1
|
Su J, Chen W, Zhou F, Li R, Tong Z, Wu S, Ye Z, Zhang Y, Lin B, Yu X, Guan B, Feng Z, Chen K, Chen Q, Chen L. Inhibitory mechanisms of decoy receptor 3 in cecal ligation and puncture-induced sepsis. mBio 2024; 15:e0052124. [PMID: 38700314 PMCID: PMC11237498 DOI: 10.1128/mbio.00521-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Despite its high mortality, specific and effective drugs for sepsis are lacking. Decoy receptor 3 (DcR3) is a potential biomarker for the progression of inflammatory diseases. The recombinant human DcR3-Fc chimera protein (DcR3.Fc) suppresses inflammatory responses in mice with sepsis, which is critical for improving survival. The Fc region can exert detrimental effects on the patient, and endogenous peptides are highly conducive to clinical application. However, the mechanisms underlying the effects of DcR3 on sepsis are unknown. Herein, we aimed to demonstrate that DcR3 may be beneficial in treating sepsis and investigated its mechanism of action. Recombinant DcR3 was obtained in vitro. Postoperative DcR3 treatment was performed in mouse models of lipopolysaccharide- and cecal ligation and puncture (CLP)-induced sepsis, and their underlying molecular mechanisms were explored. DcR3 inhibited sustained excessive inflammation in vitro, increased the survival rate, reduced the proinflammatory cytokine levels, changed the circulating immune cell composition, regulated the gut microbiota, and induced short-chain fatty acid synthesis in vivo. Thus, DcR3 protects against CLP-induced sepsis by inhibiting the inflammatory response and apoptosis. Our study provides valuable insights into the molecular mechanisms associated with the protective effects of DcR3 against sepsis, paving the way for future clinical studies. IMPORTANCE Sepsis affects millions of hospitalized patients worldwide each year, but there are no sepsis-specific drugs, which makes sepsis therapies urgently needed. Suppression of excessive inflammatory responses is important for improving the survival of patients with sepsis. Our results demonstrate that DcR3 ameliorates sepsis in mice by attenuating systematic inflammation and modulating gut microbiota, and unveil the molecular mechanism underlying its anti-inflammatory effect.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
- Institute of Edible Fungi, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Rui Li
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Tong
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhen Ye
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Yichao Zhang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Ben Lin
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Xing Yu
- Department of Gastroenterology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Proteome integral solubility alteration high-throughput proteomics assay identifies Collectin-12 as a non-apoptotic microglial caspase-3 substrate. Cell Death Dis 2023; 14:192. [PMID: 36906641 PMCID: PMC10008626 DOI: 10.1038/s41419-023-05714-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Caspases are a family of proteins mostly known for their role in the activation of the apoptotic pathway leading to cell death. In the last decade, caspases have been found to fulfill other tasks regulating the cell phenotype independently to cell death. Microglia are the immune cells of the brain responsible for the maintenance of physiological brain functions but can also be involved in disease progression when overactivated. We have previously described non-apoptotic roles of caspase-3 (CASP3) in the regulation of the inflammatory phenotype of microglial cells or pro-tumoral activation in the context of brain tumors. CASP3 can regulate protein functions by cleavage of their target and therefore could have multiple substrates. So far, identification of CASP3 substrates has been performed mostly in apoptotic conditions where CASP3 activity is highly upregulated and these approaches do not have the capacity to uncover CASP3 substrates at the physiological level. In our study, we aim at discovering novel substrates of CASP3 involved in the normal regulation of the cell. We used an unconventional approach by chemically reducing the basal level CASP3-like activity (by DEVD-fmk treatment) coupled to a Mass Spectrometry screen (PISA) to identify proteins with different soluble amounts, and consequently, non-cleaved proteins in microglia cells. PISA assay identified several proteins with significant change in their solubility after DEVD-fmk treatment, including a few already known CASP3 substrates which validated our approach. Among them, we focused on the Collectin-12 (COLEC12 or CL-P1) transmembrane receptor and uncovered a potential role for CASP3 cleavage of COLEC12 in the regulation of the phagocytic capacity of microglial cells. Taken together, these findings suggest a new way to uncover non-apoptotic substrates of CASP3 important for the modulation of microglia cell physiology.
Collapse
|
3
|
McCowan J, Fercoq F, Kirkwood PM, T’Jonck W, Hegarty LM, Mawer CM, Cunningham R, Mirchandani AS, Hoy A, Humphries DC, Jones GR, Hansen CG, Hirani N, Jenkins SJ, Henri S, Malissen B, Walmsley SR, Dockrell DH, Saunders PTK, Carlin LM, Bain CC. The transcription factor EGR2 is indispensable for tissue-specific imprinting of alveolar macrophages in health and tissue repair. Sci Immunol 2021; 6:eabj2132. [PMID: 34797692 PMCID: PMC7612216 DOI: 10.1126/sciimmunol.abj2132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alveolar macrophages are the most abundant macrophages in the healthy lung where they play key roles in homeostasis and immune surveillance against airborne pathogens. Tissue-specific differentiation and survival of alveolar macrophages rely on niche-derived factors, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and transforming growth factor–β (TGF-β). However, the nature of the downstream molecular pathways that regulate the identity and function of alveolar macrophages and their response to injury remain poorly understood. Here, we identify that the transcription factor EGR2 is an evolutionarily conserved feature of lung alveolar macrophages and show that cell-intrinsic EGR2 is indispensable for the tissue-specific identity of alveolar macrophages. Mechanistically, we show that EGR2 is driven by TGF-β and GM-CSF in a PPAR-γ–dependent manner to control alveolar macrophage differentiation. Functionally, EGR2 was dispensable for the regulation of lipids in the airways but crucial for the effective handling of the respiratory pathogen Streptococcus pneumoniae. Last, we show that EGR2 is required for repopulation of the alveolar niche after sterile, bleomycin-induced lung injury and demonstrate that EGR2-dependent, monocyte-derived alveolar macrophages are vital for effective tissue repair after injury. Collectively, we demonstrate that EGR2 is an indispensable component of the transcriptional network controlling the identity and function of alveolar macrophages in health and disease.
Collapse
Affiliation(s)
- Jack McCowan
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | | | - Phoebe M. Kirkwood
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Wouter T’Jonck
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Lizi M. Hegarty
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Connar M. Mawer
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
| | - Richard Cunningham
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Ananda S. Mirchandani
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Anna Hoy
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
| | - Duncan C. Humphries
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Gareth-Rhys Jones
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Carsten G. Hansen
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Nik Hirani
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Stephen J. Jenkins
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, INSERM, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sarah R. Walmsley
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - David H. Dockrell
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Philippa T. K. Saunders
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Calum C. Bain
- University of Edinburgh Centre for Inflammation Research, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK
- Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
4
|
Preston JA, Bewley MA, Marriott HM, McGarry Houghton A, Mohasin M, Jubrail J, Morris L, Stephenson YL, Cross S, Greaves DR, Craig RW, van Rooijen N, Bingle CD, Read RC, Mitchell TJ, Whyte MKB, Shapiro SD, Dockrell DH. Alveolar Macrophage Apoptosis-associated Bacterial Killing Helps Prevent Murine Pneumonia. Am J Respir Crit Care Med 2020; 200:84-97. [PMID: 30649895 DOI: 10.1164/rccm.201804-0646oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rationale: Antimicrobial resistance challenges therapy of pneumonia. Enhancing macrophage microbicidal responses would combat this problem but is limited by our understanding of how alveolar macrophages (AMs) kill bacteria. Objectives: To define the role and mechanism of AM apoptosis-associated bacterial killing in the lung. Methods: We generated a unique CD68.hMcl-1 transgenic mouse with macrophage-specific overexpression of the human antiapoptotic Mcl-1 protein, a factor upregulated in AMs from patients at increased risk of community-acquired pneumonia, to address the requirement for apoptosis-associated killing. Measurements and Main Results: Wild-type and transgenic macrophages demonstrated comparable ingestion and initial phagolysosomal killing of bacteria. Continued ingestion (for ≥12 h) overwhelmed initial killing, and a second, late-phase microbicidal response killed viable bacteria in wild-type macrophages, but this response was blunted in CD68.hMcl-1 transgenic macrophages. The late phase of bacterial killing required both caspase-induced generation of mitochondrial reactive oxygen species and nitric oxide, the peak generation of which coincided with the late phase of killing. The CD68.hMcl-1 transgene prevented mitochondrial reactive oxygen species but not nitric oxide generation. Apoptosis-associated killing enhanced pulmonary clearance of Streptococcus pneumoniae and Haemophilus influenzae in wild-type mice but not CD68.hMcl-1 transgenic mice. Bacterial clearance was enhanced in vivo in CD68.hMcl-1 transgenic mice by reconstitution of apoptosis with BH3 mimetics or clodronate-encapsulated liposomes. Apoptosis-associated killing was not activated during Staphylococcus aureus lung infection. Conclusions: Mcl-1 upregulation prevents macrophage apoptosis-associated killing and establishes that apoptosis-associated killing is required to allow AMs to clear ingested bacteria. Engagement of macrophage apoptosis should be investigated as a novel, host-based antimicrobial strategy.
Collapse
Affiliation(s)
- Julie A Preston
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Martin A Bewley
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Helen M Marriott
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - A McGarry Houghton
- 3 Clinical Research Division, Fred Hutchinson Cancer Research Center, and.,4 Division of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington
| | - Mohammed Mohasin
- 5 Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | | | - Lucy Morris
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Yvonne L Stephenson
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Simon Cross
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom.,7 Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - David R Greaves
- 8 Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ruth W Craig
- 9 Department of Pharmacology and Toxicology, Geissel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Nico van Rooijen
- 10 Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Colin D Bingle
- 1 The Florey Institute for Host-Pathogen Interactions and.,2 Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Robert C Read
- 11 University of Southampton Medical School, Southampton, United Kingdom.,12 National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Timothy J Mitchell
- 13 Institute of Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom; and
| | - Moira K B Whyte
- 6 MRC Centre for Inflammation Research.,14 Department of Respiratory Medicine, and
| | - Steven D Shapiro
- 15 Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David H Dockrell
- 6 MRC Centre for Inflammation Research.,16 Infection Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Chen X, Wang R, Chen W, Lai L, Li Z. Decoy receptor-3 regulates inflammation and apoptosis via PI3K/AKT signaling pathway in coronary heart disease. Exp Ther Med 2019; 17:2614-2622. [PMID: 30906453 PMCID: PMC6425242 DOI: 10.3892/etm.2019.7222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Coronary heart disease is a disease characterized by coronary artery atherosclerosis lesions caused by vascular cavity stenosis, occlusion, myocardial ischemia, hypoxia or necrosis. Previous studies have demonstrated that decoy receptor-3 (DCR-3) can act as a pleiotropic immunomodulation for enhancing angiogenesis, which may be associated with the progression of coronary heart disease. In the present study, ELISA assay was used to investigate the plasma concentration level of DCR-3 in patients with coronary heart disease. The mRNA and protein level of DCR-3 in myocardial cells were determined by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The role and molecular mechanism of DCR-3 was also evaluated in myocardial cells in mice with coronary heart disease. The role of small interfering RNA that targeted phosphoinositide 3-kinase (PI3K) in DCR-3 mediated apoptosis was confirmed by terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling and immunofluorescence. C57BL/6 mice with coronary heart disease were used to evaluate the efficacy of DCR-3 on inflammation and apoptosis. The data indicated that plasma concentration level of DCR-3 was downregulated in mice with coronary heart disease and that DCR-3 administration improved symptoms of coronary heart disease and prolonged survival of mice with coronary heart disease. In addition, it was demonstrated that DCR-3 treatment suppressed the inflammatory response and apoptosis of myocardial cells. Circulating DCR-3 concentration levels may be identified as a predictor of coronary heart disease and prognosis of coronary heart disease. Notably, it was also demonstrated that DCR-3 inhibited inflammatory factor expression levels by regulation of the PI3K/protein kinase B (AKT) signaling pathway. Taken together, these results indicate that increasing circulating DCR-3 plasma concentration is associated with degree of coronary heart disease, suggesting that DCR-3 may be a promising drug for the treatment of coronary heart disease via regulating inflammation and apoptosis through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xinjing Chen
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China.,Department of Cardiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Rehua Wang
- Department of Cardiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Wei Chen
- Department of Cardiology, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Li Lai
- Fujian Key Laboratory of Cardiovascular Disease, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhiliang Li
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
6
|
Agusti A, Fabbri LM, Singh D, Vestbo J, Celli B, Franssen FME, Rabe KF, Papi A. Inhaled corticosteroids in COPD: friend or foe? Eur Respir J 2018; 52:13993003.01219-2018. [PMID: 30190269 DOI: 10.1183/13993003.01219-2018] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
Abstract
The efficacy, safety and positioning of inhaled corticosteroids (ICS) in the treatment of patients with chronic obstructive pulmonary disease (COPD) is much debated, since it can result in clear clinical benefits in some patients ("friend") but can be ineffective or even associated with undesired side effects, e.g. pneumonia, in others ("foe"). After critically reviewing the evidence for and against ICS treatment in patients with COPD, we propose that: 1) ICS should not be used as a single, stand-alone therapy in COPD; 2) patients most likely to benefit from the addition of ICS to long-acting bronchodilators include those with history of multiple or severe exacerbations despite appropriate maintenance bronchodilator use, particularly if blood eosinophils are >300 cells·µL-1, and those with a history of and/or concomitant asthma; and 3) the risk of pneumonia in COPD patients using ICS is higher in those with older age, lower body mass index (BMI), greater overall fragility, receiving higher ICS doses and those with blood eosinophils <100 cells·µL-1 All these factors must be carefully considered and balanced in any individual COPD patient before adding ICS to her/his maintenance bronchodilator treatment. Further research is needed to clarify some of these issues and firmly establish these recommendations.
Collapse
Affiliation(s)
- Alvar Agusti
- Respiratory Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,CIBER Enfermedades Respiratorias, Spain
| | - Leonardo M Fabbri
- Dept of Medicine, University of Ferrara, Ferrara, Italy.,COPD Center, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK.,Manchester University NHS Foundation Trust, Manchester, UK.,Medicines Evaluation Unit, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Bartolome Celli
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frits M E Franssen
- Dept of Research and Education, CIRO, Horn, The Netherlands.,Dept of Respiratory Medicine, Maastricht University Medical Hospital, Maastricht, The Netherlands
| | - Klaus F Rabe
- LungenClinic Großhansdorf, member of the German Center for Lung Research (DZL), Großhansdorf, Germany.,Christian Albrechts Universität Kiel, member of the German Center for Lung Research (DZL), Kiel, Germany
| | - Alberto Papi
- Research Centre on Asthma and COPD, University of Ferrara, Ferrara, Italy
| |
Collapse
|
7
|
Abstract
Early diagnosis of sepsis is critical for successful treatment. The clinical value of DcR3 in early diagnosis of sepsis was determined in a dynamic follow-up study. Alterations in plasma levels of DcR3, PCT, CRP, and IL-6 were measured by ELISA and compared among patients with sepsis (n = 134), SIRS (n = 60) and normal adults (n = 50). Correlations and dynamic patterns among the biomarkers, APACHE II scores, clinical outcomes, and pathogens were also examined. Plasma DcR3 was significantly increased in sepsis compared to SIRS and normal adults (median 3.87 vs. 1.28 and 0.17 ng/ml). The elevated DcR3 could be detected in 97.60% sepsis patients 1–2 days prior to the result of blood culture reported. For diagnosis of sepsis, the sensitivity was 97.69% and specificity 98.04%; and for differential diagnosis of sepsis from SIRS, the sensitivity was 90.77% and specificity 98.40%. DcR3 level was positively correlated with severity of sepsis (rs = 0.82). In 41 patients who died of sepsis, DcR3 elevated as early as 1–2 days before blood culture and peaked on day 3 after blood culture performed. In 90% of sepsis patients, the dynamic alteration pattern of DcR3 was identical to that of PCT, while pattern of 10% patients differed in which clinical data was consistent with DcR3. In 13% sepsis patients, while PCT remained normal, DcR3 levels were at a high level. DcR3 levels had no difference among various pathogens infected. DcR3, a new biomarker, will aid in early diagnosis of sepsis and monitoring its outcome, especially when sepsis patients were PCT negative.
Collapse
|
8
|
Cole J, Aberdein J, Jubrail J, Dockrell DH. The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus: mechanisms and contrasts. Adv Microb Physiol 2014; 65:125-202. [PMID: 25476766 DOI: 10.1016/bs.ampbs.2014.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages are critical mediators of innate immune responses against bacteria. The Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus express a range of virulence factors, which challenge macrophages' immune competence. We review how macrophages respond to this challenge. Macrophages employ a range of strategies to phagocytose and kill each pathogen. When the macrophages capacity to clear bacteria is overwhelmed macrophages play important roles in orchestrating the inflammatory response through pattern recognition receptor-mediated responses. Macrophages also ensure the inflammatory response is tightly constrained, to avoid tissue damage, and play an important role in downregulating the inflammatory response once initial bacterial replication is controlled.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jody Aberdein
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jamil Jubrail
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom.
| |
Collapse
|
9
|
Aberdein JD, Cole J, Bewley MA, Marriott HM, Dockrell DH. Alveolar macrophages in pulmonary host defence the unrecognized role of apoptosis as a mechanism of intracellular bacterial killing. Clin Exp Immunol 2013; 174:193-202. [PMID: 23841514 DOI: 10.1111/cei.12170] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2013] [Indexed: 01/12/2023] Open
Abstract
Alveolar macrophages play an essential role in clearing bacteria from the lower airway, as the resident phagocyte alveolar macrophages must both phagocytose and kill bacteria, and if unable to do this completely must co-ordinate an inflammatory response. The decision to escalate the inflammatory response represents the transition between subclinical infection and the development of pneumonia. Alveolar macrophages are well equipped to phagocytose bacteria and have a large phagolysosomal capacity in which ingested bacteria are killed. The rate-limiting step in control of extracellular bacteria, such as Streptococcus pneumoniae, is the capacity of alveolar macrophages to kill ingested bacteria. Therefore, alveolar macrophages complement canonical microbicidal strategies with an additional level of apoptosis-associated killing to help kill ingested bacteria.
Collapse
Affiliation(s)
- J D Aberdein
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, UK
| | | | | | | | | |
Collapse
|
10
|
Sabroe I, Postma D, Heijink I, Dockrell DH. The yin and the yang of immunosuppression with inhaled corticosteroids. Thorax 2013; 68:1085-7. [PMID: 23929790 DOI: 10.1136/thoraxjnl-2013-203773] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ian Sabroe
- Academic Unit of Respiratory Medicine, University of Sheffield, , Sheffield, UK
| | | | | | | |
Collapse
|