1
|
Andrews KR, Besser TE, Stalder T, Top EM, Baker KN, Fagnan MW, New DD, Schneider GM, Gal A, Andrews-Dickert R, Hunter SS, Beckmen KB, Christensen L, Justice-Allen A, Konetchy D, Lehman CP, Manlove K, Miyasaki H, Nordeen T, Roug A, Cassirer EF. Comparative genomic analysis identifies potential adaptive variation in Mycoplasma ovipneumoniae. Microb Genom 2024; 10:001279. [PMID: 39213169 PMCID: PMC11364169 DOI: 10.1099/mgen.0.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Mycoplasma ovipneumoniae is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared M. ovipneumoniae genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of M. ovipneumoniae assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4 %) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three M. ovipneumoniae genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of M. ovipneumoniae has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.
Collapse
Affiliation(s)
- Kimberly R. Andrews
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Thomas E. Besser
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Katherine N. Baker
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Matthew W. Fagnan
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Daniel D. New
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - G. Maria Schneider
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Alexandra Gal
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Rebecca Andrews-Dickert
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | - Samuel S. Hunter
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | | | - Lauren Christensen
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Denise Konetchy
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | | | - Todd Nordeen
- Nebraska Game and Parks Commission, Alliance, NE, USA
| | - Annette Roug
- Utah Division of Wildlife Resources, Salt Lake City, UT, USA
| | | |
Collapse
|
2
|
Framst I, Wolking RM, Schonfeld J, Ricker N, Beeler-Marfisi J, Chalmers G, Kamath PL, Maboni G. High-throughput rapid amplicon sequencing for multilocus sequence typing of Mycoplasma ovipneumoniae from archived clinical DNA samples. Front Vet Sci 2024; 11:1443855. [PMID: 39144078 PMCID: PMC11322507 DOI: 10.3389/fvets.2024.1443855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Spillover events of Mycoplasma ovipneumoniae have devastating effects on the wild sheep populations. Multilocus sequence typing (MLST) is used to monitor spillover events and the spread of M. ovipneumoniae between the sheep populations. Most studies involving the typing of M. ovipneumoniae have used Sanger sequencing. However, this technology is time-consuming, expensive, and is not well suited to efficient batch sample processing. Methods Our study aimed to develop and validate an MLST workflow for typing of M. ovipneumoniae using Nanopore Rapid Barcoding sequencing and multiplex polymerase chain reaction (PCR). We compare the workflow with Nanopore Native Barcoding library preparation and Illumina MiSeq amplicon protocols to determine the most accurate and cost-effective method for sequencing multiplex amplicons. A multiplex PCR was optimized for four housekeeping genes of M. ovipneumoniae using archived DNA samples (N = 68) from nasal swabs. Results Sequences recovered from Nanopore Rapid Barcoding correctly identified all MLST types with the shortest total workflow time and lowest cost per sample when compared with Nanopore Native Barcoding and Illumina MiSeq methods. Discussion Our proposed workflow is a convenient and effective method for strain typing of M. ovipneumoniae and can be applied to other bacterial MLST schemes. The workflow is suitable for diagnostic settings, where reduced hands-on time, cost, and multiplexing capabilities are important.
Collapse
Affiliation(s)
- Isaac Framst
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Rebecca M. Wolking
- Washington Animal Disease Diagnostic Lab, Washington State University, Pullman, WA, United States
| | | | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Janet Beeler-Marfisi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Gabhan Chalmers
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME, United States
| | - Grazieli Maboni
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
3
|
Chen J, Wang S, Dong D, Zhang Z, Huang Y, Zhang Y. Isolation and Characterization of Mycoplasma ovipneumoniae Infecting Goats with Pneumonia in Anhui Province, China. Life (Basel) 2024; 14:218. [PMID: 38398727 PMCID: PMC10890177 DOI: 10.3390/life14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) causes a fatal infection in goats, leading to significant economic losses in the small-ruminant industry worldwide. The present study aimed to characterize the strains of M. ovipneumoniae infecting goats with pneumonia in Anhui Province, China. From November 2021 to January 2023, among 20 flocks, a total of 1320 samples (600 samples of unvaccinated blood, 400 nasal swabs, 200 samples of pleural fluid, and 120 samples of lung tissue) were obtained from goats with typical signs of pneumonia, such as a low growth rate, appetite suppression, increased temperature, discharge from the nose, and a cough. Necropsied goats showed increased pleural fluid, fibrinous pleuropneumonia, and attached localized pleural adhesions. M. ovipneumoniae isolated from the samples were subjected to an indirect hemagglutination test (IHA), PCR amplicon sequencing, phylogenetic analysis, and biochemical identification tests. The overall positivity rate of M. ovipneumoniae was 27.50%. Mycoplasmas were obtained from 80 (20.0%) nasal swabs, 21 (10.5%) pleural fluid samples, and 15 (12.5%) lung samples. PCR amplicon (288 bp) sequencing identified eight strains of M. ovipneumoniae. In a phylogenetic tree, the isolated strains were homologous to the standard strain M. ovipneumoniae Y-98 and most similar to M. ovipneumoniae FJ-SM. Local strains of M. ovipneumoniae were isolated from goats in Anhui province. The identified genomic features and population structure will promote further study of M. ovipneumoniae pathogenesis and could form the basis for vaccine and therapy development.
Collapse
Affiliation(s)
- Jiahong Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (Z.Z.); (Y.H.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China;
| | - Shijia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (Z.Z.); (Y.H.)
| | - Dong Dong
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China;
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (Z.Z.); (Y.H.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China;
| | - Yafeng Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (S.W.); (Z.Z.); (Y.H.)
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China;
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| |
Collapse
|
4
|
Pavone S, Crotti S, D'Avino N, Gobbi P, Scoccia E, Pesca C, Gobbi M, Cambiotti V, Lepri E, Cruciani D. The role of Mycoplasma ovipneumoniae and Mycoplasma arginini in the respiratory mycoplasmosis of sheep and goats in Italy: Correlation of molecular data with histopathological features. Res Vet Sci 2023; 163:104983. [PMID: 37639802 DOI: 10.1016/j.rvsc.2023.104983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
Mycoplasma infections are commonly found in the respiratory system of small ruminants; the species most commonly detected are Mycoplasma ovipneumoniae and Mycoplasma arginini, associated with the so-called "atypical non-progressive pneumonia". The pathogenic role of M. ovipneumoniae in pneumonia has been demonstrated in sheep but still needs to be verified in goats; on the other hand, the role of M. arginini in sheep is not well understood, while in goats seems to be of low pathogenic value. The present study aims to investigate the aetiology of pneumonia in sheep and goats that died from respiratory disease using anatomopathological, histopathological, and molecular investigations and to clarify the role of respiratory mycoplasmas by the association of molecular data with histopathological features. First, to better understand which histological changes are actually suggestive of atypical pneumonia in sheep and goats, the study identified the histological lesions significantly associated with Mycoplasma spp. infection. Then, the histological score of lesions considered suggestive of atypical pneumonia was used to estimate the pathogenicity of each mycoplasma detected. The results showed that M. ovipneumoniae and M. arginini (alone or in mixed infections) are pathogenic both in sheep, as well as in goats with similar histology and severity of lesions. Moreover, young animals were statistically more susceptible to M.ovipneumoniae and M. arginini infection than adults. Animals appeared more at risk to the development of M. ovipneumoniae and M. arginini infection in summer.
Collapse
Affiliation(s)
- Silvia Pavone
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, Perugia 06126, Italy.
| | - Silvia Crotti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, Perugia 06126, Italy.
| | - Nicoletta D'Avino
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, Perugia 06126, Italy.
| | - Paola Gobbi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, Perugia 06126, Italy.
| | - Eleonora Scoccia
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, Perugia 06126, Italy.
| | - Cristina Pesca
- Azienda Sanitaria Locale 1, Via XIV Settembre 79, Parco S. Margherita, Perugia 06121, Italy.
| | - Marco Gobbi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, Perugia 06126, Italy.
| | | | - Elvio Lepri
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy.
| | - Deborah Cruciani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, Perugia 06126, Italy.
| |
Collapse
|
5
|
Complete Genome Sequences of Mycoplasma ovipneumoniae Strains 150 and 274, Isolated from Different Regions in Bosnia and Herzegovina. Microbiol Resour Announc 2023; 12:e0001123. [PMID: 36847545 PMCID: PMC10019298 DOI: 10.1128/mra.00011-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Mycoplasma ovipneumoniae is an important pathogen in sheep, goats, and wild ruminants. We sequenced M. ovipneumoniae strains 150 and 274 from Bosnia and Herzegovina. Strain 150 has a circular genome of 1,053,380 bp with 29.15% GC content while strain 274 has 1,081,404 bp with 28.82% GC content.
Collapse
|
6
|
Mycoplasma ovipneumoniae: A Most Variable Pathogen. Pathogens 2022; 11:pathogens11121477. [PMID: 36558811 PMCID: PMC9781387 DOI: 10.3390/pathogens11121477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma ovipneumoniae, a well-established respiratory pathogen of sheep and goats, has gained increased importance recently because of its detection in wild ruminants including members of the Cervidae family. Despite its frequent isolation from apparently healthy animals, it is responsible for outbreaks of severe respiratory disease which are often linked to infections with multiple heterologous strains. Furthermore, M. ovipneumoniae is characterized by an unusually wide host range, a high degree of phenotypic, biochemical, and genomic heterogeneity, and variable and limited growth in mycoplasma media. A number of mechanisms have been proposed for its pathogenicity, including the production of hydrogen peroxide, reactive oxygen species production, and toxins. It shows wide metabolic activity in vitro, being able to utilize substrates such as glucose, pyruvate, and isopropanol; these patterns can be used to differentiate strains. Treatment of infections in the field is complicated by large variations in the susceptibility of strains to antimicrobials, with many showing high minimum inhibitory concentrations. The lack of commercially available vaccines is probably due to the high cost of developing vaccines for diseases in small ruminants not presently seen as high priority. Multiple strains found in affected sheep and goats may also hamper the development of effective vaccines. This review summarizes the current knowledge and identifies gaps in research on M. ovipneumoniae, including its epidemiology in sheep and goats, pathology and clinical presentation, infection in wild ruminants, virulence factors, metabolism, comparative genomics, genotypic variability, phenotypic variability, evolutionary mechanisms, isolation and culture, detection and identification, antimicrobial susceptibility, variations in antimicrobial susceptibility profiles, vaccines, and control.
Collapse
|
7
|
Noll LW, Highland MA, Hamill VA, Tsui WNT, Porter EP, Lu N, Sebhatu T, Brown S, Herndon DR, Grossman PC, Bai J. Development of a real-time PCR assay for detection and differentiation of Mycoplasma ovipneumoniae and a novel respiratory-associated Mycoplasma species in domestic sheep and goats. Transbound Emerg Dis 2022; 69:e1460-e1468. [PMID: 35166453 PMCID: PMC9790229 DOI: 10.1111/tbed.14477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022]
Abstract
A novel respiratory-associated Mycoplasma species (M. sp. nov.) of unknown clinical significance was recently identified that causes false positive results with multiple published PCR methods reported to specifically detect Mycoplasma ovipneumonaie, a well-known respiratory pathogen in small ruminants. This necessitates our objective to develop a real-time PCR (qPCR) assay for improved specificity and sensitivity, and more rapid detection and differentiation of M. ovipneumoniae and the M. sp. nov. in domestic sheep (DS) and domestic goat (DG) samples, as compared to a conventional PCR and sequencing (cPCR-seq) assay. Primers and probes were designed based on available M. ovipneumoniae 16S rRNA gene sequences in the GenBank database, and partial 16S rRNA gene sequences provided by the United States Department of Agriculture, Agricultural Research Service (USDA-ARS) for M. ovipneumoniae and M. sp. nov. USDA-ARS provided DS (n = 153) and DG (n = 194) nasal swab nucleic acid that previously tested positive for either M. ovipneumoniae (n = 117) or M. sp. nov. (n = 138), or negative for both targets (n = 92) by cPCR-seq. A host 18S rRNA gene was included as an internal control to monitor for the failure of nucleic acid extraction and possible PCR inhibition. For samples positive by cPCR-seq, qPCR agreement was 88.0% (103/117; κ = 0.81) and 89.9% (124/138; κ = 0.84) for M. ovipneumoniae and M. sp. nov., respectively; 12 of 255 (4.7%) cPCR-seq positive samples were qPCR positive for both targets. Of samples negative by cPCR for both mycoplasmas, qPCR detected M. ovipneumoniae and M. sp. nov. in 6.5% (6/92) and 4.3% (4/92), respectively. Samples with discordant results between the cPCR and sequencing assay and the new qPCR were analyzed by target sequencing; successfully sequenced samples had identity matches that confirmed the qPCR result. The increased target specificity of this qPCR is predicted to increase testing accuracy as compared to other published assays.
Collapse
Affiliation(s)
- Lance W. Noll
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Margaret A. Highland
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Vaughn A. Hamill
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Wai Ning Tiffany Tsui
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Elizabeth P. Porter
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA,Bioinformatics CenterKansas State UniversityManhattanKansasUSA
| | - Tesfaalem Sebhatu
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| | - Susan Brown
- Bioinformatics CenterKansas State UniversityManhattanKansasUSA
| | - David R. Herndon
- United States Department of Agriculture, Agricultural Research ServiceAnimal Disease Research UnitPullmanWashingtonUSA
| | - Paige C. Grossman
- Department of Veterinary Microbiology and Pathology, College of Veterinary MedicineWashington State UniversityPullmanWashingtonUSA
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic LaboratoryDepartment of Diagnostic Medicine/Pathobiology, College of Veterinary MedicineKansas State UniversityManhattanKansasUSA
| |
Collapse
|
8
|
Manlove KR, Roug A, Sinclair K, Ricci LE, Hersey KR, Martinez C, Martinez MA, Mower K, Ortega T, Rominger E, Ruhl C, Tatman N, Taylor J. Bighorn sheep show similar in-host responses to the same pathogen strain in two contrasting environments. Ecol Evol 2022; 12:e9109. [PMID: 35866023 PMCID: PMC9288933 DOI: 10.1002/ece3.9109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022] Open
Abstract
Ecological context-the biotic and abiotic environment, along with its influence on population mixing dynamics and individual susceptibility-is thought to have major bearing on epidemic outcomes. However, direct comparisons of wildlife disease events in contrasting ecological contexts are often confounded by concurrent differences in host genetics, exposure histories, or pathogen strains. Here, we compare disease dynamics of a Mycoplasma ovipneumoniae spillover event that affected bighorn sheep populations in two contrasting ecological contexts. One event occurred on the herd's home range near the Rio Grande Gorge in New Mexico, while the other occurred in a captive facility at Hardware Ranch in Utah. While data collection regimens varied, general patterns of antibody signal strength and symptom emergence were conserved between the two sites. Symptoms appeared in the captive setting an average of 12.9 days postexposure, average time to seroconversion was 24.9 days, and clinical signs peaked at approximately 36 days postinfection. These patterns were consistent with serological testing and subsequent declines in symptom intensity in the free-ranging herd. At the captive site, older animals exhibited more severe declines in body condition and loin thickness, higher symptom burdens, and slower antibody response to the pathogen than younger animals. Younger animals were more likely than older animals to clear infection by the time of sampling at both sites. The patterns presented here suggest that environment may not be a major determinant of epidemiological outcomes in the bighorn sheep-M. ovipneumoniae system, elevating the possibility that host- or pathogen-factors may be responsible for observed variation.
Collapse
Affiliation(s)
- Kezia R. Manlove
- Department of Wildland Resources and Ecology CenterUtah State UniversityLoganUtahUSA
| | - Annette Roug
- Utah Division of Wildlife ResourcesSalt Lake CityUtahUSA
- Centre for Veterinary Wildlife Research, Faculty of Veterinary ScienceUniversity of PretoriaOnderstepoortSouth Africa
| | - Kylie Sinclair
- Department of Wildland Resources and Ecology CenterUtah State UniversityLoganUtahUSA
| | - Lauren E. Ricci
- Department of Wildland Resources and Ecology CenterUtah State UniversityLoganUtahUSA
| | - Kent R. Hersey
- Utah Division of Wildlife ResourcesSalt Lake CityUtahUSA
| | | | | | - Kerry Mower
- New Mexico Department of Game and FishSanta FeNew MexicoUSA
| | - Talisa Ortega
- Taos Pueblo Division of Natural ResourcesTaosNew MexicoUSA
| | - Eric Rominger
- New Mexico Department of Game and FishSanta FeNew MexicoUSA
| | - Caitlin Ruhl
- New Mexico Department of Game and FishSanta FeNew MexicoUSA
| | - Nicole Tatman
- New Mexico Department of Game and FishSanta FeNew MexicoUSA
| | - Jace Taylor
- Utah Division of Wildlife ResourcesSalt Lake CityUtahUSA
- US Fish and Wildlife ServiceWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
9
|
Vaccines for Mycoplasma Diseases of Small Ruminants: A Neglected Area of Research. Pathogens 2022; 11:pathogens11010075. [PMID: 35056023 PMCID: PMC8781016 DOI: 10.3390/pathogens11010075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Mycoplasmas cause some of the most economically important diseases of sheep and goats, including diseases listed by the World Organisation for Animal Health (OIE) such as contagious caprine pleuropneumonia (CCPP) and contagious agalactia (CA). Other important mycoplasma diseases include chronic respiratory and arthritic syndrome (CRAS) and atypical pneumonia, both present on all continents where small ruminants are farmed. Unfortunately, owing to a lack of investment, most commercial vaccines for these diseases are of poor quality, being mostly composed of killed bacteriocins of dubious or unknown efficacy. Several Mediterranean laboratories produce autogenous vaccines, but these can only be used on farms where outbreaks have been officially declared, and consequently have limited impact on disease nationally. Effective live vaccines are available, but their use is often restricted because of safety concerns. With the necessary safeguards in place, we argue for their greater use. This review examines reported vaccines for mycoplasma diseases of small ruminants and attempts to identify new candidate antigens that may enable the development of improved products. Vaccines for CCPP are covered elsewhere.
Collapse
|
10
|
Jaÿ M, Ambroset C, Tricot A, Colin A, Tardy F. Population structure and antimicrobial susceptibility of Mycoplasma ovipneumoniae isolates in France. Vet Microbiol 2020; 248:108828. [PMID: 32905961 DOI: 10.1016/j.vetmic.2020.108828] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
Chronic non-progressive pneumonia in small ruminants caused by Mycoplasma (M.) ovipneumoniae is mainly controlled by chemotherapy. In France, during the last decade, a rise in M. ovipneumoniae cases was recorded in both sheep and goats, suggesting a possible emergence. Whether this rise is associated with antimicrobial resistance, as observed in other ruminant Mycoplasma species, has yet to be examined. The aim of the study was to characterize the diversity of M. ovipneumoniae strains circulating in France and assess their antimicrobial resistance, together with the underlying mechanisms, to help find an explanation for the increase in reported cases. The genetic diversity of 56 strains isolated between 2007 and 2018 from sheep and goats was assessed using different subtyping methods. Their susceptibility to six antimicrobial classes was profiled by estimating Minimum Inhibitory Concentrations (MICs) using an optimised agar dilution method. Resistance mechanisms were explored by sequence analysis of rRNA targets. A high genetic diversity of strains was evidenced, with consistent, marked animal-host clustering in the Hsp70 gene and whole genome sequence phylogeny. No clonal evolution could thus account for putative emergence. Apart from florfenicol, MICs were low except for a few isolates with increased values for tetracyclines, macrolides and lincosamides. Hotspot mutations in the target ribosomal gene could explain increased tetracycline MICs. Other mechanisms are suspected for macrolide-lincosamide and florfenicol resistance. The emergence of M. ovipneumoniae is thus not related to any increase in resistance or to a clonal spread. Explanations may lie in breeding practices.
Collapse
Affiliation(s)
- Maryne Jaÿ
- Université de Lyon, Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony-Garnier, 69364, Lyon Cedex 07, France; Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy-l'Etoile, France
| | - Chloé Ambroset
- Université de Lyon, Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony-Garnier, 69364, Lyon Cedex 07, France; Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy-l'Etoile, France
| | - Agnès Tricot
- Université de Lyon, Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony-Garnier, 69364, Lyon Cedex 07, France; Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy-l'Etoile, France
| | - Adélie Colin
- Université de Lyon, Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony-Garnier, 69364, Lyon Cedex 07, France; Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy-l'Etoile, France
| | - Florence Tardy
- Université de Lyon, Anses, Laboratoire de Lyon, UMR Mycoplasmoses des Ruminants, 31 Avenue Tony-Garnier, 69364, Lyon Cedex 07, France; Université de Lyon, VetAgro Sup, UMR Mycoplasmoses des Ruminants, Marcy-l'Etoile, France.
| |
Collapse
|
11
|
Maksimović Z, Bačić A, Rifatbegović M. Antimicrobial Susceptibility of Caprine and Ovine Mycoplasma ovipneumoniae Isolates. Microb Drug Resist 2020; 26:1271-1274. [PMID: 32412832 DOI: 10.1089/mdr.2019.0465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of this study was to determine the minimum inhibitory concentrations (MICs) of nine antimicrobials (enrofloxacin, ciprofloxacin, norfloxacin, gentamicin, spectinomycin, oxytetracycline, tylosin, florfenicol, and tiamulin) against 24 Mycoplasma ovipneumoniae isolates obtained from sheep and goats and to compare the resulting antimicrobial profiles. Enrofloxacin and ciprofloxacin had the lowest MIC50 values (<0.03 μg/mL) and MIC90 values (0.25 μg/mL) for all tested isolates. The highest MIC50 value (2 μg/mL) was obtained for florfenicol, while oxytetracycline and tylosin exhibited the highest MIC90 values (16 μg/mL). The MIC values for all fluoroquinolones and oxytetracycline were significantly lower for sheep isolates. Sheep isolates were considerably more susceptible to norfloxacin and tylosin than were goat isolates. This study demonstrated differences in antimicrobial susceptibilities between sheep and goat isolates, revealing M. ovipneumoniae in goat isolates to be less susceptible. The results suggest a possible link between antimicrobial profiles of M. ovipneumoniae isolates and their host ruminant species.
Collapse
Affiliation(s)
- Zinka Maksimović
- Department of Microbiology and Infectious Diseases, Veterinary Faculty, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Azra Bačić
- Institute for Biomedical Diagnostics and Research "GENOM," Travnik, Bosnia and Herzegovina
| | - Maid Rifatbegović
- Department of Microbiology and Infectious Diseases, Veterinary Faculty, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
12
|
Genetic structure of Mycoplasma ovipneumoniae informs pathogen spillover dynamics between domestic and wild Caprinae in the western United States. Sci Rep 2019; 9:15318. [PMID: 31653889 PMCID: PMC6814754 DOI: 10.1038/s41598-019-51444-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/30/2019] [Indexed: 01/24/2023] Open
Abstract
Spillover diseases have significant consequences for human and animal health, as well as wildlife conservation. We examined spillover and transmission of the pneumonia-associated bacterium Mycoplasma ovipneumoniae in domestic sheep, domestic goats, bighorn sheep, and mountain goats across the western United States using 594 isolates, collected from 1984 to 2017. Our results indicate high genetic diversity of M. ovipneumoniae strains within domestic sheep, whereas only one or a few strains tend to circulate in most populations of bighorn sheep or mountain goats. These data suggest domestic sheep are a reservoir, while the few spillovers to bighorn sheep and mountain goats can persist for extended periods. Domestic goat strains form a distinct clade from those in domestic sheep, and strains from both clades are found in bighorn sheep. The genetic structure of domestic sheep strains could not be explained by geography, whereas some strains are spatially clustered and shared among proximate bighorn sheep populations, supporting pathogen establishment and spread following spillover. These data suggest that the ability to predict M. ovipneumoniae spillover into wildlife populations may remain a challenge given the high strain diversity in domestic sheep and need for more comprehensive pathogen surveillance.
Collapse
|
13
|
da Cunha MM, Capote-Bonato F, Capoci IRG, Bonato DV, Ghizzi LG, Paiva-Lima P, Baeza LC, Svidzinski TIE. Epidemiological investigation and molecular typing of dermatophytosis caused by Microsporum canis in dogs and cats. Prev Vet Med 2019; 167:39-45. [PMID: 31027719 DOI: 10.1016/j.prevetmed.2019.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 12/27/2022]
Abstract
The objective of the present study was investigate the prevalence of dermatophytes in dogs, cats and environment floor through molecular epidemiology tools to identify the genetic profile of these infectious agents. This was an observational study with cross-sectional surveys design. Sample were collected from the hair and skin of 52 dogs and cats with the clinical suspicion of dermatophytosis, over a period of one year in Maringá, in the state of Paraná, Brazil. Household samples (carpets and floor), were collected from animals that were positive for dermatophytosis by morphological colonies characteristics, and samples of dogs or cats living in the same household as with the positive animals were also collected. After mycological confirmation, molecular typing was performed by random amplified polymorphic DNA (RAPD). Microsporum canis was the unic dermatophyto isolated whose prevalence was 26.9% (14/52) in animals with the clinical suspicion of dermatophytosis and four other animals that lived with positive animals. As some animals had more than one lesion site, there were 22 total positive cultures from samples from animals and another ten from abiotic sources. The majority of the animals that provided positive cultures for M. canis were aged up to five months (77.8%) and were female (66.7%). Molecular typing using the P1 primer revealed genetically distinct profiles in the symptomatic, asymptomatic and environmental animal samples, or the same animal, furthermore, showed that M. canis could have microevolution.
Collapse
Affiliation(s)
- Michele Milano da Cunha
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020-900, Brazil.
| | - Francieli Capote-Bonato
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020-900, Brazil.
| | - Isis Regina Grenier Capoci
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, PR, 87020-900, Brazil.
| | - Denis Vinicius Bonato
- Department of Animal Science, State University of Londrina, Londrina, PR, 86057-970, Brazil.
| | - Lucas Ghedin Ghizzi
- Department of Animal Nutrition and Production, University of São Paulo, Pirassununga, SP, 13635-900, Brazil.
| | - Patrícia Paiva-Lima
- Departament of Veterinary Medicine, Teaching Union of Southwest Paraná, Dois Vizinhos, PR, 85605-040, Brazil.
| | - Lilian Cristiane Baeza
- Center for Medical and Pharmaceutical Sciences, State University of Western Paraná, Cascavel, PR, 85819-110, Brazil.
| | | |
Collapse
|
14
|
Loop-mediated isothermal amplification-lateral-flow dipstick (LAMP-LFD) to detect Mycoplasma ovipneumoniae. World J Microbiol Biotechnol 2019; 35:31. [PMID: 30701329 PMCID: PMC6353813 DOI: 10.1007/s11274-019-2601-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/18/2019] [Indexed: 11/17/2022]
Abstract
In order to establish a rapid detection method for Mycoplasma ovipneumoniae, this study used the loop-mediated isothermal amplification (LAMP) technique to carry out nucleic acid amplification and chromatographic visualization via a lateral flow dipstick (LFD) assay. The M. ovipneumoniae elongation factor TU gene (EF-TU) was detected using a set of specific primers designed for the EF-TU gene, and the EF-TU FIP was detected by biotin labeling, which was used in the LAMP amplification reaction. The digoxin-labeled probe specifically hybridized with LAMP products, which were visually detected by LFD. Here, we established the M. ovipneumoniae LAMP-LFD rapid detection method and tested the specificity, sensitivity, and clinical application of this method. Results showed that the optimized LAMP performed at 60 °C for 60 min, and LFD can specifically and visually detect M. ovipneumoniae with a minimum detectable concentration at 1.0 × 102 CFU/mL. The sensitivity of LAMP-LFD was 1000 times that of the conventional PCR detection methods, and the clinical lung tissue detection rate was 86% of 50 suspected sheep infected with M. ovipneumoniae. In conclusion, LAMP-LFD was established in this study to detect M. ovipneumoniae, a method that was highly specific, sensitive, and easy to operate, and provides a new method for the prevention and diagnosis of M. ovipneumoniae infection.
Collapse
|
15
|
Einarsdottir T, Gunnarsson E, Hjartardottir S. Icelandic ovine Mycoplasma ovipneumoniae are variable bacteria that induce limited immune responses in vitro and in vivo. J Med Microbiol 2018; 67:1480-1490. [DOI: 10.1099/jmm.0.000818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Thorbjorg Einarsdottir
- 1Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
- 2BioMedical Center, University of Iceland, Iceland
| | - Eggert Gunnarsson
- 1Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Sigridur Hjartardottir
- 1Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| |
Collapse
|
16
|
Cassirer EF, Manlove KR, Almberg ES, Kamath PL, Cox M, Wolff P, Roug A, Shannon J, Robinson R, Harris RB, Gonzales BJ, Plowright RK, Hudson PJ, Cross PC, Dobson A, Besser TE. Pneumonia in bighorn sheep: Risk and resilience. J Wildl Manage 2017. [DOI: 10.1002/jwmg.21309] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Kezia R. Manlove
- Department of Veterinary Microbiology and PathologyWashington State UniversityPullmanWA 99164USA
| | - Emily S. Almberg
- Montana Department of Fish, Wildlife, and Parks1400 South 19th St.BozemanMT 59717USA
| | | | - Mike Cox
- Nevada Department of Wildlife6980 Sierra Center Parkway, Suite 120RenoNV 89511USA
| | - Peregrine Wolff
- Nevada Department of Wildlife6980 Sierra Center Parkway, Suite 120RenoNV 89511USA
| | - Annette Roug
- Utah Division of Wildlife Resources1594 W. North Temple, Suite 2110Salt Lake CityUT 84116USA
| | - Justin Shannon
- Utah Division of Wildlife Resources1594 W. North Temple, Suite 2110Salt Lake CityUT 84116USA
| | - Rusty Robinson
- Utah Division of Wildlife Resources1594 W. North Temple, Suite 2110Salt Lake CityUT 84116USA
| | - Richard B. Harris
- Washington Department of Fish and Wildlife600 Capitol Way NorthOlympiaWA 98501USA
| | - Ben J. Gonzales
- Wildlife Investigations LaboratoryCalifornia Department of Fish and Wildlife1701 Nimbus RoadRancho CordovaCA 95670‐4503USA
| | - Raina K. Plowright
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMT 59717USA
| | - Peter J. Hudson
- Center for Infectious Disease DynamicsPenn State UniversityUniversity ParkPA 16802USA
| | - Paul C. Cross
- U.S. Geological SurveyNorthern Rocky Mountain Science CenterBozemanMT 59715USA
| | - Andrew Dobson
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJ 08544USA
| | - Thomas E. Besser
- Department of Veterinary Microbiology and PathologyWashington State UniversityPullmanWA 99164USA
| |
Collapse
|
17
|
Exposure of bighorn sheep to domestic goats colonized with Mycoplasma ovipneumoniae induces sub-lethal pneumonia. PLoS One 2017; 12:e0178707. [PMID: 28591169 PMCID: PMC5462392 DOI: 10.1371/journal.pone.0178707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bronchopneumonia is a population limiting disease of bighorn sheep (Ovis canadensis) that has been associated with contact with domestic Caprinae. The disease is polymicrobial but is initiated by Mycoplasma ovipneumoniae, which is commonly carried by both domestic sheep (O. aries) and goats (Capra aegagrus hircus). However, while previous bighorn sheep comingling studies with domestic sheep have resulted in nearly 100% pneumonia mortality, only sporadic occurrence of fatal pneumonia was reported from previous comingling studies with domestic goats. Here, we evaluated the ability of domestic goats of defined M. ovipneumoniae carriage status to induce pneumonia in comingled bighorn sheep. METHODOLOGY/PRINCIPAL FINDINGS In experiment 1, three bighorn sheep naïve to M. ovipneumoniae developed non-fatal respiratory disease (coughing, nasal discharge) following comingling with three naturally M. ovipneumoniae-colonized domestic goats. Gross and histological lesions of pneumonia, limited to small areas on the ventral and lateral edges of the anterior and middle lung lobes, were observed at necropsies conducted at the end of the experiment. A control group of three bighorn sheep from the same source housed in isolation during experiment 1 remained free of observed respiratory disease. In experiment 2, three bighorn sheep remained free of observed respiratory disease while comingled with three M. ovipneumoniae-free domestic goats. In experiment 3, introduction of a domestic goat-origin strain of M. ovipneumoniae to the same comingled goats and bighorn sheep used in experiment 2 resulted in clinical signs of respiratory disease (coughing, nasal discharge) in both host species. At the end of experiment 3, gross and histological evidence of pneumonia similar to that observed in experiment 1 bighorn sheep was observed in both affected bighorn sheep and domestic goats. CONCLUSIONS/SIGNIFICANCE M. ovipneumoniae strains carried by domestic goats were transmitted to comingled bighorn sheep, triggering development of pneumonia. However, the severity of the disease was markedly milder than that seen in similar experiments with domestic sheep strains of the bacterium.
Collapse
|