1
|
Zhang M, Morice AH, Si F, Zhang L, Chen Q, Wang S, Zhu Y, Xu X, Yu L, Qiu Z. New Insights Into Refractory Chronic Cough and Unexplained Chronic Cough: A 6-Year Ambispective Cohort Study. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:795-811. [PMID: 37957796 PMCID: PMC10643855 DOI: 10.4168/aair.2023.15.6.795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/21/2023] [Accepted: 06/13/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Only limited studies have depicted the unique features and management of refractory chronic cough (RCC) and unexplained chronic cough (UCC). These led to the initiation of this study, which reported the demographic characteristics, manifestations, and long-term outcomes on a large series of consecutive RCC/UCC patients, providing a guideline-led real-world clinical experience. METHODS Retrospective baseline information was obtained from Clinical Research Database (January 2016 to May 2021). At least 6 months after the last clinic visit, included subjects were prospectively followed up. RESULTS Three hundred and sixty-nine RCC and UCC patients (199 females, 53.9%) were analyzed. The median cough duration was 24.0 (12.0-72.0) months. Laryngeal symptoms were reported in 95.9% of the patients. The common triggers for coughing were talking (74.9%), pungent odors (47.3%), eating (45.5%), and cold air (42.8%). RCC was considered in 38.2%, and the remainder of 228 patients had UCC, with an equal sex distribution (P = 0.66). Among the 141 RCCs, 90.8% (128) had refractory reflux cough, which was more responsive to current treatments (P < 0.01). Although most features and test results between RCC and UCC were similar, UCC was more commonly inappropriately treated (P < 0.01). Nineteen (7.7-41.1) months after the final clinic visit, 31.2% still coughed persistently, while 68.8% reported cough improvement or remission. RCC reported more favorable treatment outcomes (including cough improvement, control, and spontaneous remission) than UCC (P < 0.01). Coughs with long duration before the initial cough clinic visit (P < 0.01), frequent urinary incontinence (P < 0.01), and being sensitive to "talking" (P < 0.01) or "cold air" (P < 0.01) were less likely to be solved. CONCLUSIONS The current treatments only improve cough symptoms in two-thirds of patients. Clinical indicators for treatment failure were those coughing for long duration and being sensitive to "talking" or "cold air."
Collapse
Affiliation(s)
- Mengru Zhang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Centre for Clinical Science, Respiratory Medicine, Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, East Yorkshire, UK
| | - Alyn H Morice
- Centre for Clinical Science, Respiratory Medicine, Hull York Medical School, University of Hull, Castle Hill Hospital, Cottingham, East Yorkshire, UK.
| | - Fengli Si
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qiang Chen
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shengyuan Wang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yiqing Zhu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongmin Qiu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Cheong A, Nagel ZD. Human Variation in DNA Repair, Immune Function, and Cancer Risk. Front Immunol 2022; 13:899574. [PMID: 35935942 PMCID: PMC9354717 DOI: 10.3389/fimmu.2022.899574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
DNA damage constantly threatens genome integrity, and DNA repair deficiency is associated with increased cancer risk. An intuitive and widely accepted explanation for this relationship is that unrepaired DNA damage leads to carcinogenesis due to the accumulation of mutations in somatic cells. But DNA repair also plays key roles in the function of immune cells, and immunodeficiency is an important risk factor for many cancers. Thus, it is possible that emerging links between inter-individual variation in DNA repair capacity and cancer risk are driven, at least in part, by variation in immune function, but this idea is underexplored. In this review we present an overview of the current understanding of the links between cancer risk and both inter-individual variation in DNA repair capacity and inter-individual variation in immune function. We discuss factors that play a role in both types of variability, including age, lifestyle, and environmental exposures. In conclusion, we propose a research paradigm that incorporates functional studies of both genome integrity and the immune system to predict cancer risk and lay the groundwork for personalized prevention.
Collapse
|
3
|
Schultze-Florey CR, Chukhno E, Goudeva L, Blasczyk R, Ganser A, Prinz I, Förster R, Koenecke C, Odak I. Distribution of major lymphocyte subsets and memory T-cell subpopulations in healthy adults employing GLP-conforming multicolor flow cytometry. Leukemia 2021; 35:3021-3025. [PMID: 34290358 PMCID: PMC8478656 DOI: 10.1038/s41375-021-01348-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Christian R Schultze-Florey
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Lilia Goudeva
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner site, Hannover, Germany
| | - Christian Koenecke
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ivan Odak
- Institute of Immunology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|