs), particularly cerebral cavernous malformations and cerebral arteriovenous malformations, pose significant neurological challenges due to their complex etiologies and clinical implications. Traditionally viewed as congenital conditions with structural abnormalities, CVMs have been treated primarily through resection, embolization, and stereotactic radiosurgery. While these approaches offer some efficacy, they often pose risks to neurological integrity due to their invasive nature. Advances in next-generation sequencing, particularly high-depth whole-exome sequencing and bioinformatics, have facilitated the identification of gene variants from neurosurgically resected CVMs samples. These advancements have deepened our understanding of CVM pathogenesis. Somatic mutations in key mechanistic pathways have been identified as causative factors, leading to a paradigm shift in CVM treatment. Additionally, recent progress in noninvasive and minimally invasive techniques, including gene imaging genomics, liquid biopsy, or endovascular biopsies (endovascular sampling of blood vessel lumens), has enabled the identification of gene variants associated with CVMs. These methods, in conjunction with clinical data, offer potential for early detection, dynamic monitoring, and targeted therapies that could be used as monotherapy or adjuncts to surgery. This review highlights advancements in CVM pathogenesis and precision therapies, outlining the future potential of precision medicine in CVM management.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ran Huo
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingfan Sun
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate DiagnosisTreatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
- Department of Neurosurgery Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
| | - Hongyuan Xu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shaozhi Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yang Ni
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qifeng Yu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuming Jiao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenqian Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yong Cao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Collaborative Innovation CenterBeijing Institute of Brain DisordersBeijingChina
| |
Collapse
|
5
|
Warren AEL, Raguž M, Friedrich H, Schaper FLWVJ, Tasserie J, Snider SB, Li J, Chua MMJ, Butenko K, Friedrich MU, Jha R, Iglesias JE, Carney PW, Fischer D, Fox MD, Boes AD, Edlow BL, Horn A, Chudy D, Rolston JD. A human brain network linked to restoration of consciousness after deep brain stimulation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.17.24314458. [PMID: 39484242 PMCID: PMC11527079 DOI: 10.1101/2024.10.17.24314458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Disorders of consciousness (DoC) are states of impaired arousal or awareness. Deep brain stimulation (DBS) is a potential treatment, but outcomes vary, possibly due to differences in patient characteristics, electrode placement, or stimulation of specific brain networks. We studied 40 patients with DoC who underwent DBS targeting the thalamic centromedian-parafascicular complex. Better-preserved gray matter, especially in the striatum, correlated with consciousness improvement. Stimulation was most effective when electric fields extended into parafascicular and subparafascicular nuclei-ventral to the centromedian nucleus, near the midbrain-and when it engaged projection pathways of the ascending arousal network, including the hypothalamus, brainstem, and frontal lobe. Moreover, effective DBS sites were connected to networks similar to those underlying impaired consciousness due to generalized absence seizures and acquired lesions. These findings support the therapeutic potential of DBS for DoC, emphasizing the importance of precise targeting and revealing a broader link between effective DoC treatment and mechanisms underlying other conscciousness-impairing conditions.
Collapse
Affiliation(s)
- Aaron E L Warren
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Helen Friedrich
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- University of Wurzburg, Faculty of Medicine, Josef-Schneider-Str. 2, 97080, Wurzburg, Germany
| | - Frederic L W V J Schaper
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jordy Tasserie
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samuel B Snider
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jian Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa M J Chua
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Konstantin Butenko
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maximilian U Friedrich
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rohan Jha
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juan E Iglesias
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Centre for Medical Image Computing, University College London, London, United Kingdom
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick W Carney
- Eastern Health Clinical School, Monash University, Melbourne, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - David Fischer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron D Boes
- Departments of Neurology, Pediatrics, and Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darko Chudy
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - John D Rolston
- Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Li C, Chen P, Deng Y, Xia L, Wang X, Wei M, Wang X, Dong L, Zhang J. Abnormalities of cortical and subcortical spontaneous brain activity unveil mechanisms of disorders of consciousness and prognosis in patients with severe traumatic brain injury. Int J Clin Health Psychol 2024; 24:100528. [PMID: 39659957 PMCID: PMC11629552 DOI: 10.1016/j.ijchp.2024.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
Objective To investigate the spatial distribution characteristics of alterations in spontaneous brain activity in severe traumatic brain injury (sTBI) patients with disorders of consciousness (DOC), based on the mesocircuit theoretical framework, and to establish models for predicting recovery of consciousness. Methods Resting-state functional magnetic resonance imaging was employed to measure the mean fractional amplitude of low-frequency fluctuations (mfALFF) in sTBI patients with DOC and healthy controls, identifying differential brain regions for conducting gene and functional decoding analyses. Patients were classified into wake and DOC groups according to Extended Glasgow Outcome Score at 6 months. Furthermore, predictive models for consciousness recovery were developed using Nomogram and Linear Support Vector Machine (LSVM) based on mfALFF. Results In total, 28 sTBI patients with DOC and 30 healthy controls were included, with no significant baseline differences between groups (P > 0.05). The results revealed increased mfALFF of subcortical Ascending Reticular Activating System and decreased cortical mfALFF (default mode network) in DOC patients within the framework of the mesocircuit model (FDR_P < 0.001, Clusters > 100). The study identified 2080 differentially expressed genes associated with reduced brain activity regions, indicating mechanisms involving synaptic function, the oxytocin signaling pathway, and GABAergic processes in DOC formation. In addition, significantly higher mfALFF values were observed in the left angular gyrus, supramarginal gyrus, and inferior parietal lobule of DOC group compared to the wake group (AlphaSim_P < 0.01, Cluster > 19). The Nomogram prediction model highlighted the pivotal role of these regions' activity levels in prognosis (AUC = 0.90). Validation using LSVM demonstrated robust predictive performance with an AUC of 0.90 and positive predictive values of 80% for wake and 83% for DOC. Conclusions This study offered crucial insights underlying DOC in sTBI patients, demonstrating the dissociation between cortical and subcortical brain activities. The findings supported the use of mfALFF as a robust and non-invasive biomarker for evaluating brain function and predicting recovery outcomes.
Collapse
Affiliation(s)
- Chang Li
- Medical Imaging Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Peng Chen
- Department of Neurosurgery, Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Yongbing Deng
- Department of Neurosurgery, Chongqing Key Laboratory of Emergency Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Lei Xia
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Wang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225000, China
| | - Min Wei
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225000, China
| | - Xingdong Wang
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225000, China
| | - Lun Dong
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225000, China
| | - Jun Zhang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
7
|
He Q, Yang C, Xu Y, Niu H, Wu H, Huang H, Chai X, Cao T, Wang N, Wong P, He J, Yang Y, Zhao J. Anatomical-related factors and outcome of percutaneous short-term spinal cord stimulation electrode shift in patients with disorders of consciousness: a retrospective study. Front Aging Neurosci 2024; 16:1403156. [PMID: 39015472 PMCID: PMC11249574 DOI: 10.3389/fnagi.2024.1403156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Background Disorders of consciousness (DoC) represent a spectrum of neurological conditions that pose significant treatment challenges. Percutaneous short-term spinal cord stimulation (SCS) has emerged as a promising experimental diagnostic treatment to assess and potentially improve consciousness levels. However, the effectiveness of this intervention is frequently compromised by the shift of electrodes, particularly in the cervical region, which can negatively affect therapeutic outcomes. Methods This retrospective study aimed to study if electrodes shift in percutaneous short-term SCS in patients with DoC would affect the outcome. We analyzed the relationship between electrode shift length and patient outcome, as well as the correlation with various anatomical parameters, including the actual length of the cervical spine, linear length, spinal canal transverse diameter, spinal canal diameter, and C2 cone height, in a cohort of patients undergoing the procedure. Results Our findings revealed that in patients with better outcome, there are significant less patient with electrode shift (p = 0.019). Further, a linear correlation was found between the length of electrode shift and patients' outcome (Rho = 0.583, p = 0.002), with longer shift lengths associated with poorer outcomes. Contrary to our expectations, there was no significant association between the measured anatomical parameters and the extent of electrode shift. However, a trend was found between the actual length of the cervical spine and the shift of the electrode (p = 0.098). Notably, the shorter spinal canal transverse diameter was found to be significantly associated with better outcome in patients with DoC receiving percutaneous short-term SCS (p = 0.033). Conclusion These results highlight the clinical importance of electrode stability in the cervical region during SCS treatment for patients with DoC. Ensuring secure placement of electrodes may play a crucial role in enhancing patients' outcome and minimize postoperative complications. Given the lack of association with expected anatomical parameters, future research should investigate other factors that could impact electrode stability to optimize this therapeutic intervention.
Collapse
Affiliation(s)
- Qiheng He
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chaozhi Yang
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yangxi Xu
- Department of Neurosurgery, The People’s Hospital of Liaoning Province, Shengyang, China
| | - Hongchuan Niu
- Department of Neurosurgery, Peking University International Hospital, Beijing, China
| | - Haitao Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Haitao Huang
- Department of Neurosurgery, The People’s Hospital of Liaoning Province, Shengyang, China
| | - Xiaoke Chai
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Center for Neurological Disorders, Beijing, China
| | - Tianqing Cao
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Nan Wang
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peiling Wong
- Department of Physical Therapy and Assistive Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Yang
- Brain Computer Interface Transitional Research Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Center for Neurological Disorders, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Beijing Institute of Brain Disorders, Beijing, China
| | - Jizong Zhao
- China National Center for Neurological Disorders, Beijing, China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
8
|
Cao T, He S, Wang L, Chai X, He Q, Liu D, Wang D, Wang N, He J, Wang S, Yang Y, Zhao J, Tan H. Clinical neuromodulatory effects of deep brain stimulation in disorder of consciousness: A literature review. CNS Neurosci Ther 2024; 30:e14559. [PMID: 38115730 PMCID: PMC11163193 DOI: 10.1111/cns.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/11/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The management of patients with disorders of consciousness (DOC) presents substantial challenges in clinical practice. Deep brain stimulation (DBS) has emerged as a potential therapeutic approach, but the lack of standardized regulatory parameters for DBS in DOC hinders definitive conclusions. OBJECTIVE This comprehensive review aims to provide a detailed summary of the current issues concerning patient selection, target setting, and modulation parameters in clinical studies investigating the application of DBS for DOC patients. METHODS A meticulous systematic analysis of the literatures was conducted, encompassing articles published from 1968 to April 2023, retrieved from reputable databases (PubMed, Embase, Medline, and Web of Science). RESULTS The systematic analysis of 21 eligible articles, involving 146 patients with DOC resulting from acquired brain injury or other disorders, revealed significant insights. The most frequently targeted regions were the Centromedian-parafascicular complex (CM-pf) nuclei and central thalamus (CT), both recognized for their role in regulating consciousness. However, other targets have also been explored in different studies. The stimulation frequency was predominantly set at 25 or 100 Hz, with pulse width of 120 μs, and voltages ranged from 0 to 4 V. These parameters were customized based on individual patient responses and evaluations. The overall clinical efficacy rate in all included studies was 39.7%, indicating a positive effect of DBS in a subset of DOC patients. Nonetheless, the assessment methods, follow-up durations, and outcome measures varied across studies, potentially contributing to the variability in reported efficacy rates. CONCLUSION Despite the challenges arising from the lack of standardized parameters, DBS shows promising potential as a therapeutic option for patients with DOC. However, there still remains the need for standardized protocols and assessment methods, which are crucial to deepen the understanding and optimizing the therapeutic potential of DBS in this specific patient population.
Collapse
Affiliation(s)
- Tianqing Cao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shenghong He
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Luchen Wang
- School of Information Science and TechnologyFudan UniversityShanghaiChina
| | - Xiaoke Chai
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Dongsheng Liu
- Department of NeurosurgeryAviation General HospitalBeijingChina
| | - Dong Wang
- Department of NeurosurgeryGanzhou People's HospitalGanzhouJiangxi ProvinceChina
| | - Nan Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shouyang Wang
- School of Information Science and TechnologyFudan UniversityShanghaiChina
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Chinese Institute for Brain ResearchBeijingChina
- Beijing Institute of Brain DisordersBeijingChina
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Huiling Tan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Lu J, Wu J, Shu Z, Zhang X, Li H, Liang S, Han J, Yu N. Brain Temporal-Spectral Functional Variability Reveals Neural Improvements of DBS Treatment for Disorders of Consciousness. IEEE Trans Neural Syst Rehabil Eng 2024; 32:923-933. [PMID: 38386574 DOI: 10.1109/tnsre.2024.3368434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Deep brain stimulation (DBS) is establishing itself as a promising treatment for disorders of consciousness (DOC). Measuring consciousness changes is crucial in the optimization of DBS therapy for DOC patients. However, conventional measures use subjective metrics that limit the investigations of treatment-induced neural improvements. The focus of this study is to analyze the regulatory effects of DBS and explain the regulatory mechanism at the brain functional level for DOC patients. Specifically, this paper proposed a dynamic brain temporal-spectral analysis method to quantify DBS-induced brain functional variations in DOC patients. Functional near-infrared spectroscopy (fNIRS) that promised to evaluate consciousness levels was used to monitor brain variations of DOC patients. Specifically, a fNIRS-based experimental procedure with auditory stimuli was developed, and the brain activities during the procedure from thirteen DOC patients before and after the DBS treatment were recorded. Then, dynamic brain functional networks were formulated with a sliding-window correlation analysis of phase lag index. Afterwards, with respect to the temporal variations of global and regional networks, the variability of global efficiency, local efficiency, and clustering coefficient were extracted. Further, dynamic networks were converted into spectral representations by graph Fourier transform, and graph energy and diversity were formulated to assess the spectral global and regional variability. The results showed that DOC patients under DBS treatment exhibited increased global and regional functional variability that was significantly associated with consciousness improvements. Moreover, the functional variability in the right brain regions had a stronger correlation with consciousness enhancements than that in the left brain regions. Therefore, the proposed method well signifies DBS-induced brain functional variations in DOC patients, and the functional variability may serve as promising biomarkers for consciousness evaluations in DOC patients.
Collapse
|
10
|
Chudy D, Deletis V, Paradžik V, Dubroja I, Marčinković P, Orešković D, Chudy H, Raguž M. Deep brain stimulation in disorders of consciousness: 10 years of a single center experience. Sci Rep 2023; 13:19491. [PMID: 37945710 PMCID: PMC10636144 DOI: 10.1038/s41598-023-46300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Disorders of consciousness (DoC), namely unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS), represent severe conditions with significant consequences for patients and their families. Several studies have reported the regaining of consciousness in such patients using deep brain stimulation (DBS) of subcortical structures or brainstem nuclei. Our study aims to present the 10 years' experience of a single center using DBS as a therapy on a cohort of patients with DoC. Eighty Three consecutive patients were evaluated between 2011 and 2022; entry criteria consisted of neurophysiological and neurological evaluations and neuroimaging examinations. Out of 83, 36 patients were considered candidates for DBS implantation, and 32 patients were implanted: 27 patients had UWS, and five had MCS. The stimulation target was the centromedian-parafascicular complex in the left hemisphere in hypoxic brain lesion or the one better preserved in patients with traumatic brain injury. The level of consciousness was improved in seven patients. Three out of five MCS patients emerged to full awareness, with the ability to interact and communicate. Two of them can live largely independently. Four out of 27 UWS patients showed consciousness improvement with two patients emerging to full awareness, and the other two reaching MCS. In patients with DoC lasting longer than 12 months following traumatic brain injury or 6 months following anoxic-ischemic brain lesion, spontaneous recovery is rare. Thus, DBS of certain thalamic nuclei could be recommended as a treatment option for patients who meet neurological, neurophysiological and neuroimaging criteria, especially in earlier phases, before occurrence of irreversible musculoskeletal changes. Furthermore, we emphasize the importance of cooperation between centers worldwide in studies on the potentials of DBS in treating patients with DoC.
Collapse
Affiliation(s)
- Darko Chudy
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia.
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Vedran Deletis
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- Albert Einstein College of Medicine, New York, USA
| | - Veronika Paradžik
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
| | - Ivan Dubroja
- Brain Trauma Unit, Specialty Hospital for Medical Rehabilitation, Krapinske Toplice, Croatia
| | - Petar Marčinković
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
| | - Darko Orešković
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
| | - Hana Chudy
- Department of Neurology, Dubrava University Hospital, Zagreb, Croatia
| | - Marina Raguž
- Department of Neurosurgery, Dubrava University Hospital, Zagreb, Croatia
- School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| |
Collapse
|
11
|
He J, Zhang H, Dang Y, Zhuang Y, Ge Q, Yang Y, Xu L, Xia X, Laureys S, Yu S, Zhang W. Electrophysiological characteristics of CM-pf in diagnosis and outcome of patients with disorders of consciousness. Brain Stimul 2023; 16:1522-1532. [PMID: 37778457 DOI: 10.1016/j.brs.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) in the centromedian-parafascicular complex (CM-pf) has been reported as a potential therapeutic option for disorders of consciousness (DoC). However, the lack of understanding of its electrophysiological characteristics limits the improvement of therapeutic effect. OBJECTIVE To investigate the CM-pf electrophysiological characteristics underlying disorders of consciousness (DoC) and its recovery. METHODS We collected the CM-pf electrophysiological signals from 23 DoC patients who underwent central thalamus DBS (CT-DBS) surgery. Five typical electrophysiological features were extracted, including neuronal firing properties, multiunit activity (MUA) properties, signal stability, spike-MUA synchronization strength (syncMUA), and the background noise level. Their correlations with the consciousness level, the outcome, and the primary clinical factors of DoC were analyzed. RESULTS 11 out of 23 patients (0/2 chronic coma, 5/13 unresponsive wakefulness syndrome/vegetative state (UWS/VS), 6/8 minimally conscious state minus (MCS-)) exhibited an improvement in the level of consciousness after CT-DBS. In CM-pf, significantly stronger gamma band syncMUA strength and alpha band normalized MUA power were found in MCS- patients. In addition, higher firing rates, stronger high-gamma band MUA power and alpha band normalized power, and more stable theta oscillation were correlated with better outcomes. Besides, we also identified electrophysiological properties that are correlated with clinical factors, including etiologies, age, and duration of DoC. CONCLUSION We provide comprehensive analyses of the electrophysiological characteristics of CM-pf in DoC patients. Our results support the 'mesocircuit' hypothesis, one proposed mechanism of DoC recovery, and reveal CM-pf electrophysiological features that are crucial for understanding the pathogenesis of DoC, predicting its recovery, and explaining the effect of clinical factors on DoC.
Collapse
Affiliation(s)
- Jianghong He
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Haoran Zhang
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Dang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yutong Zhuang
- Department of Neurosurgery, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qianqian Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Long Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xiaoyu Xia
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, 100700, China
| | - Steven Laureys
- CERVO Brain Research Centre, Laval University, Canada; Coma Science Group, GIGA Consciousness Research Unit, Liège University Hospital, Belgium; International Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Shan Yu
- Laboratory of Brain Atlas and Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wangming Zhang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, China.
| |
Collapse
|
12
|
Wu Y, Xu YY, Deng H, Zhang W, Zhang SX, Li JM, Xiong BT, Xiao LL, Li DH, Ren ZY, Qin YF, Yang RQ, Wang W. Spinal cord stimulation and deep brain stimulation for disorders of consciousness: a systematic review and individual patient data analysis of 608 cases. Neurosurg Rev 2023; 46:200. [PMID: 37578633 DOI: 10.1007/s10143-023-02105-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/10/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
The application of spinal cord stimulation (SCS) and deep brain stimulation (DBS) for disorders of consciousness (DoC) has been increasingly reported. However, there is no sufficient evidence to determine how effective and safe SCS and DBS are for DoC owing to various methodological limitations. We conducted a systematic review to elucidate the safety and efficacy of SCS and DBS for DoC by systematically reviewing related literature by searching PubMed, EMBASE, Medline, and Cochrane Library. Twenty eligible studies with 608 patients were included in this study. Ten studies with 508 patients reported the efficacy of SCS for DoC, and the estimated overall effectiveness rate was 37%. Five studies with 343 patients reported the efficacy of SCS for VS, and the estimated effectiveness rate was 30%. Three studies with 53 patients reported the efficacy of SCS for MCS, and the estimated effectiveness rate was 63%. Five studies with 92 patients reported the efficacy of DBS for DoC, and the estimated overall effectiveness rate was 40%. Four studies with 63 patients reported the efficacy of DBS for VS, and the estimated effectiveness rate was 26%. Three studies with 19 patients reported the efficacy of DBS for MCS, and the estimated effectiveness rate was 74%. The adverse event rate of DoC was 8.1% and 18.2% after SCS and DBS, respectively. These results suggest that SCS and DBS can be considered reasonable treatments for DoC with considerable efficacy and safety.
Collapse
Affiliation(s)
- Yang Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Yang-Yang Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Hao Deng
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Wei Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Shu-Xin Zhang
- Department of Histoembryology and Neurobiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Jia-Ming Li
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Bo-Tao Xiong
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Ling-Long Xiao
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Deng-Hui Li
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Zhi-Yi Ren
- Department of Histoembryology and Neurobiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi-Fan Qin
- Department of Histoembryology and Neurobiology, West China College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, Sichuan Province, China
| | - Rui-Qing Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, 37 Guoxue Alley, Chengdu, Sichuan Province, China.
| |
Collapse
|